A Comparative Review of Capacity Measurement in Energy Storage Devices
Abstract
:1. Introduction
2. Capacity Measurement
3. Applications of Capacity Measurements
3.1. Energy Management Techniques
3.2. Battery Management System
3.3. Charge Controller
3.4. Hybrid Energy Storage System
Advantages | Disadvantages | |
---|---|---|
Passive | Simplest form | Poor overall performance |
Direct connections between ESDs | Uncontrollable power sharing | |
Single converter | ESDs are coupled | |
Lightweight | Exhibits highly volatile drive cycles | |
Cheap | No control over power/energy split | |
Reduction in individual ESD stresses | High dynamic current draw leads to increased ESD degradation | |
Improves peak deliverance capability, efficiency, and cycle life of individual ESD | Over-and under-utilisation leads to increased degradation and reduced use | |
Peak-shaving capability | Poor response to high power demands | |
Semi-active | Increased controllability | Two converters |
Extended ESD usable life | Increased costs | |
More practical power/energy split | Increased weight | |
Further advantages are dependent on the placement of the 2nd converter | Decreased efficiency due to increased operational losses | |
Active | Optimal ESD use | Converter on each ESD |
Reduced ESD degradation | Increased costs | |
Practical flexibility and controllability of energy/power flow | Decreased efficiency due to increased operational losses | |
Increased complexity |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalyani, N.T.; Dhoble, S.J. Energy materials: Applications and propelling opportunities. In Energy Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 567–580. [Google Scholar] [CrossRef]
- Wolf, E. Large-Scale Hydrogen Energy Storage. In Electrochemical Energy Storage for Renewable Sources and Grid Balancing; Elsevier: Amsterdam, The Netherlands, 2015; pp. 129–142. [Google Scholar] [CrossRef]
- Townsend, A.; Gouws, R. A Comparative Review of Lead-Acid, Lithium-Ion and Ultra-Capacitor Technologies and Their Degradation Mechanisms. Energies 2022, 15, 4930. [Google Scholar] [CrossRef]
- Qadrdan, M.; Jenkins, N.; Wu, J. Smart Grid and Energy Storage. In McEvoy’s Handbook of Photovoltaics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 915–928. [Google Scholar] [CrossRef]
- Divakaran, A.M.; Hamilton, D.; Manjunatha, K.N.; Minakshi, M. Design, Development and Thermal Analysis of Reusable Li-Ion Battery Module for Future Mobile and Stationary Applications. Energies 2020, 13, 1477. [Google Scholar] [CrossRef]
- Thien, T.; Axelsen, H.; Merten, M.; Sauer, D.U. Energy management of stationary hybrid battery energy storage systems using the example of a real-world 5 MW hybrid battery storage project in Germany. J. Energy Storag. 2022, 51, 104257. [Google Scholar] [CrossRef]
- Segatto, M.E.V.; de Oliveira Rocha, H.R.; Silva, J.A.L.; Paiva, M.H.M.; do Rosário Santos Cruz, M.A. Telecommunication Technologies for Smart Grids: Total Cost Optimization. In Advances in Renewable Energies and Power Technologies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 451–478. [Google Scholar] [CrossRef]
- Townsend, A.; Martinson, C.; Gouws, R.; Bessarabov, D. Effect of supercapacitors on the operation of an air-cooled hydrogen fuel cell. Heliyon 2021, 7, e06569. [Google Scholar] [CrossRef]
