Ground Motion Prediction of High-Energy Mining Seismic Events: A Bootstrap Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Model Setup
2.2.1. Multiple Regression Model
2.2.2. Bootstrapping Estimation Model
- (a)
- the vector with the random components in Equation (2) is determined;
- (b)
- the sampling with replacement is performed on giving bootstrap vector ;
- (c)
- bootstrap vector is added to the theoretical values in Equation (2) giving the vector ;
- (d)
- the bootstrap regression parameters are calculated according to the Equation (3): ;
- (e)
- steps (b)–(d) are repeated r times giving r vectors estimating model parameters, which allows us to determine their bootstrap statistical distributions F();
- (f)
- the mean values of the r vectors of the bootstrap regression parameters are calculated as the estimators of the model parameters of Equations (1) and (2): E( and the corresponding lower and upper limits of 95% confidence intervals.
3. Results and Discussion
Multiple Regression Results of Ground Motion Prediction Equations, GMPE
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boroń, P.; Dulińska, J.M.; Jasińska, D. Impact of High Energy Mining-Induced Seismic Shocks from Different Mining Activity Regions on a Multiple-Support Road Viaduct. Energies 2020, 13, 4045. [Google Scholar] [CrossRef]
- Convertito, V.; Ebrahimian, H.; Amoroso, O.; Jalayer, F.; De Matteis, R.; Capuano, P. Time-Dependent Seismic Hazard Analysis for Induced Seismicity: The Case of St Gallen (Switzerland), Geothermal Field. Energies 2021, 14, 2747. [Google Scholar] [CrossRef]
- Mutke, G.; Dubinski, J.; Baranski, A.; Lurka, A. Intensity Scale of Mining Seismic Events. In Proceedings of the Near Surface 2008—14th EAGE European Meeting of Environmental and Engineering Geophysics, Kraków, Poland, 15–17 September 2008; p. cp-64-00043. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Dou, L.-M.; Wang, G.-F. Mechanism Analysis of Roadway Rockbursts Induced by Dynamic Mining Loading and Its Application. Energies 2018, 11, 2313. [Google Scholar] [CrossRef]
- Li, Z.; He, S.; Song, D.; He, X.; Dou, L.; Chen, J.; Liu, X.; Feng, P. Microseismic Temporal-Spatial Precursory Characteristics and Early Warning Method of Rockburst in Steeply Inclined and Extremely Thick Coal Seam. Energies 2021, 14, 1186. [Google Scholar] [CrossRef]
- Jinqiang, W.; Basnet, P.; Mahtab, S. Review of machine learning and deep learning application in mine microseismic event classification. Min. Miner. Depos. 2021, 15, 19–26. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, N.; Ren, J.; Li, C. Peak particle velocity of vibration events in underground coal mine and their caused stress increment. Measurement 2020, 169, 108520. [Google Scholar] [CrossRef]
- Joyner, W.B.; Boore, D.M.; Porcella, R.L. Peak horizontal acceleration and velocity from strong motion records including records from the 1979 Imperial Valley, California, earthquake. Bull. Seismol. Soc. Am. 1981, 71, 2011–2038. [Google Scholar] [CrossRef]
- WUG. Ocena Stanu Bezpieczeństwa Pracy, Ratownictwa Górniczego Oraz Bezpieczeństwa Powszechnego w Związku z Działalnością Górniczo-Geologiczną w 2020 Roku; WUG: Katowice, Poland, 2021. (In Polish) [Google Scholar]
- Chernick, M.R.; Labudde, R.A. An Introduction to Bootstrap Methods with Applications to R; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Bindi, D.; Parolai, S.; Oth, A.; Abdrakhmatov, K.; Muraliev, A.; Zschau, J. Intensity prediction equations for Central Asia. Geophys. J. Int. 2011, 187, 327–337. [Google Scholar] [CrossRef]
- Bindi, D.; Zaccarelli, R.; Strollo, A.; Di Giacomo, D. Harmonized local magnitude attenuation function for Europe using the European Integrated Data Archive (EIDA). Geophys. J. Int. 2019, 218, 519–533. [Google Scholar] [CrossRef]
- Cantore, L.; Oth, A.; Parolai, S.; Bindi, D. Attenuation, source parameters and site effects in the Irpinia–Basilicata region (southern Apennines, Italy). J. Seism. 2011, 15, 375–389. [Google Scholar] [CrossRef]
- Lamarre, M.; Townshend, B.; Shah, H.C. Application of the bootstrap method to quantify uncertainty in seismic hazard estimates. Bull. Seism. Soc. Am. 1992, 82, 104–119. [Google Scholar] [CrossRef]
- Mushtaq, M.N.; Tahir, M.; Shah, M.A.; Khanam, F. Development of local magnitude scale for the Northern Punjab, Pakistan. J. Seism. 2019, 23, 403–416. [Google Scholar] [CrossRef]
- Tahir, M.; Khan, A.; Mushtaq, M.N.; Iqbal, M.T.; Iqbal, T.; Shah, M.A.; Khan, K.; Soomro, R.A. Distance attenuation and local magnitude scale based on constant geometrical spreading in Northern Punjab, Pakistan. Acta Geophys. 2021, 69, 1567–1584. [Google Scholar] [CrossRef]
