Biochar and Its Potential Application for the Improvement of the Anaerobic Digestion Process: A Critical Review
Abstract
:1. Introduction
2. Description of the Anaerobic Digestion Process and Challenges Faced in the Process
3. Synergistic Relationship between Anaerobic Digestion and Pyrolysis
4. Factors Affecting the Efficiency of Biochar in the Anaerobic Digestion Process
4.1. Pyrolysis Temperature
4.2. Biochar Dosage
4.3. Feedstock Type
5. Mechanisms Underlying the Improvement of the AD Process by Biochar
5.1. Mitigation of Ammonia Inhibition
Biochar Feedstock | Pyrolysis Conditions | Biochar Properties | AD Substrate | AD Conditions | Properties of Biochar Highlighted | Study Results | Reference |
---|---|---|---|---|---|---|---|
Pine sawdust | Temp: 650 °C, Retention time: 20 min | Particle size: 3.5–25.9 μm SSA: 130.0 m2/g PV: 0.0138 cm3/g | Food waste | Two phase AD process— First stage for hydrogen: temperature of 35 °C and pH 5 and second stage for methane production: temperature of 35 °C; pH 7 | Large SSA of biochar that enabled the formation of biofilm | The application of biochar enhanced hydrogen and methane production rates by 32.5% and 41.6%, respectively. It also reduced the AD lag phase. | [66] |
Whiskey “draff” | Pyrolysis temperature: 500– 900 °C | BET surface area: 94.12–368 m2/g | Whiskey Draff | Mesophilic AD at 37 °C at 30 days | DIET | Increasing the pyrolysis temperature from 500 to 700 °C brought about a significant increase in surface functional groups and helped promote interspecies electron transfer. However, the quantity of surface functional groups on biochar reduces with pyrolysis temperatures above 700 °C, limiting its ability to promote. interspecies electron transfer. | [96] |
Corn stover biochar (CSBC) Pine biochar (PBC) | Temp: >450 °C | CSBC Particle size: 6.50 nm BET surface area: 315.2 m2/g PBC Particle size: 5.07 nm BET surface area: 353.1 m2/g | Sewage sludge | The thermophilic temperature was 55 °C and the pH was maintained at 5.3–6.0 | DIET | Methane production was 37% higher in the digester with corn stover biochar than without corn stover biochar. | [52] |
Chicken manure | Temp: 350, 450, and 550 °C | Particle size: 0.3–0.45 mm SSA: 209 m2/g | Chicken manure | Mesophilic AD at 35 °C | Biochar addition enhanced the resistance of the system through the rapid conversion of macromolecular substances to dissolved substrates. | There was a considerable increase in methane production for the nine kinds of biochar tested. | [27] |
White oak Pine wood | Temp: 600–900 °C | Pine wood: Particle size: 177–1707 μm BET surface area: 310.19 m2/g Pore volume: 0.19 cm3/g White oak biochar: Particle size: 250–354 μm BET surface area: 296.81 m2/g Pore volume: 0.15 cm3/g | Wood biochar and sewage sludge | Mesophilic and thermophilic operated AD at 37 °C and 55 °C, respectively. | High aromaticity; cation exchange; alkalinity | Average methane contents of 92.3% and 79.0% in mesophilic and thermophilic AD, respectively, were observed in the biogas of the biochar-amended bioreactors. | [51] |
Wood biochar | - | - | Ice cream waste | Thermophilic temperature at 50 °C for 50 days | Alkalinity to reduce ammonia inhibition | Application of biochar brought about a very high methane production rate of 17.3 mL/g COD/day. | [87] |
Corn stover biochar | Temp: 600–700 °C | SSA: 315.3 m2/g. | Sewage sludge | Thermophilic AD at 55 ± 1 °C | Alkalinity to reduce ammonia inhibition; large surface area for in situ CO2 removal. | Application of biochar brought about 7.0%, 8.1%, and 27.6% increases in the methane yield, a constant biomethanation rate, and the highest methane production rate. | [97] |
Orchard wood waste | Temp: 550 ± 50 °C | - | Chicken manure | Mesophilic AD operated at 35 °C and had a hydraulic retention time of 20 days | [27] | ||
Hardwood, corncob, and mixed sawdust pellets | Temp: 600 °C at 10 °C/min Residence time: 8 h | Hardwood –SSA: 147 m2/g; PV: 0.176 cm3/g Corncob— SSA: 23 m2/g PV: 0.098 cm3/g Sawdust pellets BET SSA: 6.80 m2/g PV: 0.038 cm3/g | Pig manure digestate | Mesophilic AD | High SSA and large pore volume | High sorption capacity of ammonium with biochar was observed. | [98] |
Wood straw, wood pellets, and sheep manure | Temp: 680–770 °C Residence time: 2.5 h | Poultry manure | Mesophilic AD at 37 °C | Large surface area and pores, which enabled the entrapment and colonization of microbes for the degradation of intermediates like propionate and isovalerate | The average methane yield in the wood biochar amended digester was 32% (66 mL CH4/g-VS) higher than that of the controls (50 mL CH4/g-VS). Adding wheat straw or sheep manure biochar negatively affected the performance of the digester when compared with the controls. | [77] | |