- Wang, B.; Xu, J.; Cao, B.; Ning, B. Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles. Appl. Energy 2017, 194, 596–608. [Google Scholar] [CrossRef]
- Song, Z.; Hofmann, H.; Li, J.; Han, X.; Ouyang, M. Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach. Appl. Energy 2015, 139, 151–162. [Google Scholar] [CrossRef]
- Ramoul, J.; Chemali, E.; Dorn-Gomba, L.; Emadi, A. A Neural Network Energy Management Controller Applied to a Hybrid Energy Storage System using Multi-Source Inverter. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 2741–2747. [Google Scholar] [CrossRef]
- Xiong, R.; Cao, J.; Yu, Q. Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle. Appl. Energy 2018, 211, 538–548. [Google Scholar] [CrossRef]
- Hannan, M.A.; Hoque, M.M.; Mohamed, A.; Ayob, A. Review of energy storage systems for electric vehicle applications: Issues and challenges. Renew. Sustain. Energy Rev. 2017, 69, 771–789. [Google Scholar] [CrossRef]
- Ren, G.; Ma, G.; Cong, N. Review of electrical energy storage system for vehicular applications. Renew. Sustain. Energy Rev. 2015, 41, 225–236. [Google Scholar] [CrossRef]
- Salmasi, F.R. Control Strategies for Hybrid Electric Vehicles: Evolution, Classification, Comparison, and Future Trends. IEEE Trans. Veh. Technol. 2007, 56, 2393–2404. [Google Scholar] [CrossRef]
- Vezzini, A. Lithium-Ion Battery Management. In Lithium-Ion Batteries; Elsevier: Amsterdam, The Netherlands, 2014; pp. 345–360. [Google Scholar] [CrossRef]
- Arora, S.; Abkenar, A.T.; Jayasinghe, S.G.; Tammi, K. Battery Management System: Charge Balancing and Temperature Control. In Heavy-Duty Electric Vehicles; Elsevier: Amsterdam, The Netherlands, 2021; pp. 173–203. [Google Scholar] [CrossRef]
- Asdrubali, F.; Desideri, U. High Efficiency Plants and Building Integrated Renewable Energy Systems. In Handbook of Energy Efficiency in Buildings; Butterworth-Heinemann; Elsevier: Oxford, UK, 2019; pp. 441–595. [Google Scholar] [CrossRef]
- Atawi, I.E.; Al-Shetwi, A.Q.; Magableh, A.M.; Albalawi, O.H. Recent Advances in Hybrid Energy Storage System Integrated Renewable Power Generation: Configuration, Control, Applications, and Future Directions. Batteries 2022, 9, 29. [Google Scholar] [CrossRef]
- Konstantinou, G.; Hredzak, B. Power electronics for hybrid energy systems. In Hybrid Renewable Energy Systems and Microgrids; Elsevier: Amsterdam, The Netherlands, 2021; pp. 215–234. [Google Scholar] [CrossRef]
- Aktaş, A.; Kirçiçek, Y. Solar Hybrid Systems and Energy Storage Systems. In Solar Hybrid Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 87–125. [Google Scholar] [CrossRef]
- Coombs, T.A. High-temperature superconducting magnetic energy storage (SMES) for power grid applications. In Superconductors in the Power Grid; Elsevier: Amsterdam, The Netherlands, 2015; pp. 345–365. [Google Scholar] [CrossRef]
- Kularatna, N.; Gunawardane, K. Capacitors as energy storage devices: Simple basics to current commercial families. In Energy Storage Devices for Renewable Energy-Based Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 181–197. [Google Scholar] [CrossRef]
- Misra, S.S. Secondary batteries–lead– acid systems|Charging. In Encyclopedia of Electrochemical Power Sources; Elsevier: Amsterdam, The Netherlands, 2009; pp. 764–778. [Google Scholar] [CrossRef]
