Optimal Operation of CCHP System Combined Electric Vehicles Considering Seasons
Abstract
:1. Introduction
2. Model of System
2.1. Mathematical Model of Energy Balance
2.2. Mathematical Model of Components
2.3. EV
2.4. Objective Function and Cost
3. Optimization Method
4. Case Study
5. Optimization Results
5.1. Operation Mode
5.2. System in FEL Mode
5.3. System in FTL Mode
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
CCHP | Combined cooling, heating, and power |
EV | Electric vehicle |
FEL | Following electricity load |
FTL | Following thermal load |
PV | Photovoltaic |
ESS | Energy storage system |
EESS | Electrical energy storage system |
TESS | Thermal energy storage systems |
CESS | Cold energy storage systems |
HESS | Hybrid energy storage system |
CAES | Compressed air energy storage |
PSO | Particle swarm optimization |
V2G | Vehicle to Grid |
SOC | State of charge |
GT | Gas turbine |
HRS | Heat recovery system |
AC | Absorption chiller |
EC | Electric chiller |
GB | Gas boiler |
COP | Coefficient of performance |
References
- Comodi, G.; Bartolini, A.; Carducci, F.; Nagaranjan, B.; Romagnoli, A. Achieving low carbon local energy communities in hot climates by exploiting networks synergies in multi energy systems. Appl. Energy 2019, 256, 113901. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, Y.; Wang, X. Long-term economic planning of combined cooling heating and power systems considering energy storage and demand response. Appl. Energy 2020, 279, 115819. [Google Scholar] [CrossRef]
- Saberi-Beglar, K.; Zare, K.; Seyedi, H.; Marzband, M.; Nojavan, S. Risk-embedded scheduling of a CCHP integrated with electric vehicle parking lot in a residential energy hub considering flexible thermal and electrical loads. Appl. Energy 2023, 329, 120265. [Google Scholar] [CrossRef]
- Wang, J.; Han, Z.; Guan, Z. Hybrid solar-assisted combined cooling, heating, and power systems: A review. Renew. Sustain. Energy Rev. 2020, 133, 110256. [Google Scholar] [CrossRef]
- Wu, D.W.; Wang, R.Z. Combined cooling, heating and power: A review. Prog. Energy Combust. Sci. 2006, 32, 459–495. [Google Scholar] [CrossRef]
- Dai, Y.; Zeng, Y. Optimization of CCHP integrated with multiple load, replenished energy, and hybrid storage in different operation modes. Energy 2022, 260, 125129. [Google Scholar] [CrossRef]
- Rostamzadeh, H.; Ebadollahi, M.; Ghaebi, H.; Shokri, A. Comparative study of two novel micro-CCHP systems based on organic Rankine cycle and Kalina cycle. Energy Convers. Manag. 2019, 183, 210–229. [Google Scholar] [CrossRef]
- Norani, M.; Deymi-Dashtebayaz, M. Energy, exergy and exergoeconomic optimization of a proposed CCHP configuration under two different operating scenarios in a data center: Case study. J. Clean. Prod. 2021, 342, 130971. [Google Scholar] [CrossRef]
- Salimi, M.; Hosseinpour, M.; Mansouri, S.N.; Borhani, T. Environmental Aspects of the Combined Cooling, Heating, and Power (CCHP) Systems: A Review. Processes 2022, 10, 711. [Google Scholar] [CrossRef]
- Wegener, M.; Malmquist, A.; Isalgué, A.; Martin, A. Biomass-fired combined cooling, heating and power for small scale applications—A review. Renew. Sustain. Energy Rev. 2018, 96, 392–410. [Google Scholar] [CrossRef]