Vermicompost | Temp: 500 °C Residence time: 2 h | Particle size: 5.3 nm BET surface area: 56.6 m2/g | Kitchen waste and chicken manure | Mesophilic batch-operated AD was operated at 35 °C | Alkaline nature of biochar and surface functional groups | Increased methane yield and enhanced buffering capability. | [17] |
Waste sludge and dairy manure | Temp: 400–800 °C Residence time: 90 min | Waste activated sludge | Mesophilic AD operated at 37 °C | Electrostatic attraction, precipitation, surface complexation, and ion exchange | Biochar removed the lead present in sewage sludge through adsorption. The mechanism of adsorption was also studied. | [99] | |
Sawdust | Temp: 500 °C at 10 °C/min, Residence time: 1.5 h | - | Activated sludge and food waste | Batch mesophilic AD at 35 °C | DIET: increased buffering capacity from increased alkalinity. | The application of biochar brought about a 27.5–64.4% reduction in the lag time, thereby increasing the methane production rate by 22.4–40.3%. | [100] |
Hardwood | Wheat straw | Maximum methane yield (223 L/kg VS, a 2-fold increment in comparison with the control) was obtained with the application of 10 g/L of hardwood biochar. | |||||
Wood chips and anaerobic digester residue | Temp: 600 °C | pH of 7.98 ± 0.03 | Cattle manure | Mesophilic operated AD at 35 °C | Alkalinity; surface area; and surface functional groups | Biochar-amended digester achieved 98% removal of hydrogen sulfide (H2S). | [101] |
5.2. Volatile Fatty Acid Reduction
5.3. Effect of Biochar on Microorganisms
5.4. Direct Interspecies Electron Transfer
5.5. In Situ Cleanup of Biogas
6. Effect of Biochar on the Quality of Digestate
7. Implications of the Study and Areas of Future Research
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.; Sial, M.S.; Ahmad, N.; Filipe, A.J.; Thu, P.A.; Zia-Ud-Din, M.; Caleiro, A.B. Water Scarcity and Sustainability in an Emerging Economy: A Management Perspective for Future. Sustainability 2020, 13, 144. [Google Scholar] [CrossRef]
- Manga, M.; Muoghalu, C.; Camargo-Valero, M.A.; Evans, B.E. Effect of Turning Frequency on the Survival of Fecal Indicator Microorganisms during Aerobic Composting of Fecal Sludge with Sawdust. Int. J. Environ. Res. Public Health 2023, 20, 2668. [Google Scholar] [CrossRef] [PubMed]
- Bank, W. Solid Waste Management. Available online: https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management (accessed on 24 February 2023).
- Lim, S.L.; Lee, L.H.; Wu, T.Y. Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: Recent overview, greenhouse gases emissions and economic analysis. J. Clean. Prod. 2016, 111, 262–278. [Google Scholar] [CrossRef]
- Manga, M.; Evans, B.E.; Ngasala, T.M.; Camargo-Valero, M.A. Recycling of Faecal Sludge: Nitrogen, Carbon and Organic Matter Transformation during Co-Composting of Faecal Sludge with Different Bulking Agents. Int. J. Environ. Res. Public Health 2022, 19, 10592. [Google Scholar] [CrossRef]
- Manga, M.; Muoghalu, C.C.; Acheng, P.O. Inactivation of faecal pathogens during faecal sludge composting: A systematic review. Environ. Technol. Rev. 2023, 12, 150–174. [Google Scholar] [CrossRef]
- Campuzano, R.; González-Martínez, S. Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Manag. 2016, 54, 3–12. [Google Scholar] [CrossRef]
- Manga, M. The Feasibility of Co-Composting as an Upscale Treatment Method for Faecal Sludge in Urban Africa; University of Leeds: Leeds, UK, 2017; Available online: https://etheses.whiterose.ac.uk/16997 (accessed on 11 January 2023).
- Komakech, A.J. Urban Waste Management and the Environmental Impact of Organic Waste Treatment Systems in Kampala; Uganda Makerere University: Kampala, Uganda; Uppsala, Sweden, 2014. [Google Scholar]
- Fleming, L.; Anthonj, C.; Thakkar, M.B.; Tikoisuva, W.M.; Manga, M.; Howard, G.; Shields, K.F.; Kelly, E.; Overmars, M.; Bartram, J. Urban and rural sanitation in the Solomon Islands: How resilient are these to extreme weather events? Sci. Total Environ. 2019, 683, 331–340. [Google Scholar] [CrossRef]
- Manga, M.; Kolsky, P.; Rosenboom, J.W.; Ramalingam, S.; Sriramajayam, L.; Bartram, J.; Stewart, J. Public health performance of sanitation technologies in Tamil Nadu, India: Initial perspectives based on E. coli release. Int. J. Hyg. Environ. Health 2022, 243, 113987. [Google Scholar] [CrossRef]
- Manga, M.; Camargo-Valero, M.A.; Anthonj, C.; Evans, B.E. Fate of faecal pathogen indicators during faecal sludge composting with different bulking agents in tropical climate. Int. J. Hyg. Environ. Health 2021, 232, 113670. [Google Scholar] [CrossRef]