- Redondo-Iglesias, E.; Venet, P.; Pelissier, S. Global Model for Self-Discharge and Capacity Fade in Lithium-Ion Batteries Based on the Generalized Eyring Relationship. IEEE Trans. Veh. Technol. 2018, 67, 104–113. [Google Scholar] [CrossRef]
- Pollet, B.G.; Staffell, I.; Shang, J.L.; Molkov, V. Fuel-cell (hydrogen) electric hybrid vehicles. In Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance; Elsevier: Amsterdam, The Netherlands, 2014; pp. 685–735. [Google Scholar] [CrossRef]
- Seong, W.M.; Park, K.-Y.; Lee, M.H.; Moon, S.; Oh, K.; Park, H.; Lee, S.; Kang, K. Abnormal self-discharge in lithium-ion batteries. Energy Environ. Sci. 2018, 11, 970–978. [Google Scholar] [CrossRef]
- Lawder, M.T.; Northrop, P.W.C.; Subramanian, V.R. Model-Based SEI Layer Growth and Capacity Fade Analysis for EV and PHEV Batteries and Drive Cycles. J. Electrochem. Soc. 2014, 161, A2099–A2108. [Google Scholar] [CrossRef]
- Yang, Z.; Patil, D.; Fahimi, B. Online Estimation of Capacity Fade and Power Fade of Lithium-Ion Batteries Based on Input–Output Response Technique. IEEE Trans. Transp. Electrif. 2018, 4, 147–156. [Google Scholar] [CrossRef]
- Marinescu, M.; O’Neill, L.; Zhang, T.; Walus, S.; Wilson, T.E.; Offer, G.J. Irreversible vs Reversible Capacity Fade of Lithium-Sulfur Batteries during Cycling: The Effects of Precipitation and Shuttle. J. Electrochem. Soc. 2018, 165, A6107–A6118. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Cabrera-Castillo, E.; Niedermeier, F.; Jossen, A. Calculation of the state of safety (SOS) for lithium ion batteries. J. Power Sources 2016, 324, 509–520. [Google Scholar] [CrossRef]
- Casimir, A.; Zhang, H.; Ogoke, O.; Amine, J.C.; Lu, J.; Wu, G. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation. Nano Energy 2016, 27, 359–376. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Zhang, C.; Chen, Z. A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures. J. Power Sources 2014, 270, 151–157. [Google Scholar] [CrossRef]
- Mamadou, K.; Delaille, A.; Lemaire-Potteau, E.; Bultel, Y. The State-of-Energy: A New Criterion for the Energetic Performances Evaluation of Electrochemical Storage Devices. ECS Trans. 2010, 25, 105–112. [Google Scholar] [CrossRef]
- Moo, C.S.; Ng, K.S.; Chen, Y.P.; Hsieh, Y.C. State-of-Charge Estimation with Open-Circuit-Voltage for Lead-Acid Batteries. In Proceedings of the 2007 Power Conversion Conference-Nagoya, Nagoya, Japan, 2–5 April 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 758–762. [Google Scholar] [CrossRef]
- Kong, X.; Bonakdarpour, A.; Wetton, B.T.; Wilkinson, D.P.; Gopaluni, B. State of Health Estimation for Lithium-Ion Batteries. IFAC-PapersOnLine 2018, 51, 667–671. [Google Scholar] [CrossRef]
- Wu, G.; Lu, R.; Zhu, C.; Chan, C.C. State of charge Estimation for NiMH Battery based on electromotive force method. In Proceedings of the 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, China, 3–5 September 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–5. [Google Scholar] [CrossRef]
- He, W.; Williard, N.; Chen, C.; Pecht, M. State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation. Int. J. Electr. Power Energy Syst. 2014, 62, 783–791. [Google Scholar] [CrossRef]
- Dong, G.; Zhang, X.; Zhang, C.; Chen, Z. A method for state of energy estimation of lithium-ion batteries based on neural network model. Energy 2015, 90, 879–888. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. J. Power Sources 2004, 134, 252–261. [Google Scholar] [CrossRef]
