Dielectric Properties and Fire Safety of Mineral Oil and Low-Viscosity Natural Ester Mixtures in Various Concentrations
Abstract
:1. Introduction
2. Materials and Methods
- Test cell for liquid insulation (type: 2903 AB, no. 118482, TETTEX, Switzerland, Zurich).
- Temperature regulator (type 2965 AK, no. 119627, TETTEX, Zurich, Switzerland, range: 30–150 °C).
- Insulation diagnostic analyzer (type IDAX 300 AG—19072, no. 080106, Megger Sweden AB, Täby, Sweden).
3. Results and Discussion
3.1. Electrical Properties
3.2. Fire Properties
4. Conclusions
- –
- Mixing mineral oil with a low-viscosity natural ester can contribute to increasing their flash points and fire points. In addition, taking into account the determined values of the net calorific value, it is shown that the transition from O1 to O2 classification occurs at 10% content of low-viscosity natural ester in the mixture. Small deviations from this proportion can be expected due to small discrepancies in the compositions of the analysed basic insulating liquids that may occur in individual batches of dielectric liquids.
- –
- When the composition of the mixture changes, the permittivity changes linearly, from the value characteristic for one liquid in the mixture to the value characteristic for the other liquid; at the same time, slightly greater changes in permittivity are observed at lower temperatures.
- –
- Changes in the dissipation factor and the conductivity of mixtures with an increasing share of LVNE against the MO are exponential, while the activation energy changes linearly.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclatures
Variable | Symbol | Units |
Breakdown voltage | BV | kV |
Relative permittivity | εr | - |
Dissipation factor | DF | % |
Ester content in the mixtures | x | % |
Square of the correlation coefficient | R2 | - |
Correlation coefficient | r | - |
Conductivity | σ | S/m |
Temperature | T | °C |
Activation energy | Ae | eV |
Frequency | f | Hz |
Voltage | U | V |
Absolute error in the conductivity measurement | Δσ | S/m |
Absolute error in the temperature measurement | ΔT | °C |
Absolute error in the dissipation factor measurement | ΔDF | pp |
References
- Dong, Y.; Liu, Y.; Hu, C.; MacDonald, R.; Lu, Y. Chronic oiling in global oceans. Science 2022, 376, 1300–1304. [Google Scholar] [CrossRef] [PubMed]
- Rouse, T.O. Mineral oil in transformers. IEEE Electr. Insul. Mag. 1998, 14, 6–16. [Google Scholar] [CrossRef]
- Oommen, T.V. Vegetable oils for liquid-filled transformers. IEEE Electr. Insul. Mag. 2002, 1, 6–11. [Google Scholar] [CrossRef]
- McShane, C.P.; Corkran, J.; Rapp, K.; Luksich, J. Natural ester dielectric fluid development. In Proceedings of the IEEE/PES Transmission and Distribution Conference and Exhibition, Dallas, TX, USA, 21–24 May 2006. [Google Scholar]
- Martin, R.; Athanassatou, H.; Duart, J.C.; Perrier, C.; Sitar, I.; Walker, J.; Claiborne, C.; Boche, T.; Cherry, D.; Darwin, A.; et al. Experiences in Service with New Insulating Liquids; Cigré Technical Brochure 436; International Council on Large Electric Systems (CIGRE): Paris, France, 2010. [Google Scholar]
- Dombek, G.; Gościński, P.; Nadolny, Z. Comparison of mineral oil and ester as cooling liquids in high voltage transformer in aspect of environment protection. In Proceedings of the Energy and Fuels Conferences, Cracow, Poland, 21–23 September 2016. [Google Scholar]
- Dombek, G.; Gielniak, J.; Wróblewski, R. Fire safety and electrical properties of mineral oil/synthetic ester mixtures. In Proceedings of the International Symposium on Electrical Insulating Materials (ISEIM), Toyohashi, Japan, 11–15 September 2017. [Google Scholar]
