Optimization of PI Controller Parameters by GWO Algorithm for Five-Phase Asynchronous Motor
Abstract
:1. Introduction
2. System Description
3. Modeling of Five Phase Induction Machine
4. Grey Wolf Optimizer
4.1. Objective Function
4.2. Store the Best Particle
4.3. The Flowchart of the Algorithm
5. PI Controller Parameters Using the GWO Algorithm
- Define the problem: First, you need to clearly define the problem and identify the variables that need to be controlled. In this case, the objective is to optimize the PI controller parameters for controlling the speed of a five-phase asynchronous motor.
- Choose the PI controller: A proportional–integral (PI) controller is commonly used in control systems to regulate a process variable. It is a type of feedback controller that uses the error between the desired setpoint and the measured process variable to adjust the control signal.
- Determine the controller parameters: The PI controller has two parameters that need to be tuned: the proportional gain (Kp) and the integral gain (Ki). These parameters determine the response of the controller and can be adjusted to optimize the performance of the five-phase asynchronous motor.
- Use the GWO algorithm for optimization: Grey Wolf Optimization (GWO) is a population-based optimization algorithm that is inspired by the hunting behavior of grey wolves. It is a metaheuristic optimization algorithm that can be used to find optimal solutions for complex problems. You can use GWO to optimize the PI controller parameters for the five-phase asynchronous motor.
- Define the objective function: The fitness function is used to evaluate the performance of the PI controller. In this case, the fitness function should measure how well the controller is able to regulate the speed of the five-phase asynchronous motor.
- Set up the GWO algorithm: The GWO algorithm requires several parameters to be defined, including the population size, maximum number of iterations, and search range for each parameter. The GWO algorithm can be set up to optimize the PI controller parameters for the five-phase asynchronous motor.
- Run the optimization: Once the GWO algorithm is set up, it can be used to find the optimal values of Kp and Ki for the PI controller. The GWO algorithm will iterate through the population and adjust the values of Kp and Ki until the fitness function is optimized.
- Evaluate the results.
6. Simulation
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barrero, F.; Duran, M.J. Recent advances in the design modeling and control of multiphase machines. Part I. IEEE Trans. Ind. Electron. 2015, 63, 449–458. [Google Scholar] [CrossRef]
- Duran, M.J.; Barrero, F. Recent advances in the design modeling and control of multiphase machines. Part II. IEEE Trans. Ind. Electron. 2016, 63, 459–468. [Google Scholar] [CrossRef]
- Xu, H.; Toliyat, H.A.; Petersen, L.J. Resilient current control of five-phase induction motor under asymmetrical fault conditions. In Proceedings of the 17th Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No. 02CH37335), Dallas, TX, USA, 10–14 March 2002; pp. 64–71. [Google Scholar]
- Bermudez, M.; Gonzalez-Prieto, I.; Barrero, F.; Guzman, H.; Duran, M.J.; Kestelyn, X. Open-Phase Fault-Tolerant Direct Torque Control Technique for Five-Phase Induction Motor Drives. IEEE Trans. Ind. Electron. 2017, 64, 902–911. [Google Scholar] [CrossRef]
- Iffouzar, K.; Taraft, S.; Aouzellag, H.; Ghedamsi, K.; Aouzellag, D. DRFOC of Polyphase Induction Motor based on fuzzy logic controller speed. In Proceedings of the 2015 4th International Conference on Electrical Engineering (ICEE), Boumerdes, Algeria, 13–15 December 2015; Volume 978, pp. 4673–6673. [Google Scholar]
- Wu, X.; Song, W.; Xue, C. Low-Complexity Model Predictive Torque Control Method Without Weighting Factor for Five-Phase PMSM Based on Hysteresis Comparators. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 1650–1661. [Google Scholar] [CrossRef]
- Bogado, B.; Prieto, I.G.; Rahal, M.R. Comparative study of predictive and resonant controllers in fault tolerant five-phase induction motor drives. IEEE Trans. Ind. Electron. 2016, 63, 606–617. [Google Scholar]
- Ali, E. Speed Control of Induction Motor Supplied by Wind Turbine via Imperialist Competitive Algorithm. Energy 2015, 89, 593–600. [Google Scholar] [CrossRef]
- Djerioui, A.; Houari, A.; Ait-Ahmed, M.; Benkhoris, M.F.; Chouder, A.; Machmoum, M. Grey Wolf based control for speed ripple reduction at low speed operation of PMSM drives. ISA Trans. 2018, 74, 111–119. [Google Scholar] [CrossRef]