- Dai, H.; Wei, X.; Sun, Z.; Wang, J.; Gu, W. Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications. Appl. Energy 2012, 95, 227–237. [Google Scholar] [CrossRef]
- Chen, Z.; Fu, Y.; Mi, C.C. State of Charge Estimation of Lithium-Ion Batteries in Electric Drive Vehicles Using Extended Kalman Filtering. IEEE Trans. Veh. Technol. 2013, 62, 1020–1030. [Google Scholar] [CrossRef]
- Li, J.; Klee Barillas, J.; Guenther, C.; Danzer, M.A. A comparative study of state of charge estimation algorithms for LiFePO4 batteries used in electric vehicles. J. Power Sources 2013, 230, 244–250. [Google Scholar] [CrossRef]
- Campestrini, C.; Heil, T.; Kosch, S.; Jossen, A. A comparative study and review of different Kalman filters by applying an enhanced validation method. J. Energy Storag. 2016, 8, 142–159. [Google Scholar] [CrossRef]
- Abdi, H.; Mohammadi-ivatloo, B.; Javadi, S.; Khodaei, A.R.; Dehnavi, E. Energy Storage Systems. In Distributed Generation Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 333–368. [Google Scholar] [CrossRef]
- Wang, D.; Yang, F.; Zhao, Y.; Tsui, K.-L. Battery remaining useful life prediction at different discharge rates. Microelectron. Reliab. 2017, 78, 212–219. [Google Scholar] [CrossRef]
- Aitio, A.; Howey, D.A. Predicting battery end of life from solar off-grid system field data using machine learning. Joule 2021, 5, 3204–3220. [Google Scholar] [CrossRef]
- Plett, G.L. High-Performance Battery-Pack Power Estimation Using a Dynamic Cell Model. IEEE Trans. Veh. Technol. 2004, 53, 1586–1593. [Google Scholar] [CrossRef]
- Shen, P.; Ouyang, M.; Lu, L.; Li, J.; Feng, X. The Co-estimation of State of Charge, State of Health, and State of Function for Lithium-Ion Batteries in Electric Vehicles. IEEE Trans. Veh. Technol. 2018, 67, 92–103. [Google Scholar] [CrossRef]
- Wang, R.; Feng, H. Lithium-ion batteries remaining useful life prediction using Wiener process and unscented particle filter. J. Power Electron. 2020, 20, 270–278. [Google Scholar] [CrossRef]
- Zhang, L.; Mu, Z.; Sun, C. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Exponential Model and Particle Filter. IEEE Access 2018, 6, 17729–17740. [Google Scholar] [CrossRef]
- Ungurean, L.; Cârstoiu, G.; Micea, M.V.; Groza, V. Battery state of health estimation: A structured review of models, methods and commercial devices. Int. J. Energy Res. 2017, 41, 151–181. [Google Scholar] [CrossRef]
- Dong, G.; Chen, Z.; Wei, J.; Ling, Q. Battery Health Prognosis Using Brownian Motion Modeling and Particle Filtering. IEEE Trans. Ind. Electron. 2018, 65, 8646–8655. [Google Scholar] [CrossRef]
- Baumhöfer, T.; Brühl, M.; Rothgang, S.; Sauer, D.U. Production caused variation in capacity aging trend and correlation to initial cell performance. J. Power Sources 2014, 247, 332–338. [Google Scholar] [CrossRef]
- Daniel-Ivad, J. Secondary batteries–zinc systems|Zinc–Manganese. In Encyclopedia of Electrochemical Power Sources; Elsevier: Amsterdam, The Netherlands, 2009; pp. 497–512. [Google Scholar] [CrossRef]
- Yao, L.; Xu, S.; Tang, A.; Zhou, F.; Hou, J.; Xiao, Y.; Fu, Z. A review of lithium-ion battery state of health estimation and prediction methods. World Electr. Veh. J. 2021, 12, 113. [Google Scholar] [CrossRef]
- Viswanathan, V.V.; Kintner-Meyer, M.C. Repurposing of batteries from electric vehicles. In Advances in Battery Technologies for Electric Vehicles; Elsevier: Amsterdam, The Netherlands, 2015; Volume 15, pp. 389–415. [Google Scholar] [CrossRef]