- Martins, M.A.G. Vegetable oils an alternative to mineral oil for power transformers—Experimental study of paper aging in vegetable oils versus mineral oil. IEEE Electr. Insul. Mag. 2010, 26, 7–13. [Google Scholar] [CrossRef]
- Oommen, T.V.; Claiborne, C.C.; Walsh, E.J.; Baker, J.P. A new vegetable oil-based transformer fluid: Development and verification. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena, Victoria, BC, Canada, 15–18 October 2002. [Google Scholar]
- Pillai, R.; Havaldar, F.; Chitnis, C. Natural ester for life and capacity enhancement of distribution transformers. In Proceedings of the 24th International Conference and Exhibition on Electricity Distribution (CIRED), Glasgow, UK, 12–15 June 2017. [Google Scholar]
- Shen, Z.; Wang, F.; Wang, Z.; Li, J. A critical review of plant-based insulating fluids for transformer: 30-year development. Renew. Sustain. Energy Rev. 2021, 141, 2–19. [Google Scholar] [CrossRef]
- Tokunga, J.; Nikaido, M.; Koide, H.; Hikosaka, T. Palm fatty acid ester as biodegradable dielectric fluid in transformers: A review. IEEE Electr. Insul. Mag. 2019, 35, 34–46. [Google Scholar] [CrossRef]
- Dombek, G.; Gielniak, J. Fire safety and electrical properties of mixtures of synthetic ester/mineral oil and synthetic ester/natural ester. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1846–1852. [Google Scholar] [CrossRef]
- Rapp, K.J.; McShane, C.P.; Luksich, J. Interactions mechanism of natural ester dielectric fluid and Kraft paper. In Proceedings of the IEEE International Conference on Dielectric Liquids (ICDL), Coimbra, Portugal, 26 June–1 July 2005. [Google Scholar]
- Stockton, D.P.; Bland, J.R.; McClanahan, T.; Wilson, J.; Harris, D.L.; McShane, P. Natural ester transformer fluids: Safety, reliability and environmental performance. In Proceedings of the IEEE Petroleum and Chemical Industry Technical Conference, Calgary, AB, Canada, 17–19 September 2007. [Google Scholar]
- Mohan Rao, U.; Sood, Y.R.; Jarial, R.K. Oxidation stability enhancement of a blend of mineral and synthetic esters oils. IEEE Electr. Insul. Mag. 2016, 32, 43–47. [Google Scholar]
- Montero, A.; Garcia, B.; Mina-Casaran, J.D.; Burgos, J.C. Experimental study on the insulation permittivity of transformers retrofilled with natural esters. In Proceedings of the IEEE 21st International Conference on Dielectrics Liquids (ICDL), Sevilla, Spain, 29 May–2 June 2022. [Google Scholar]
- Fofana, I.; Wasserberg, V.; Borsil, H.; Gockenbach, E. Retrofilling conditions of high voltage transformers. IEEE Electr. Insul. Mag. 2001, 17, 17–30. [Google Scholar] [CrossRef]
- McShane, C.; Luksich, J.; Rapp, K. Retrofilling aging transformers with natural ester based dielectric coolant for safety and life extension. In Proceedings of the IEEE-IAS/PCA Cement Industry Technical Conference, Dallas, TX, USA, 4–9 May 2003. [Google Scholar]
- Zdanowski, M. Electrostatic charging tendency analysis concerning retrofilling power transformer with Envirotemp FR3 natural ester. Energies 2020, 13, 4420. [Google Scholar] [CrossRef]
- Toudja, T.; Chetibi, F.; Beldjilali, A.; Moulai, H.; Beroual, A. Electrical and physicochemical properties and transient charging currents in mineral and vegetable oils mixtures. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1739–1748. [Google Scholar]
- Beroual, A.; Khaled, U.; Mbolo Noah, P.S.; Sitorus, H. Comparative study of breakdown voltage of mineral, synthetic and natural oils and based mineral oil mixtures under AC and DC voltages. Energies 2017, 10, 511. [Google Scholar] [CrossRef]