- Hou, Q.; Zhang, N.; Du, E.; Miao, M.; Peng, F.; Kang, C. Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China. Appl. Energy 2019, 242, 205–215. [Google Scholar] [CrossRef]
- Olczak, P.; Jaśko, P.; Kryzia, D.; Matuszewska, D.; Fyk, M.I.; Dyczko, A. Analyses of duck curve phenomena potential in polish PV prosumer households’ installations. Energy Rep. 2021, 7, 4609–4622. [Google Scholar] [CrossRef]
- Torabi, R.; Gomes, A.; Morgado-Dias, F. The Duck Curve Characteristic and Storage Requirements for Greening the Island of Porto Santo. In Proceedings of the 2018 Energy and Sustainability for Small Developing Economies (ES2DE), Funchal, Portugal, 9–12 July 2018; pp. 1–7. [Google Scholar]
- Zhang, X.; Zeng, R.; Deng, Q.; Gu, X.; Liu, H.; He, Y.; Mu, K.; Liu, X.; Tian, H.; Li, H. Energy, exergy and economic analysis of biomass and geothermal energy based CCHP system integrated with compressed air energy storage (CAES). Energy Convers. Manag. 2019, 199, 111953. [Google Scholar] [CrossRef]
- Feng, L.; Dai, X.; Mo, J.; Shi, L. Analysis of energy-matching performance and suitable users of conventional CCHP systems coupled with different energy storage systems. Energy Convers. Manag. 2019, 200, 112093. [Google Scholar] [CrossRef]
- Lin, S.; Song, W.; Feng, Z.; Zhao, Y.; Zhang, Y. Energy management strategy and capacity optimization for CCHP system integrated with electric-thermal hybrid energy storage system. Int. J. Energy Res. 2020, 44, 1125–1139. [Google Scholar] [CrossRef]
- Razmi, A.; Soltani, M.; Torabi, M. Investigation of an efficient and environmentally-friendly CCHP system based on CAES, ORC and compression-absorption refrigeration cycle: Energy and exergy analysis. Energy Convers. Manag. 2019, 195, 1199–1211. [Google Scholar] [CrossRef]
- Shan, J.; Lu, R. Multi-objective economic optimization scheduling of CCHP micro-grid based on improved bee colony algorithm considering the selection of hybrid energy storage system. Energy Rep. 2021, 7, 326–341. [Google Scholar] [CrossRef]
- Mo, J.; Dai, X.; Xu, S.; Shi, L.; Feng, L. Analysis of performance and suitable users of CCHP systems with active thermal energy storage. Appl. Therm. Eng. 2023, 229, 120574. [Google Scholar] [CrossRef]
- Abdalla, A.N.; Nazir, M.S.; Zhu, T.; Bajaj, M.; Sanjeevikumar, P.; Yao, L. Optimized Economic Operation of Microgrid: Combined Cooling and Heating Power and Hybrid Energy Storage Systems. J. Energy Resour. Technol. 2021, 143, 070906. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, G.; Qiu, Y.; Zhan, X.; Shah, N.; Li, N.; Zhao, Y. A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China. Appl. Energy 2018, 210, 1126–1140. [Google Scholar] [CrossRef]
- Mao, Y.; Wu, J.; Zhang, W. An Effective Operation Strategy for CCHP System Integrated with Photovoltaic/Thermal Panels and Thermal Energy Storage. Energies 2020, 13, 6418. [Google Scholar] [CrossRef]
- Li, Y.; Tian, R.; Wei, M.; Xu, F.; Zheng, S.; Song, P.; Yang, B. An improved operation strategy for CCHP system based on high-speed railways station case study. Energy Convers. Manag. 2020, 216, 112936. [Google Scholar] [CrossRef]