- Dogruer, T. Grey Wolf Optimizer-Based Optimal Controller Tuning Method for Unstable Cascade Processes with Time Delay. Symmetry 2023, 15, 54. [Google Scholar] [CrossRef]
- Gong, R.; Li, X. A Short-Term Load Forecasting Model Based on Crisscross Grey Wolf Optimizer and Dual-Stage Attention Mechanism. Energies 2023, 16, 2878. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mohammad, S.; Lewis, A. Advances in Engineering Software Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Garg, H. A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 2016, 274, 1292–1305. [Google Scholar] [CrossRef]
- Gacem, A.; Benattous, D. Hybrid GA–PSO for optimal placement of static VAR compensators in power system. Int. J. Syst. Assur. Eng. Manag. 2017, 8, 247–254. [Google Scholar] [CrossRef]
- Pramanik, P.K.D.; Pal, S.; Mukhopadhyay, M.; Singh, S.P. Big Data classification: Techniques and tools. In Applications of Big Data in Healthcare Theory and Practice; Academic Press: Cambridge, MA, USA, 2021; pp. 1–43. [Google Scholar]
- Oshaba, A.S.; Ali, E.S.; Abd Elazim, S.M. ACO Based Speed Control of SRM Fed by Photovoltaic System. Int. J. Electr. Power Energy Syst. 2015, 67, 529–536. [Google Scholar] [CrossRef]
- Ullah, K.; Jiang, Q.; Geng, G.; Rahim, S.; Khan, R.A. Optimal Power Sharing in Microgrids Using the Artificial Bee Colony Algorithm. Energies 2022, 15, 1067. [Google Scholar] [CrossRef]
- Djerioui, A.; Houari, A.; Machmoum, M.; Ghanes, M. Grey Wolf Optimizer-Based Predictive Torque Control for Electric Buses Applications. Energies 2020, 13, 5013. [Google Scholar] [CrossRef]
- Deng, W.; Zhao, H.; Zou, L.; Li, G.; Yang, X.; Wu, D. A novel collaborative optimization algorithm in solving complex optimization problems. Soft Comput. 2017, 21, 4387–4398. [Google Scholar] [CrossRef]
- Qais, M.; Hasanien, H.M.; Turky, R.A.; Alghuwainem, S.; Tostado-Véliz, M.; Jurado, F. Circle Search Algorithm: A Geometry-Based Metaheuristic Optimization Algorithm. Mathematics 2022, 10, 1626. [Google Scholar] [CrossRef]
- Sivamani, D.; Harikrishnan, R.; Essakiraj, R. Genetic algorithm based PI controller for DC-DC converter applied toRenewable energy applications. Int. J. Pure Appl. Math. 2018, 118, 1053–1071. [Google Scholar]
- Ali, E.S. Optimization of power system stabilizers using BAT search algorithm. Int. J. Electr. Power Energy Syst. 2014, 61, 683–690. [Google Scholar] [CrossRef]
- Bekakra, Y.; Ben Attous, D. Optimizing of IP speed controller using particle swarm optimization for FOC of an induction motor. Int. J. Syst. Assur. Eng. Manag. 2015, 8, 361–659. [Google Scholar] [CrossRef]
- Bharti, O.P.; Saket, R.K.; Nagar, S.K. Controller design for doubly fed induction generator using particle swarm optimization technique. Renew. Energy 2017, 114, 1394–1406. [Google Scholar] [CrossRef]
Parameters | Values | Parameters | Values |
---|---|---|---|
Rs | 4.85 Ω | Ls | 0.024 H |
Rr | 3.805 Ω | Lr | 0.024 H |
p | 2 | Lm | 0.258 H |
k | 0.0005 | j | 0.085 |
Stator Resistance | Rs/2 | Rs/4 | Rs/10 | ||||||
---|---|---|---|---|---|---|---|---|---|
Method Speed | PI | PI using GWO | PI using PSO | PI | PI using GWO | PI using PSO | PI | PI using GWO | PI using PSO |
Setting time | 0.2 | 0.04 | 0.09 | 0.24 | 0.07 | 0.101 | 0.32 | 0.078 | 0.103 |
Maximum Peak Overshoot | 1% | 0.02% | 0.056% | 2.5% | 0.05% | 0.076% | 3.5% | 0.066% | 0.098% |
Relatives’ tracking error | 6 × 10−3 | 1 × 10−5 | 4 × 10−4 | 13 × 10−2 | 2 × 10−5 | 6.7 × 10−4 | 5 | 2.5 × 10−5 | 6.7 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fodil, M.; Djerioui, A.; Ladjal, M.; Saim, A.; Berrabah, F.; Mekki, H.; Zeghlache, S.; Houari, A.; Benkhoris, M.F. Optimization of PI Controller Parameters by GWO Algorithm for Five-Phase Asynchronous Motor. Energies 2023, 16, 4251. https://doi.org/10.3390/en16104251
Fodil M, Djerioui A, Ladjal M, Saim A, Berrabah F, Mekki H, Zeghlache S, Houari A, Benkhoris MF. Optimization of PI Controller Parameters by GWO Algorithm for Five-Phase Asynchronous Motor. Energies. 2023; 16(10):4251. https://doi.org/10.3390/en16104251
Chicago/Turabian StyleFodil, Malika, Ali Djerioui, Mohamed Ladjal, Abdelhakim Saim, Fouad Berrabah, Hemza Mekki, Samir Zeghlache, Azeddine Houari, and Mohamed Fouad Benkhoris. 2023. "Optimization of PI Controller Parameters by GWO Algorithm for Five-Phase Asynchronous Motor" Energies 16, no. 10: 4251. https://doi.org/10.3390/en16104251
APA StyleFodil, M., Djerioui, A., Ladjal, M., Saim, A., Berrabah, F., Mekki, H., Zeghlache, S., Houari, A., & Benkhoris, M. F. (2023). Optimization of PI Controller Parameters by GWO Algorithm for Five-Phase Asynchronous Motor. Energies, 16(10), 4251. https://doi.org/10.3390/en16104251