- Paine, F.A.J.P.T.; Science. Packing and the environment. Packag. Technol. Sci. 1992, 5, 125–132. [Google Scholar] [CrossRef]
- Panigrahi, S.; Dubey, B.K. A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renew. Energy 2019, 143, 779–797. [Google Scholar] [CrossRef]
- Zainal, B.S.; Zinatizadeh, A.A.; Chyuan, O.H.; Mohd, N.S.; Ibrahim, S. ffects of Process, Operational and Environmental Variables on Biohydrogen Production Using Palm Oil Mill Effluent (POME). Int. J. Hydrogen Energy 2018, 43, 10637–10644. [Google Scholar] [CrossRef]
- Wu, L.-J.; Qin, Y.; Hojo, T.; Li, Y.-Y. Upgrading of anaerobic digestion of waste activated sludge by temperature-phased process with recycle. Energy 2015, 87, 381–389. [Google Scholar] [CrossRef]
- Wang, D.; Ai, J.; Shen, F.; Yang, G.; Zhang, Y.; Deng, S.; Zhang, J.; Zeng, Y.; Song, C. Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost. Bioresour. Technol. 2017, 227, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Lü, F.; Shao, L.; He, P. Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Res. 2015, 68, 710–718. [Google Scholar] [CrossRef]
- Vavilin, V.A.; Rytov, S.V.; Lokshina, L.Y.; Pavlostathis, S.G.; Barlaz, M.A. Distributed model of solid waste anaerobic digestion: Effects of leachate recirculation and pH adjustment. Biotechnol. Bioeng. 2003, 81, 66–73. [Google Scholar] [CrossRef]
- Ganesh, R.; Torrijos, M.; Sousbie, P.; Lugardon, A.; Steyer, J.P.; Delgenes, J.P. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance. Waste Manag. 2014, 34, 875–885. [Google Scholar] [CrossRef]
- Romero-Güiza, M.S.; Vila, J.; Mata-Alvarez, J.; Chimenos, J.M.; Astals, S. The role of additives on anaerobic digestion: A review. Renew. Sustain. Energy Rev. 2016, 58, 1486–1499. [Google Scholar] [CrossRef]
- Zhou, B.; Feng, Y.; Wang, Y.; Yang, L.; Xue, L.; Xing, B. Impact of hydrochar on rice paddy CH4 and N2O emissions: A comparative study with pyrochar. Chemosphere 2018, 204, 474–482. [Google Scholar] [CrossRef]
- Muoghalu, C.; Owusu, A.; Nakagiri, A.; Semiyaga, S.; Lebu, S.; Iorhemen, O.; Manga, M. Biochar as a Novel Technology for Treatment of Onsite Domestic Wastewater: A Critical Review. Front. Environ. Sci.—Water Wastewater Manag. 2023, 11, 1095920. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Dou, X.; Mohan, D.; Sung, J.-K.; Yang, J.E.; Ok, Y.S. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, R.; Xu, X.; Fan, X.; Luo, S. Hydrogen and methane production from lipid-extracted microalgal biomass residues. Int. J. Hydrogen Energy 2011, 36, 3465–3470. [Google Scholar] [CrossRef]
- Pan, J.; Ma, J.; Liu, X.; Zhai, L.; Ouyang, X.; Liu, H. Effects of different types of biochar on the anaerobic digestion of chicken manure. Bioresour. Technol. 2019, 275, 258–265. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Rotaru, A.-E.; Shrestha, P.M.; Malvankar, N.S.; Liu, F.; Fan, W.; Nevin, K.P.; Lovley, D.R. Promoting Interspecies Electron Transfer with Biochar. Sci. Rep. 2014, 4, 5019. [Google Scholar] [CrossRef]
- Mathew, A.K.; Bhui, I.; Banerjee, S.N.; Goswami, R.; Chakraborty, A.K.; Shome, A.; Balachandran, S.; Chaudhury, S. Biogas production from locally available aquatic weeds of Santiniketan through anaerobic digestion. Clean Technol. Environ. Policy 2014, 17, 1681–1688. [Google Scholar] [CrossRef]
- Narihiro, T.; Sekiguchi, Y. Microbial communities in anaerobic digestion processes for waste and wastewater treatment: A microbiological update. Curr. Opin. Biotechnol. 2007, 18, 273–278. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Wu, J. Enhancement of methane production in anaerobic digestion process: A review. Appl. Energy 2019, 240, 120–137. [Google Scholar] [CrossRef]
- Adekunle, K.F.; Okolie, J.A. A Review of Biochemical Process of Anaerobic Digestion. Adv. Biosci. Biotechnol. 2015, 6, 205–212. [Google Scholar] [CrossRef]
- Semiyaga, S.; Nakagiri, A.; Niwagaba, C.B.; Manga, M. Application of Anaerobic Digestion in Decentralized Faecal Sludge Treatment Plants. In Anaerobic Biodigesters for Human Waste Treatment; Meghvansi, M.K., Goel, A.K., Eds.; Springer Nature: Singapore, 2022; pp. 263–281. [Google Scholar]
- André, L.; Ndiaye, M.; Pernier, M.; Lespinard, O.; Pauss, A.; Lamy, E.; Ribeiro, T. Methane production improvement by modulation of solid phase immersion in dry batch anaerobic digestion process: Dynamic of methanogen populations. Bioresour. Technol. 2016, 207, 353–360. [Google Scholar] [CrossRef]