- Ghersi, D.E.; Amoura, M.; Loubar, K.; Desideri, U.; Tazerout, M. Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy. Energy 2021, 219, 119574. [Google Scholar] [CrossRef]
- Li, Y.; Tian, R.; Wei, M. Operation strategy for interactive CCHP system based on energy complementary characteristics of diverse operation strategies. Appl. Energy 2022, 310, 118415. [Google Scholar] [CrossRef]
- Melo, F.M.; Magnani, F.S.; Carvalho, M. A decision-making method to choose optimal systems considering financial and environmental aspects: Application in hybrid CCHP systems. Energy 2022, 250, 123816. [Google Scholar] [CrossRef]
- Guo, X.; Yan, X.; Jermsittiparsert, K. Using the modified mayfly algorithm for optimizing the component size and operation strategy of a high temperature PEMFC-powered CCHP. Energy Rep. 2021, 7, 1234–1245. [Google Scholar] [CrossRef]
- Nami, H.; Arabkoohsar, A.; Anvari-Moghaddam, A. Thermodynamic and sustainability analysis of a municipal waste-driven combined cooling, heating and power (CCHP) plant. Energy Convers. Manag. 2019, 201, 112158. [Google Scholar] [CrossRef]
- Lombardo, W.; Sapienza, A.; Ottaviano, S.; Branchini, L.; Pascale, A.D.; Vasta, S. A CCHP system based on ORC cogenerator and adsorption chiller experimental prototypes: Energy and economic analysis for NZEB applications. Appl. Therm. Eng. 2021, 183, 116119. [Google Scholar] [CrossRef]
- Huang, Y.; Mansaray, A.; Cheng, J.; He, H.; Senjyu, T. Optimal Operation of Photovoltaic and Micro-grid Energy Storage System Considering Battery Health and Electric Vehicle Charge and Discharge. In Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies—Asia (ISGT Asia), Brisbane, Australia, 5–8 December 2021; pp. 1–5. [Google Scholar]
- Huang, Y.; Gamil, M.M.; Masrur, H.; Cheng, J.; He, H.; Senjyu, T. Optimal Charging and Discharging of Electric Vehicles within Campus Microgrids. In Proceedings of the 2021 13th IEEE PES Asia Pacific Power & Energy Engineering Conference (APPEEC), Thiruvananthapuram, India, 21–23 November 2021; pp. 1–6. [Google Scholar]
- Yilmaz, M.; Krein, T.P. Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles. IEEE Trans. Power Electron. 2013, 28, 2151–2169. [Google Scholar] [CrossRef]
- Vadi, S.; Bayindir, R.; Colak, A.M.; Hossain, E. A Review on Communication Standards and Charging Topologies of V2G and V2H Operation Strategies. Energies 2019, 12, 3748. [Google Scholar] [CrossRef]
- Amamra, S.; Marco, J. Vehicle-to-Grid Aggregator to Support Power Grid and Reduce Electric Vehicle Charging Cost. IEEE Access 2019, 7, 178528–178538. [Google Scholar] [CrossRef]
- Shi, R.; Li, S.; Zhang, P.; Lee, Y.K. Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization. Renew. Energy 2020, 153, 1067–1080. [Google Scholar] [CrossRef]
- Tepe, B.; Figgener, J.; Englberger, S.; Sauer, U.D.; Jossen, A.; Hesse, H. Optimal pool composition of commercial electric vehicles in V2G fleet operation of various electricity markets. Appl. Energy 2022, 308, 118351. [Google Scholar] [CrossRef]
- Ciceu, C.; Serban, I. Energy Management System for EV Charging Stations Powered by Renewable Energy Sources. In Proceedings of the 2022 International Conference and Exposition on Electrical And Power Engineering (EPE), Iasi, Romania, 20–22 October 2022; pp. 193–197. [Google Scholar]