- Vetter, M.; Lux, S.; Wüllner, J. The Use of Batteries in Storing Electricity. In Future Energy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 247–261. [Google Scholar] [CrossRef]
- Shi, E.; Xia, F.; Peng, D.; Li, L.; Wang, X.; Yu, B. State-of-health estimation for lithium battery in electric vehicles based on improved unscented particle filter. J. Renew. Sustain. Energy 2019, 11, 024101. [Google Scholar] [CrossRef]
- Kirchev, A. Battery Management and Battery Diagnostics. In Electrochemical Energy Storage for Renewable Sources and Grid Balancing; Elsevier: Amsterdam, The Netherlands, 2015; pp. 411–435. [Google Scholar] [CrossRef]
- Gou, B.; Xu, Y.; Feng, X. State-of-Health Estimation and Remaining-Useful-Life Prediction for Lithium-Ion Battery Using a Hybrid Data-Driven Method. IEEE Trans. Veh. Technol. 2020, 69, 10854–10867. [Google Scholar] [CrossRef]
- Chelidze, D.; Cusumano, J.P. A Dynamical Systems Approach to Failure Prognosis. J. Vib. Acoust. 2004, 126, 2–8. [Google Scholar] [CrossRef]
- Luo, J.; Pattipati, K.R.; Liu, Q.; Chigusa, S. Model-Based Prognostic Techniques Applied to a Suspension System. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 2008, 38, 1156–1168. [Google Scholar] [CrossRef]
- Xiong, R.; Li, L.; Tian, J. Towards a smarter battery management system: A critical review on battery state of health monitoring methods. J. Power Sources 2018, 405, 18–29. [Google Scholar] [CrossRef]
- Chen, L.; Lü, Z.; Lin, W.; Li, J.; Pan, H. A new state-of-health estimation method for lithium-ion batteries through the intrinsic relationship between ohmic internal resistance and capacity. Measurement 2018, 116, 586–595. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Chakraborty, B. Battery management strategies: An essential review for battery state of health monitoring techniques. J. Energy Storag. 2022, 51, 104427. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, J.; Cao, D.; Egardt, B. Battery Health Prognosis for Electric Vehicles Using Sample Entropy and Sparse Bayesian Predictive Modeling. IEEE Trans. Ind. Electron. 2015, 63, 2645–2656. [Google Scholar] [CrossRef]
- Dong, M.; He, D. A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology. Mech. Syst. Signal Process. 2007, 21, 2248–2266. [Google Scholar] [CrossRef]
- Heng, A.; Tan, A.C.C.; Mathew, J.; Montgomery, N.; Banjevic, D.; Jardine, A.K.S. Intelligent condition-based prediction of machinery reliability. Mech. Syst. Signal Process. 2009, 23, 1600–1614. [Google Scholar] [CrossRef]
- Ng, K.S.; Moo, C.-S.; Chen, Y.-P.; Hsieh, Y.-C. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl. Energy 2009, 86, 1506–1511. [Google Scholar] [CrossRef]
- Berecibar, M.; Gandiaga, I.; Villarreal, I.; Omar, N.; Van Mierlo, J.; Van Den Bossche, P. Critical review of state of health estimation methods of Li-ion batteries for real applications. Renew. Sustain. Energy Rev. 2016, 56, 572–587. [Google Scholar] [CrossRef]
- Wang, D.; Yang, F.; Gan, L.; Li, Y. Fuzzy Prediction of Power Lithium Ion Battery State of Function Based on the Fuzzy c-Means Clustering Algorithm. World Electr. Veh. J. 2019, 10, 1. [Google Scholar] [CrossRef]
- Tobon-Mejia, D.A.; Medjaher, K.; Zerhouni, N. CNC machine tool’s wear diagnostic and prognostic by using dynamic Bayesian networks. Mech. Syst. Signal Process. 2012, 28, 167–182. [Google Scholar] [CrossRef]