- Shen, Y.; Yu, Y.; Zhang, Y.; Urgun-Demirtas, M.; Yuan, H.; Zhu, N.; Dai, X. Role of redox-active biochar with distinctive electrochemical properties to promote methane production in anaerobic digestion of waste activated sludge. J. Clean. Prod. 2021, 278, 123212. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.M.; Poulsen, T.G.; Sheng, K.J.A.E. Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl. Energy 2016, 180, 661–671. [Google Scholar] [CrossRef]
- Chen, J.L.; Ortiz, R.; Steele, T.W.J.; Stuckey, D.C. Toxicants inhibiting anaerobic digestion: A review. Biotechnol. Adv. 2014, 32, 1523–1534. [Google Scholar] [CrossRef] [PubMed]
- Asquer, C.; Pistis, A.; Scano, E.A. Characterization of Fruit and Vegetable Wastes as a Single Substrate for the Anaerobic Digestion. Environ. Eng. Manag. J. 2013, 12, 89–92. [Google Scholar]
- Lebuhn, M.; Munk, B.; Effenberger, M. Agricultural biogas production in Germany—From practice to microbiology basics. Energy Sustain. Soc. 2014, 4, 10. [Google Scholar] [CrossRef]
- Masebinu, S.O.; Akinlabi, E.T.; Muzenda, E.; Aboyade, A.O. A review of biochar properties and their roles in mitigating challenges with anaerobic digestion. Renew. Sustain. Energy Rev. 2019, 103, 291–307. [Google Scholar] [CrossRef]
- Franke-Whittle, I.H.; Walter, A.; Ebner, C.; Insam, H. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag. 2014, 34, 2080–2089. [Google Scholar] [CrossRef]
- Kvesitadze, G.; Sadunishvili, T.; Dudauri, T.; Zakariashvili, N.; Partskhaladze, G.; Ugrekhelidze, V.; Tsiklauri, G.; Metreveli, B.; Jobava, M. Two-stage anaerobic process for bio-hydrogen and bio-methane combined production from biodegradable solid wastes. Energy 2012, 37, 94–102. [Google Scholar] [CrossRef]
- Dahunsi, S.O.; Oranusi, S.; Owolabi, J.B.; Efeovbokhan, V.E. Mesophilic anaerobic co-digestion of poultry dropping and Carica papaya peels: Modelling and process parameter optimization study. Bioresour. Technol. 2016, 216, 587–600. [Google Scholar] [CrossRef]
- Ren, N.; Guo, W.; Liu, B.; Cao, G.; Ding, J. Biological hydrogen production by dark fermentation: Challenges and prospects towards scaled-up production. Curr. Opin. Biotechnol. 2011, 22, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Liu, H.; He, H.; Luo, L.; Li, X.; Zeng, G.; Zhou, Z.; Lou, W.; Yang, C. Treatment of anaerobically digested swine wastewater by Rhodobacter blasticus and Rhodobacter capsulatus. Bioresour. Technol. 2016, 222, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Jeanne Huang, J.; Hua, B.; Huang, Z.; Droste, R.L.; Chen, L.; Wang, B.; Yang, C.; Yang, S. A new strategy to recover from volatile fatty acid inhibition in anaerobic digestion by photosynthetic bacteria. Bioresour. Technol. 2020, 311, 123501. [Google Scholar] [CrossRef] [PubMed]
- García-Gen, S.; Rodríguez, J.; Lema, J.M. Optimisation of substrate blends in anaerobic co-digestion using adaptive linear programming. Bioresour. Technol. 2014, 173, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.V.; Baral, S.S. Experimental design of mixture for the anaerobic co-digestion of sewage sludge. Chem. Eng. J. 2011, 172, 977–986. [Google Scholar] [CrossRef]
- Rawlings, J.O.; Pantula, S.G.; Dickey, D.A. Class Variables in Regression. In Applied Regression Analysis: A Research Tool; Springer: New York, NY, USA, 1998; pp. 269–323. [Google Scholar]
- Shen, Y.; Linville, J.L.; Ignacio-de Leon, P.A.A.; Schoene, R.P.; Urgun-Demirtas, M. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar. J. Clean. Prod. 2016, 135, 1054–1064. [Google Scholar] [CrossRef]
- Shen, Y.; Forrester, S.; Koval, J.; Urgun-Demirtas, M. Yearlong semi-continuous operation of thermophilic two-stage anaerobic digesters amended with biochar for enhanced biomethane production. J. Clean. Prod. 2017, 167, 863–874. [Google Scholar] [CrossRef]
- Budzianowski, W.M.; Wylock, C.E.; Marciniak, P.A. Power requirements of biogas upgrading by water scrubbing and biomethane compression: Comparative analysis of various plant configurations. Energy Convers. Manag. 2017, 141, 2–19. [Google Scholar] [CrossRef]
- Masebinu, S.O.; Aboyade, A.O.; Muzenda, E. Economic analysis of biogas upgrading and utilization as vehicular fuel in South Africa. In Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II, WCECS 2015, San Francisco, CA, USA, 21–23 October 2015. [Google Scholar]
- Song, Q.; Zhao, H.-y.; Xing, W.-l.; Song, L.-h.; Yang, L.; Yang, D.; Shu, X. Effects of various additives on the pyrolysis characteristics of municipal solid waste. Waste Manag. 2018, 78, 621–629. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; Wan, Z.; Sun, Y.; Tsang, D.C.W.; Gupta, J.; Gao, B.; Cao, X.; Tang, J.; Ok, Y.S. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresour. Technol. 2020, 312, 123613. [Google Scholar] [CrossRef]