- Breazeal, R.C.; Sbravati, A.; Robalino, D.M. Evaluation of natural ester retrofilled transformers after one year of continuous overload. In Proceedings of the IEEE Electrical Insulation Conference (EIC), Calgary, AB, Canada, 16–19 June 2019. [Google Scholar]
- Dombek, G.; Nadolny, Z. Influence of paper type and liquid insulation on heat transfer in transformer. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1863–1870. [Google Scholar] [CrossRef]
- Lyutikova, M.N.; Korobeynikov, S.M.; Mohan Rao, U.; Fofana, I. Mixed insulating liquid with natural oil for high-voltage transformer applications: A review. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 454–461. [Google Scholar]
- Huang, Y.; Wei, J.; Yi, J. Combustion behavior for mineral insulating oil with addition of flame retardants. In Proceedings of the 6th Conference on Energy Materials and Environment Engineering, Tianjin, China, 24–26 April 2020. [Google Scholar]
- Nadolny, Z.; Dombek, G.; Prządka, D. Thermal porpoerties of mineral oil admixed with C60 and TiO2 nanoparticles. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (IEEE CEIDP), Toronto, ON, Canada, 16–19 October 2016. [Google Scholar]
- Olmo, C.; Mendez, C.; Quintanilla, P.J.; Ortiz, F.; Renedo, C.J.; Ortiz, A. Mineral and ester nanofluids as dielectric cooling liquid for power transformers. Nanomaterials 2022, 12, 2723. [Google Scholar] [CrossRef]
- Zdanowski, M. Streaming electrification of Nycodiel 1255 synthetic ester and Trafo EN mineral oil mixtures by using rotating disc method. Energies 2020, 13, 6159. [Google Scholar] [CrossRef]
- Lyutikova, M.; Korobeynikov, S.; Konovalov, A. Evaluation of the Properties of Mixtures of Aromatic Mineral Oil and Synthetic Ester for High-Voltage Equipment. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1282–1290. [Google Scholar] [CrossRef]
- Mohan Rao, U.; Fofana, I.; Jaya, T.; Rodriguez-Celis, E.M.; Jalbert, J.; Picher, P. Alternative dielectric fluids for transformer insulation system: Progress, challenges, and future prospects. IEEE Access 2019, 27, 184552–184571. [Google Scholar] [CrossRef]
- Rouabeh, J.; M’barki, L.; Hammami, A.; Jallouli, I.; Driss, A. Studies of different types of insulating oils and their mixtures as an alternative to mineral oil for cooling power transformers. Helion 2019, 5, e01159. [Google Scholar] [CrossRef]
- Rao, U.M.; Sood, Y.R.; Jarial, R.K. Ester dielectrics: Current perspectives and future challenges. IETE Tech. Rev. 2017, 34, 448–459. [Google Scholar] [CrossRef]
- Gao, C.; Ye, W.; Xu, Q.; Zhu, M.; Zhu, W.; Hao, J. Influence of replacing oil with different natural esters on the thermal ageing behavior of mineral oil-paper insulation. In Proceedings of the International Conference on Electrical Materials and Power Equipment (ICEMPE), Chongqing, China, 11–15 April 2021. [Google Scholar]
- Karthik, R.; Sree Renga Raja, T.; Shunmugam, S.S.; Sudhakar, T. Performance evaluation of ester oil and mixed insulating fluids. J. Inst. Eng. India Ser. B 2012, 18, 173–178. [Google Scholar] [CrossRef]
- Fofana, I.; Wasserberg, V.; Borsil, H.; Gockenbach, E. Chalenge of mixed insulating liquids for use in high voltage transformer, Part 1: Investigation of mixed liquids. IEEE Electr. Insul. Mag. 2002, 18, 18–31. [Google Scholar] [CrossRef]
- Dielectric Frequency Response (DFR) Task Force—Final Report. IEEE Transformers Committee, 7 June 2012. Available online: https://grouper.ieee.org/groups//transformers/subcommittees/dielectric_test/F13-C57.161-DFR-TF-Final%20Report.pdf (accessed on 30 June 2021).