- Tusa, G.; Langer, H. Prediction of ground motion parameters for the volcanic area of Mount Etna. J. Seism. 2015, 20, 1–42. [Google Scholar] [CrossRef]
- Viti, M.; Albarello, D.; Mantovani, E. Classification of seismic strain estimates in the Mediterranean region from a ‘bootstrap’ approach. Geophys. J. Int. 2001, 146, 399–415. [Google Scholar] [CrossRef]
- Bakun, W.H.; Scotti, O. Regional intensity attenuation models for France and the estimation of magnitude and location of historical earthquakes. Geophys. J. Int. 2006, 164, 596–610. [Google Scholar] [CrossRef]
- Ward, J.; Thorne, M.; Nowacki, A.; Rost, S. Automatic slowness vector measurements of seismic arrivals with uncertainty estimates using bootstrap sampling, array methods and unsupervised learning. Geophys. J. Int. 2021, 226, 1847–1857. [Google Scholar] [CrossRef]
- Bengoubou-Valérius, M.; Gibert, D. Bootstrap determination of the reliability of b-values: An assessment of statistical estimators with synthetic magnitude series. Nat. Hazards 2012, 65, 443–459. [Google Scholar] [CrossRef]
- Bindi, D.; Schurr, B.; Puglia, R.; Russo, E.; Strollo, A.; Cotton, F.; Parolai, S. A Magnitude Attenuation Function Derived for the 2014 Pisagua (Chile) Sequence Using Strong-Motion Data. Bull. Seism. Soc. Am. 2014, 104, 3145–3152. [Google Scholar] [CrossRef]
- Edwards, B.; Douglas, J. Selecting ground-motion models developed for induced seismicity in geothermal areas. Geophys. J. Int. 2013, 195, 1314–1322. [Google Scholar] [CrossRef]
- Dauji, S. Quantifying and addressing uncertainties in empirical vibration attenuation relationship for underground blast by re-sampling. SN Appl. Sci. 2019, 1, 1350. [Google Scholar] [CrossRef]
- Douglas, J.; Edwards, B.; Convertito, V.; Sharma, N.; Tramelli, A.; Kraaijpoel, D.; Cabrera, B.M.; Maercklin, N.; Troise, C. Predicting Ground Motion from Induced Earthquakes in Geothermal Areas. Bull. Seism. Soc. Am. 2013, 103, 1875–1897. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 3rd ed.; John Wiley& Sons, Inc.: Hoboken, NJ, USA, 1998. [Google Scholar]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman & Hall/CRC: Boca Raton, FL, USA, 1998. [Google Scholar] [CrossRef]
Min | Q1 | Me | Q3 | Max | |
---|---|---|---|---|---|
E [J] | 1.06 × 105 | 4.03 × 105 | 7.61 × 105 | 2.02 × 106 | 1.00 × 108 |
R [m] | 66.408 | 770.154 | 1229.176 | 1863.36 | 4587.284 |
PGA [m/s2] | 0.004 | 0.017 | 0.031 | 0.056 | 1.204 |
Parameter | |||||
---|---|---|---|---|---|
estimated value | −1.411 | 0.433 | −0.869 | 0.595 | 0.242 |
p-value | *** | *** | *** | - | - |
Parameter | |||||
---|---|---|---|---|---|
estimated value | −1.306 | 0.249 | −0.349 | 0.488 | 0.154 |
p-value | *** | *** | *** | - | - |
Mean Value | Lower Limit of 95% Confidence Interval | Upper Limit of 95% Confidence Interval | |
---|---|---|---|
−1.373 | −1.782 | −0.960 | |
0.303 | 0.225 | 0.378 | |
−0.456 | −0.649 | −0.262 |
Observed PGA Value | PGA Linear Regression GMPE Model | PGA Bootstrap GMPE Model | Difference: PGA Bootstrap and PGA Regression |
---|---|---|---|
636.60 | 554.03 | 657.94 | 103.91 |
671.70 | 481.73 | 561.00 | 79.27 |
693.60 | 532.65 | 626.89 | 94.24 |
715.80 | 334.26 | 356.37 | 22.11 |
747.00 | 402.93 | 434.26 | 31.33 |
789.80 | 328.14 | 341.78 | 13.64 |
1086.40 | 527.87 | 614.80 | 86.93 |
1143.90 | 426.90 | 469.14 | 42.24 |
1204.30 | 606.75 | 742.95 | 136.21 |
PGA Linear Regression GMPE Model | PGA Bootstrap GMPE Model | Difference: PGA Bootstrap and PGA Regression |
---|---|---|
630.28 | 866.52 | 236.25 |
546.44 | 715.26 | 168.83 |
602.83 | 814.17 | 211.34 |
363.22 | 408.71 | 45.48 |
442.38 | 515.06 | 72.68 |
349.39 | 377.87 | 28.49 |
594.40 | 778.79 | 184.39 |
468.82 | 561.58 | 92.75 |
705.14 | 1022.61 | 317.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bańka, P.; Lurka, A.; Szuła, Ł. Ground Motion Prediction of High-Energy Mining Seismic Events: A Bootstrap Approach. Energies 2023, 16, 4075. https://doi.org/10.3390/en16104075
Bańka P, Lurka A, Szuła Ł. Ground Motion Prediction of High-Energy Mining Seismic Events: A Bootstrap Approach. Energies. 2023; 16(10):4075. https://doi.org/10.3390/en16104075
Chicago/Turabian StyleBańka, Piotr, Adam Lurka, and Łukasz Szuła. 2023. "Ground Motion Prediction of High-Energy Mining Seismic Events: A Bootstrap Approach" Energies 16, no. 10: 4075. https://doi.org/10.3390/en16104075
APA StyleBańka, P., Lurka, A., & Szuła, Ł. (2023). Ground Motion Prediction of High-Energy Mining Seismic Events: A Bootstrap Approach. Energies, 16(10), 4075. https://doi.org/10.3390/en16104075