- Kumar, M.; Dutta, S.; You, S.; Luo, G.; Zhang, S.; Show, P.L.; Sawarkar, A.D.; Singh, L.; Tsang, D.C.W. A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge. J. Clean. Prod. 2021, 305, 127143. [Google Scholar] [CrossRef]
- Codignole Luz, F.; Cordiner, S.; Manni, A.; Mulone, V.; Rocco, V. Biomass fast pyrolysis in screw reactors: Prediction of spent coffee grounds bio-oil production through a monodimensional model. Energy Convers. Manag. 2018, 168, 98–106. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Rene, E.R.; Dupont, C.; Wongrod, S.; van Hullebusch, E.D. Anaerobic Digestion of Fruit Waste Mixed With Sewage Sludge Digestate Biochar: Influence on Biomethane Production. Front. Energy Res. 2020, 8, 31. [Google Scholar] [CrossRef]
- Codignole Luz, F.; Cordiner, S.; Manni, A.; Mulone, V.; Rocco, V. Biochar characteristics and early applications in anaerobic digestion-a review. J. Environ. Chem. Eng. 2018, 6, 2892–2909. [Google Scholar] [CrossRef]
- Giwa, A.S.; Xu, H.; Chang, F.; Wu, J.; Li, Y.; Ali, N.; Ding, S.; Wang, K. Effect of biochar on reactor performance and methane generation during the anaerobic digestion of food waste treatment at long-run operations. J. Environ. Chem. Eng. 2019, 7, 103067. [Google Scholar] [CrossRef]
- Wang, Z.; Che, Y.; Li, J.; Wu, W.; Yan, B.; Zhang, Y.; Wang, X.; Yu, F.; Chen, G.; Zuo, X.; et al. Effects of anaerobic digestion pretreatment on the pyrolysis of Sargassum: Investigation by TG-FTIR and Py-GC/MS. Energy Convers. Manag. 2022, 267, 115934. [Google Scholar] [CrossRef]
- Wang, X.; Wei-Chung Chang, V.; Li, Z.; Song, Y.; Li, C.; Wang, Y. Co-pyrolysis of sewage sludge and food waste digestate to synergistically improve biochar characteristics and heavy metals immobilization. Waste Manag. 2022, 141, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Liu, Y.-g.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z.-z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef]
- Nsamba, H.K.; Hale, S.E.; Cornelissen, G.; Bachmann, R.T. Sustainable Technologies for Small-Scale Biochar Production—A Review. J. Sustain. Bioenergy Syst. 2015, 5, 10–31. [Google Scholar] [CrossRef]
- Sunyoto, N.M.S.; Zhu, M.; Zhang, Z.; Zhang, D. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresour. Technol. 2016, 219, 29–36. [Google Scholar] [CrossRef]
- Figueras, J.; Benbelkacem, H.; Dumas, C.; Buffiere, P. Biomethanation of syngas by enriched mixed anaerobic consortium in pressurized agitated column. Bioresour. Technol. 2021, 338, 125548. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Angelidaki, I. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnol. Bioeng. 2012, 109, 2729–2736. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Shen, K.; Long, X.; Wen, J.; Xie, X.; Zeng, X.; Liang, Y.; Wei, Y.; Lin, Z.; Huang, W.; et al. Preparation and Characterization of Biochars from Eichornia crassipes for Cadmium Removal in Aqueous Solutions. PLoS ONE 2016, 11, e0148132. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wu, S.; Wang, R.; Wu, H. Nitrogen removal in response to the varying C/N ratios in subsurface flow constructed wetland microcosms with biochar addition. Environ. Sci. Pollut. Res. 2019, 26, 3382–3391. [Google Scholar] [CrossRef] [PubMed]
- Kończak, M.; Oleszczuk, P.; Różyło, K. Application of different carrying gases and ratio between sewage sludge and willow for engineered (smart) biochar production. J. CO2 Util. 2019, 29, 20–28. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef]
- ul Ain, Q.; Shehzad, R.A.; Yaqoob, U.; Sharif, A.; Sajid, Z.; Rafiq, S.; Iqbal, S.; Khalid, M.; Iqbal, J. Designing of benzodithiophene acridine based Donor materials with favorable photovoltaic parameters for efficient organic solar cell. Comput. Theor. Chem. 2021, 1200, 113238. [Google Scholar] [CrossRef]
- Butnan, S.; Deenik, J.L.; Toomsan, B.; Antal, M.J.; Vityakon, P. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 2015, 237, 105–116. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Paritosh, K.; Vivekanand, V. Biochar enabled syntrophic action: Solid state anaerobic digestion of agricultural stubble for enhanced methane production. Bioresour. Technol. 2019, 289, 121712. [Google Scholar] [CrossRef]
- Indren, M.; Birzer, C.H.; Kidd, S.P.; Hall, T.; Medwell, P.R. Effects of biochar parent material and microbial pre-loading in biochar-amended high-solids anaerobic digestion. Bioresour. Technol. 2020, 298, 122457. [Google Scholar] [CrossRef] [PubMed]