- Gielniak, J.; Graczkowski, A.; Morańda, H.; Przybyłek, P.; Walczak, K.; Nadolny, Z.; Mościcka-Grzesiak, H.; Feser, K.; Gubanski, S.M. Moisture in Cellulose Insulation of Power Transformers—Statistics. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 982–987. [Google Scholar] [CrossRef]
- Dombek, G.; Nadolny, Z.; Marcinkowska, A. Thermal properties of natural ester and low viscosity natural ester in the aspect of the reliable operation of the transformer cooling system. Eksploat. Niezawodn. Maint. Reliab. 2019, 21, 291–384. [Google Scholar] [CrossRef]
- IEC 60076-14:2013; Power Transformers—Part 14: Liquid-Immersed Power Transformers Using High-Temperature Insulation Materials. IEC: Geneva, Switzerland, 2013.
- IEC 60076-2:2011; Power Transformers—Part 2: Temperature Rise for Liquid-Immersed Transformers. IEC: Geneva, Switzerland, 2011.
- IEC 61039:2008; Classification of Insulating Liquids. IEC: Geneva, Switzerland, 2008.
- IEC 62975:2021; Natural Esters—Guidelines for Maintenance and Use in Electrical Equipment. IEC: Geneva, Switzerland, 2021.
- IEEE C57.147-2018; IEEE Guide for Acceptance and Maintenance of Natural Ester Insulating Liquid in Transformers. IEC: Geneva, Switzerland, 2018.
- Nynas Nytro Draco Technical Data Sheet. Available online: http://www.smaryoleje.pl/nynas.html (accessed on 4 May 2020).
- Nomex 970 FLD Technical Data Sheet. Available online: https://www.groupe-cahors.com/sites/default/files/argu_transfos_huile_vegetale_eng.pdf (accessed on 20 March 2020).
- IEC 60156:2018; Insulating Liquids—Determination of the Breakdown Voltage at Power Frequency—Test Method. IEC: Geneva, Switzerland, 2018.
- IEC 60247:2004; Insulating Liquids—Measurement of Relative Permittivity, Dielectric Dissipation Factor (tan d) and d.c. Resistivity. IEC: Geneva, Switzerland, 2004.
- ISO 2719:2016; Determination of Flash Point—Pensky-Martens Closed Cup Method. ISO: Geneva, Switzerland, 2016.
- ISO 2592:2008; Determination of Flash and Fire Points—Cleveland Open Cup Method. ISO: Geneva, Switzerland, 2008.
- PN-C-04375-2; Testing of Solid and Liquid Fuels. Determination of the Heat of Combustion in a Calorimetric Bomb and Calorific Value Calculation. Part 2: Method Using an Isoperibolic or Static Mantle Calorimeter (In Polish: Badanie Paliw Stałych i Ciekłych. Oznaczanie Ciepła Spalania w Bombie Kalorymetrycznej i Obliczanie Wartości Opałowej. Część 2: Metoda z Zastosowaniem Kalorymetru Izoperibolicznego lub Kalorymetru z Płaszczem Statycznym. PKN: Warsaw, Poland, 2013.