- Gong, L.; Cao, W.; Liu, K.; Yu, Y.; Zhao, J. Demand responsive charging strategy of electric vehicles to mitigate the volatility of renewable energy sources. Renew. Energy 2020, 156, 665–676. [Google Scholar] [CrossRef]
- Vandewetering, N.; Hayibo, K.S.; Pearce, J.M. Open-Source Photovoltaic—Electrical Vehicle Carport Designs. Technologies 2022, 10, 114. [Google Scholar] [CrossRef]
- Khoso, A.A.; Baloch, M.H.; Raza, A.; Ali, I.; Shaikh, M.Z. The Development of Solar Powered Carport Canopies for the Charging Infrastructure of Electric Vehicles. In Proceedings of the 2022 International Conference on Emerging Technologies in Electronics, Computing and Communication (ICETECC), Jamshoro, Pakistan, 7–9 December 2022; pp. 1–6. [Google Scholar]
- Heydarian-Forushani, E.; Golshan, M.E.H.; Siano, P. Evaluating the benefits of coordinated emerging flexible resources in electricity markets. Appl. Energy 2017, 199, 142–154. [Google Scholar] [CrossRef]
- Heydarian-Forushani, E.; Golshan, M.E.H.; Shafie-khah, M. Flexible interaction of plug-in electric vehicle parking lots for efficient wind integration. Appl. Energy 2016, 179, 338–349. [Google Scholar] [CrossRef]
- Shafie-khah, M.; Heydarian-Forushani, E.; Osório, G.J.; Gil, F.A.S.; Aghaei, J.; Barani, M.; Catalão, J.P.S. Optimal Behavior of Electric Vehicle Parking Lots as Demand Response Aggregation Agents. IEEE Trans. Smart Grid 2016, 7, 2654–2665. [Google Scholar] [CrossRef]
- White, C.; Thompson, B.; Swan, L.G. Repurposed electric vehicle battery performance in second-life electricity grid frequency regulation service. J. Energy Storage 2020, 28, 101278. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, X.; Jiang, B. Multi-Objective Optimal Configuration of the CCHP System. Processes 2020, 8, 351. [Google Scholar] [CrossRef]
- Li, N.; Zhao, X.; Shi, X.; Pei, Z.; Mu, H.; Taghizadeh-Hesary, F. Integrated energy systems with CCHP and hydrogen supply: A new outlet for curtailed wind power. Appl. Energy 2021, 303, 117619. [Google Scholar] [CrossRef]
- Zheng, C.Y.; Wu, J.Y.; Zhai, X.Q.; Wang, R.Z. A novel thermal storage strategy for CCHP system based on energy demands and state of storage tank. Int. J. Electr. Power Energy Syst. 2017, 85, 117–129. [Google Scholar] [CrossRef]
- Yang, G.; Zhai, X.Q. Optimal design and performance analysis of solar hybrid CCHP system considering influence of building type and climate condition. Energy 2019, 174, 647–663. [Google Scholar] [CrossRef]
- The Peak and Valley Time-of-Use Electricity Prices in Jiangsu Province, China. Available online: https://power.in-en.com/html/power-2386666.shtml (accessed on 10 February 2023).
- Li, L.; Yu, S.; Mu, H.; Li, H. Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies. Energy 2018, 162, 825–840. [Google Scholar] [CrossRef]
Manufacturer | Chevrolet | EnerDel | Tesla | Nissan | Lishen |
---|---|---|---|---|---|
Model | Volt Generation 1 | Hybrid Bus | Model S85 | Leaf Generation 1 | EV-LFP |
Build year(s) | 2015 | 2017 | 2013 & 2014 | 2012 & 2015 | 2012 |
Average discharge voltage (V) | 360 | 630 | 346 | 368 | 335 |
Nominal capacity (Ah) | 45.0 | 31.5 | 222.0 | 65.0 | 115.5 |
Calculated energy (kWh) | 16.2 | 19.5 | 76.7 | 23.9 | 38.7 |