- Linville, J.L.; Shen, Y.; Ignacio-de Leon, P.A.; Schoene, R.P.; Urgun-Demirtas, M. In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale. Waste Manag. Res. 2017, 35, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, D.; Guan, Y.; Yu, K.; Wang, W. Phosphorus sorption capacity of biochars from different waste woods and bamboo. Int. J. Phytoremediation 2019, 21, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, H.; Cheng, Z.; Wang, S. Effect of low aeration rate on simultaneous nitrification and denitrification in an intermittent aeration aged refuse bioreactor treating leachate. Waste Manag. 2017, 63, 410–416. [Google Scholar] [CrossRef]
- Zielińska, A.; Oleszczuk, P.; Charmas, B.; Skubiszewska-Zięba, J.; Pasieczna-Patkowska, S. Effect of sewage sludge properties on the biochar characteristic. J. Anal. Appl. Pyrolysis 2015, 112, 201–213. [Google Scholar] [CrossRef]
- Abit, S.M.; Bolster, C.H.; Cai, P.; Walker, S.L. Influence of Feedstock and Pyrolysis Temperature of Biochar Amendments on Transport of Escherichia coli in Saturated and Unsaturated Soil. Environ. Sci. Technol. 2012, 46, 8097–8105. [Google Scholar] [CrossRef]
- Baek, G.; Kim, J.; Kim, J.; Lee, C. Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion. Energies 2018, 11, 107. [Google Scholar] [CrossRef]
- Chiappero, M.; Norouzi, O.; Hu, M.; Demichelis, F.; Berruti, F.; Di Maria, F.; Mašek, O.; Fiore, S. Review of biochar role as additive in anaerobic digestion processes. Renew. Sustain. Energy Rev. 2020, 131, 110037. [Google Scholar] [CrossRef]
- Monlau, F.; Sambusiti, C.; Barakat, A.; Guo, X.M.; Latrille, E.; Trably, E.; Steyer, J.-P.; Carrere, H. Predictive Models of Biohydrogen and Biomethane Production Based on the Compositional and Structural Features of Lignocellulosic Materials. Environ. Sci. Technol. 2012, 46, 12217–12225. [Google Scholar] [CrossRef]
- Mumme, J.; Srocke, F.; Heeg, K.; Werner, M. Use of biochars in anaerobic digestion. Bioresour. Technol. 2014, 164, 189–197. [Google Scholar] [CrossRef]
- Aramrueang, N.; Zhang, R.; Liu, X. Application of biochar and alkalis for recovery of sour anaerobic digesters. J. Environ. Manag. 2022, 307, 114538. [Google Scholar] [CrossRef] [PubMed]
- Cirne, D.G.; Paloumet, X.; Björnsson, L.; Alves, M.M.; Mattiasson, B. Anaerobic digestion of lipid-rich waste—Effects of lipid concentration. Renew. Energy 2007, 32, 965–975. [Google Scholar] [CrossRef]
- Sossa, K.; Alarcón, M.; Aspé, E.; Urrutia, H. Effect of ammonia on the methanogenic activity of methylaminotrophic methane producing Archaea enriched biofilm. Anaerobe 2004, 10, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Koukouzas, N.; Hämäläinen, J.; Papanikolaou, D.; Tourunen, A.; Jäntti, T. Mineralogical and elemental composition of fly ash from pilot scale fluidised bed combustion of lignite, bituminous coal, wood chips and their blends. Fuel 2007, 86, 2186–2193. [Google Scholar] [CrossRef]
- Singoredjo, L.; Kapteijn, F.; Moulijn, J.A.; Martín-Martínez, J.-M.; Boehm, H.-P. Modified activated carbons for the selective catalytic reduction of NO with NH3. Carbon 1993, 31, 213–222. [Google Scholar] [CrossRef]
- Seredych, M.; Bandosz, T.J. Mechanism of Ammonia Retention on Graphite Oxides: Role of Surface Chemistry and Structure. J. Phys. Chem. C 2007, 111, 15596–15604. [Google Scholar] [CrossRef]
- Su, C.; Zhao, L.; Liao, L.; Qin, J.; Lu, Y.; Deng, Q.; Chen, M.; Huang, Z. Application of biochar in a CIC reactor to relieve ammonia nitrogen stress and promote microbial community during food waste treatment. J. Clean. Prod. 2019, 209, 353–362. [Google Scholar] [CrossRef]
- Ciccoli, R.; Sperandei, M.; Petrazzuolo, F.; Broglia, M.; Chiarini, L.; Correnti, A.; Farneti, A.; Pignatelli, V.; Tabacchioni, S. Anaerobic digestion of the above ground biomass of Jerusalem Artichoke in a pilot plant: Impact of the preservation method on the biogas yield and microbial community. Biomass Bioenergy 2018, 108, 190–197. [Google Scholar] [CrossRef]
- Lü, F.; Luo, C.; Shao, L.; He, P. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Res. 2016, 90, 34–43. [Google Scholar] [CrossRef]
- Deng, C.; Lin, R.; Kang, X.; Wu, B.; Wall, D.M.; Murphy, J.D. What physicochemical properties of biochar facilitate interspecies electron transfer in anaerobic digestion: A case study of digestion of whiskey by-products. Fuel 2021, 306, 121736. [Google Scholar] [CrossRef]
- Shen, Y.; Linville, J.L.; Urgun-Demirtas, M.; Schoene, R.P.; Snyder, S.W. Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal. Appl. Energy 2015, 158, 300–309. [Google Scholar] [CrossRef]