- Lawton, R.; Daghrah, M.; Reid, J. Assessment of flash and fire point measurements in synthetic ester under retrofilling scenarios. In Proceedings of the 21st International Conference on Dielectric Liquids (ICDL), Sevilla, Spain, 29 May–2 June 2022. [Google Scholar]
- Charkraborty, M.; Baruah, N.; Sangineni, R.; Nayak, S.K.; Naiti, P.K. Dissolved gas analysis (DGA) of thermally aged blended transformer oil. In Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), East Rutherford, NJ, USA, 18–30 October 2020. [Google Scholar]
- Pahlavanpour, B.; De Pablo, A.; Tumiatti, W.; Martins, M.A.; Dahlund, M.; Wilson, G.; Ritchie, L.; Koestinger, P. Insulating Oil Reclamation and Dechlorination; Cigré Technical Brochure 413; International Council on Large Electric Systems (CIGRE): Paris, France, 2010. [Google Scholar]
- Dombek, G.; Nadolny, Z.; Marcinkowska, A. Effects of nanoparticles materials on heat transfer in electro-insulating liquids. Appl. Sci. 2018, 8, 2538. [Google Scholar] [CrossRef]
- Gomez, N.A.; Abonia, R.l.; Cadavid, H. Chemical and spectroscopic characterization of a vegetable oil used as dielectric coolant in distribution transformers. J. Braz. Chem. Soc. 2011, 22, 2292–2303. [Google Scholar] [CrossRef]
- IEC 611000; Classification of Insulating Liquids According to Fire Point and Net Calorific Value. IEC: Geneva, Switzerland, 1992.
Mixing Ratio | Flash Point (Closed Cup) | Flash Point (Open Cup) | Fire Point (Open Cup) | Net Calorific Value | Fire Classification | |
---|---|---|---|---|---|---|
Mineral Oil | Low-Viscosity Natural Ester | |||||
(%) | (%) | (°C) | (°C) | (°C) | (MJ·kg−1) | |
100 | 0 | 154.5 ± 1 | 154.7 ± 1 | 160.7 ± 1 | 42.2 ± 0.6 | O1 |
95 | 5 | 156.1 ± 2 | 156.1 ± 2 | 162.8 ± 1 | 42.0 | O1 |
90 | 10 | 156.8 ± 1 | 157.4 ± 1 | 164.8 ± 1 | 41.8 | O2 |
80 | 20 | 157.4 ± 1 | 159.4 ± 1 | 167.4 ± 1 | 41.5 | O2 |
60 | 40 | 159.4 ± 1 | 163.4 ± 1 | 173.4 ± 1 | 40.7 | O2 |
50 | 50 | 161.2 ± 1 | 165.4 ± 1 | 176.1 ± 2 | 40.4 | O2 |
40 | 60 | 163.2 ± 1 | 168.8 ± 1 | 185.5 ± 1 | 40.0 | O2 |
20 | 80 | 172.5 ± 1 | 190.8 ± 1 | 208.8 ± 1 | 39.2 | O2 |
10 | 90 | 185.2 ± 1 | 211.5 ± 1 | 232.2 ± 2 | 38.9 | O2 |
5 | 95 | 194.5 ± 1 | 222.2 ± 2 | 248.2 ± 2 | 38.7 | O2 |
0 | 100 | 211.1 ± 1 | 238.2 ± 2 | 264.2 ± 2 | 38.5 ± 0.2 | O2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dombek, G.; Gielniak, J. Dielectric Properties and Fire Safety of Mineral Oil and Low-Viscosity Natural Ester Mixtures in Various Concentrations. Energies 2023, 16, 4195. https://doi.org/10.3390/en16104195
Dombek G, Gielniak J. Dielectric Properties and Fire Safety of Mineral Oil and Low-Viscosity Natural Ester Mixtures in Various Concentrations. Energies. 2023; 16(10):4195. https://doi.org/10.3390/en16104195
Chicago/Turabian StyleDombek, Grzegorz, and Jarosław Gielniak. 2023. "Dielectric Properties and Fire Safety of Mineral Oil and Low-Viscosity Natural Ester Mixtures in Various Concentrations" Energies 16, no. 10: 4195. https://doi.org/10.3390/en16104195
APA StyleDombek, G., & Gielniak, J. (2023). Dielectric Properties and Fire Safety of Mineral Oil and Low-Viscosity Natural Ester Mixtures in Various Concentrations. Energies, 16(10), 4195. https://doi.org/10.3390/en16104195