Parameter | Symbol | Value | Unit | Reference |
---|---|---|---|---|
Efficiency of GT | 36 | % | [46] | |
Efficiency of GB | 85 | % | [46] | |
Efficiency of HRS | 80 | % | [46] | |
COP of AC | 70 | % | [46] | |
COP of EC | 400 | % | [46] | |
Efficiency of EESS | 95.6 | % | / | |
Efficiency of TESS | 95.6 | % | [47] | |
Efficiency of CESS | 95.6 | % | / |
Equipment | Value | Unit | Reference |
---|---|---|---|
GT | 1350 | $/kW | [48] |
GB | 93 | $/kW | [46] |
HRS | 120 | $/kW | [46] |
AC | 180 | $/kW | [46] |
EC | 145 | $/kW | [46] |
EESS | 520 | $/kW | [6] |
TESS | 371 | $/kW | [6] |
CESS | 371 | $/kW | [6] |
Parameter | Symbol | Value | Unit |
---|---|---|---|
GT capacity | [0, 3000] | kWh | |
GB capacity | [0, 2000] | kWh | |
HRS capacity | [0, 2000] | kWh | |
AC capacity | [0, 1000] | kWh | |
EC capacity | [0, 550] | kWh | |
EESS capacity | [0, 1000] | kWh | |
TESS capacity | [0, 1000] | kWh | |
CESS capacity | [0, 1000] | kWh |
Parameter | Symbol | Value | Unit | Reference |
---|---|---|---|---|
Unit price of electricity | 0.04 (0:00–8:00) | $/kWh | [49] | |
0.08 (8:00–24:00) | $/kWh | [49] | ||
Unit price of gas | 0.03 | $/kWh | [50] | |
emission factor of gas | 0.22 | kg/kWh | [50] | |
emission factor of grid | 1.2 | kg/kWh | [46] | |
Unit price of emission | 0.0075 | $/kg | [50] |
Season | With or Without EVs | Cost of Gas ($) | Cost of Electricity ($) | Cost of Emitting ($) | Total Cost ($) |
---|---|---|---|---|---|
Spring | Without EVs | 2122 | 210 | 140 | 2472 |
With EVs | 2150 | 240 | 161 | 2551 | |
Summer | Without EVs | 1982 | 1135 | 243 | 3360 |
With EVs | 2073 | 813 | 265 | 3151 | |
Autumn | Without EVs | 1968 | 922 | 217 | 3107 |
With EVs | 2006 | 673 | 234 | 2913 | |
Winter | Without EVs | 2097 | 341 | 154 | 2592 |
With EVs | 2195 | 234 | 162 | 2591 |
Season | With or Without EVs | Cost of Gas ($) | Cost of Electricity ($) | Cost of Emitting ($) | Total Cost ($) |
---|---|---|---|---|---|
Spring | Without EVs | 1865 | 703 | 182 | 2750 |
With EVs | 2087 | 360 | 177 | 2624 | |
Summer | Without EVs | 1310 | 1633 | 289 | 3232 |
With EVs | 1198 | 1296 | 298 | 2792 | |
Autumn | Without EVs | 1224 | 1485 | 266 | 2975 |
With EVs | 1052 | 1254 | 290 | 2596 | |
Winter | Without EVs | 1822 | 793 | 189 | 2804 |
With EVs | 2034 | 487 | 183 | 2704 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Huang, Y.; He, H.; Ibrahimi, A.M.; Senjyu, T. Optimal Operation of CCHP System Combined Electric Vehicles Considering Seasons. Energies 2023, 16, 4229. https://doi.org/10.3390/en16104229
Cheng J, Huang Y, He H, Ibrahimi AM, Senjyu T. Optimal Operation of CCHP System Combined Electric Vehicles Considering Seasons. Energies. 2023; 16(10):4229. https://doi.org/10.3390/en16104229
Chicago/Turabian StyleCheng, Junchao, Yongyi Huang, Hongjing He, Abdul Matin Ibrahimi, and Tomonobu Senjyu. 2023. "Optimal Operation of CCHP System Combined Electric Vehicles Considering Seasons" Energies 16, no. 10: 4229. https://doi.org/10.3390/en16104229
APA StyleCheng, J., Huang, Y., He, H., Ibrahimi, A. M., & Senjyu, T. (2023). Optimal Operation of CCHP System Combined Electric Vehicles Considering Seasons. Energies, 16(10), 4229. https://doi.org/10.3390/en16104229