- Kizito, S.; Wu, S.; Wandera, S.M.; Guo, L.; Dong, R. Evaluation of ammonium adsorption in biochar-fixed beds for treatment of anaerobically digested swine slurry: Experimental optimization and modeling. Sci. Total Environ. 2016, 563–564, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.-H.; Chen, Y.-d.; Yang, Z.-k.; Nagarajan, D.; Chang, J.-S.; Ren, N.-q. High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge. Bioresour. Technol. 2017, 246, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, Q.; Gao, X.; Wang, X.C. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms. Bioresour. Technol. 2018, 250, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Kanjanarong, J.; Giri, B.S.; Jaisi, D.P.; Oliveira, F.R.; Boonsawang, P.; Chaiprapat, S.; Singh, R.S.; Balakrishna, A.; Khanal, S.K. Removal of hydrogen sulfide generated during anaerobic treatment of sulfate-laden wastewater using biochar: Evaluation of efficiency and mechanisms. Bioresour. Technol. 2017, 234, 115–121. [Google Scholar] [CrossRef]
- Shen, F.; Yuan, H.; Pang, Y.; Chen, S.; Zhu, B.; Zou, D.; Liu, Y.; Ma, J.; Yu, L.; Li, X. Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): Single-phase vs. two-phase. Bioresour. Technol. 2013, 144, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Cotter, P.D.; Hill, C. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH. Microbiol. Mol. Biol. Rev. 2003, 67, 429–453. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Moe, C.L.; Null, C.; Raj, S.J.; Baker, K.K.; Robb, K.A.; Yakubu, H.; Ampofo, J.A.; Wellington, N.; Freeman, M.C.; et al. Multipathway Quantitative Assessment of Exposure to Fecal Contamination for Young Children in Low-Income Urban Environments in Accra, Ghana: The SaniPath Analytical Approach. Am. J. Trop. Med. Hyg. 2017, 97, 1009–1019. [Google Scholar] [CrossRef]
- Yang, L.; Xu, F.; Ge, X.; Li, Y. Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2015, 44, 824–834. [Google Scholar] [CrossRef]
- Stams, A.J.; Plugge, C.M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol. 2009, 7, 568–577. [Google Scholar] [CrossRef]
- Vanwonterghem, I.; Webster, N.S. Coral Reef Microorganisms in a Changing Climate. iScience 2020, 23, 100972. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Lai, Q.; Zhang, C.; Zhao, H.; Ma, K.; Zhao, X.; Chen, H.; Liu, D.; Xing, X.-H. Characteristics of hydrogen and methane production from cornstalks by an augmented two- or three-stage anaerobic fermentation process. Bioresour. Technol. 2009, 100, 2889–2895. [Google Scholar] [CrossRef] [PubMed]
- Vetriani, C.; Voordeckers, J.W.; Crespo-Medina, M.; O’Brien, C.E.; Giovannelli, D.; Lutz, R.A. Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap). ISME J. 2014, 8, 1510–1521. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, Y.; Holmes, D.E.; Dang, Y.; Woodard, T.L.; Nevin, K.P.; Lovley, D.R. Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors. Bioresour. Technol. 2016, 209, 148–156. [Google Scholar] [CrossRef]
- Sawayama, S.; Tada, C.; Tsukahara, K.; Yagishita, T. Effect of ammonium addition on methanogenic community in a fluidized bed anaerobic digestion. J. Biosci. Bioeng. 2004, 97, 65–70. [Google Scholar] [CrossRef]
- Kuroda, M.; Yuzawa, M.; Sakakibara, Y.; Okamura, M. Methanogenic bacteria adhered to solid supports. Water Res. 1988, 22, 653–656. [Google Scholar] [CrossRef]
- van Wolferen, M.; Orell, A.; Albers, S.V. Archaeal biofilm formation. Nat. Rev. Microbiol. 2018, 16, 699–713. [Google Scholar] [CrossRef]
- Martins, G.; Salvador, A.F.; Pereira, L.; Alves, M.M. Methane Production and Conductive Materials: A Critical Review. Environ. Sci. Technol. 2018, 52, 10241–10253. [Google Scholar] [CrossRef]
- Lovley, D.R. Happy together: Microbial communities that hook up to swap electrons. ISME J. 2017, 11, 327–336. [Google Scholar] [CrossRef]
- Park, J.-H.; Kang, H.-J.; Park, K.-H.; Park, H.-D. Direct interspecies electron transfer via conductive materials: A perspective for anaerobic digestion applications. Bioresour. Technol. 2018, 254, 300–311. [Google Scholar] [CrossRef]
- Wu, B.; Yang, Q.; Yao, F.; Chen, S.; He, L.; Hou, K.; Pi, Z.; Yin, H.; Fu, J.; Wang, D.; et al. Evaluating the effect of biochar on mesophilic anaerobic digestion of waste activated sludge and microbial diversity. Bioresour. Technol. 2019, 294, 122235. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Yin, X.; Xu, X.; Yan, X.; Bi, F.; Wu, W. Specific surface area and electron donating capacity determine biochar’s role in methane production during anaerobic digestion. Bioresour. Technol. 2020, 303, 122919. [Google Scholar] [CrossRef] [PubMed]
- Barua, S.; Dhar, B.R. Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion. Bioresour. Technol. 2017, 244, 698–707. [Google Scholar] [CrossRef]
- Cruz Viggi, C.; Rossetti, S.; Fazi, S.; Paiano, P.; Majone, M.; Aulenta, F. Magnetite Particles Triggering a Faster and More Robust Syntrophic Pathway of Methanogenic Propionate Degradation. Environ. Sci. Technol. 2014, 48, 7536–7543. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, Y.; Quan, X.; Zhang, Y. Towards engineering application: Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials. Water Res. 2017, 115, 266–277. [Google Scholar] [CrossRef]
- Shanmugam, S.R.; Adhikari, S.; Nam, H.; Kar Sajib, S. Effect of bio-char on methane generation from glucose and aqueous phase of algae liquefaction using mixed anaerobic cultures. Biomass Bioenergy 2018, 108, 479–486. [Google Scholar] [CrossRef]
- Gaga, Y.; Benmessaoud, S.; Kara, M.; Assouguem, A.; Al-Ghamdi, A.A.; Al-Hemaid, F.M.; Elshikh, M.S.; Ullah, R.; Banach, A.; Bahhou, J. New Margin-Based Biochar for Removing Hydrogen Sulfide Generated during the Anaerobic Wastewater Treatment. Water 2022, 14, 3319. [Google Scholar] [CrossRef]
- Mun, M.; Cho, H. Mineral Carbonation for Carbon Sequestration with Industrial Waste. Energy Procedia 2013, 37, 6999–7005. [Google Scholar] [CrossRef]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 2014, 43, 8049–8080. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Chang, E.E.; Chiang, P.-C. CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications. Aerosol Air Qual. Res. 2012, 12, 770–791. [Google Scholar] [CrossRef]
- Cavali, M.; Libardi Junior, N.; Mohedano, R.d.A.; Belli Filho, P.; da Costa, R.H.R.; de Castilhos Junior, A.B. Biochar and hydrochar in the context of anaerobic digestion for a circular approach: An overview. Sci. Total Environ. 2022, 822, 153614. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, M.; Ye, Z.; Yang, C. Effect of manganese oxide-modified biochar addition on methane production and heavy metal speciation during the anaerobic digestion of sewage sludge. J. Environ. Sci. 2019, 76, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Alburquerque, J.A.; de la Fuente, C.; Campoy, M.; Carrasco, L.; Nájera, I.; Baixauli, C.; Caravaca, F.; Roldán, A.; Cegarra, J.; Bernal, M.P. Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur. J. Agron. 2012, 43, 119–128. [Google Scholar] [CrossRef]
- Lu, K.; Yang, X.; Gielen, G.; Bolan, N.; Ok, Y.S.; Niazi, N.K.; Xu, S.; Yuan, G.; Chen, X.; Zhang, X.; et al. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manag. 2017, 186, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Salman, C.A.; Schwede, S.; Thorin, E.; Yan, J. Predictive Modelling and Simulation of Integrated Pyrolysis and Anaerobic Digestion Process. Energy Procedia 2017, 105, 850–857. [Google Scholar] [CrossRef]
- Fagbohungbe, M.O.; Herbert, B.M.; Hurst, L.; Ibeto, C.N.; Li, H.; Usmani, S.Q.; Semple, K.T. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Manag. 2017, 61, 236–249. [Google Scholar] [CrossRef]
Aim | Feedstock Type | Biochar Property | Reference |
---|---|---|---|
Mitigation of ammonia through adsorption | Plant/wood-based biochar | Large specific surface area (SSA) | [85,86] |
Reduction of VFA accumulation | Sewage or manure biochar | High ash content/high pH | [77] |
DIET | Plant/wood-based biochar | Surface functional groups (redox-active moieties) | [41] |
Habitat for the immobilization (trapping, binding, and immobilization) of microorganisms | Plant/wood-based biochar | Relatively interconnected pores (5–10 µm diameter) | [82] |
In situ cleanup of biogas (removal of CO2 and H2S | Plant/wood-based biochar Sewage or manure biochar | Large surface area and porosity Alkali and alkaline earth metals | [35] [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manga, M.; Aragón-Briceño, C.; Boutikos, P.; Semiyaga, S.; Olabinjo, O.; Muoghalu, C.C. Biochar and Its Potential Application for the Improvement of the Anaerobic Digestion Process: A Critical Review. Energies 2023, 16, 4051. https://doi.org/10.3390/en16104051
Manga M, Aragón-Briceño C, Boutikos P, Semiyaga S, Olabinjo O, Muoghalu CC. Biochar and Its Potential Application for the Improvement of the Anaerobic Digestion Process: A Critical Review. Energies. 2023; 16(10):4051. https://doi.org/10.3390/en16104051
Chicago/Turabian StyleManga, Musa, Christian Aragón-Briceño, Panagiotis Boutikos, Swaib Semiyaga, Omotunde Olabinjo, and Chimdi C. Muoghalu. 2023. "Biochar and Its Potential Application for the Improvement of the Anaerobic Digestion Process: A Critical Review" Energies 16, no. 10: 4051. https://doi.org/10.3390/en16104051
APA StyleManga, M., Aragón-Briceño, C., Boutikos, P., Semiyaga, S., Olabinjo, O., & Muoghalu, C. C. (2023). Biochar and Its Potential Application for the Improvement of the Anaerobic Digestion Process: A Critical Review. Energies, 16(10), 4051. https://doi.org/10.3390/en16104051