- Diab, Y.; Venet, P.; Gualous, H.; Rojat, G. Self-Discharge Characterization and Modeling of Electrochemical Capacitor Used for Power Electronics Applications. IEEE Trans. Power Electron. 2009, 24, 510–517. [Google Scholar] [CrossRef]
- Li, Y.; Tremblay, P.-L.; Zhang, T. Anode Catalysts and Biocatalysts for Microbial Fuel Cells. In Progress and Recent Trends in Microbial Fuel Cells; Elsevier: Amsterdam, The Netherlands, 2018; pp. 143–165. [Google Scholar] [CrossRef]
- Maher, K.; Yazami, R. A study of lithium ion batteries cycle aging by thermodynamics techniques. J. Power Sources 2014, 247, 527–533. [Google Scholar] [CrossRef]
- Markervich, E.; Salitra, G.; Levi, M.D.; Aurbach, D. Capacity fading of lithiated graphite electrodes studied by a combination of electroanalytical methods, Raman spectroscopy and SEM. J. Power Sources 2005, 146, 146–150. [Google Scholar] [CrossRef]
- Beyssac, O.; Goffé, B.; Petitet, J.-P.; Froigneux, E.; Moreau, M.; Rouzaud, J.-N. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2003, 59, 2267–2276. [Google Scholar] [CrossRef]
- Hardwick, L.; Buqa, H.; Novak, P. Graphite surface disorder detection using in situ Raman microscopy. Solid State Ion. 2006, 177, 2801–2806. [Google Scholar] [CrossRef]
- Midgley, P.A.; Weyland, M. 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 2003, 96, 413–431. [Google Scholar] [CrossRef]
- Fadley, C.S. X-ray photoelectron spectroscopy: Progress and perspectives. J. Electron Spectros. Relat. Phenom. 2010, 178–179, 2–32. [Google Scholar] [CrossRef]
- Morigaki, K.; Ohta, A. Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, Fourier transform infrared spectroscopy and scanning auger electron microscopy. J. Power Sources 1998, 76, 159–166. [Google Scholar] [CrossRef]
- Ouyang, M.; Chu, Z.; Lu, L.; Li, J.; Han, X.; Feng, X.; Liu, G. Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles. J. Power Sources 2015, 286, 309–320. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Zhang, X.; Yang, C.; Xu, N.; Xia, B. Study of the storage performance of a Li-ion cell at elevated temperature. Electrochim. Acta 2010, 55, 927–934. [Google Scholar] [CrossRef]
- Wognsen, E.R.; Haverkort, B.R.; Jongerden, M.; Hansen, R.R.; Larsen, K.G. A Score Function for Optimizing the Cycle-Life of Battery-Powered Embedded Systems. In Formal Modeling and Analysis of Timed Systems, Proceedings of the 13th International Conference, FORMATS 2015, Madrid, Spain, 2–4 September 2015; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 305–320. [Google Scholar]
- D’Orazio, T.; Leo, M.; Distante, A.; Guaragnella, C.; Pianese, V.; Cavaccini, G. Automatic ultrasonic inspection for internal defect detection in composite materials. NDT E Int. 2008, 41, 145–154. [Google Scholar] [CrossRef]
- Barker, J.; Saidi, M.Y.; Koksbang, R. Differential capacity as a spectroscopic probe for the investigation of alkali metal insertion reactions. Electrochim. Acta 1996, 41, 2639–2646. [Google Scholar] [CrossRef]
- Sommer, B.; Bender, C.; Hoppe, T.; Gamroth, C.; Jelonek, L. Stereoscopic cell visualization: From mesoscopic to molecular scale. J. Electron. Imaging 2014, 23, 011007. [Google Scholar] [CrossRef]
- Yang, R.; Xiong, R.; He, H.; Mu, H.; Wang, C. A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles. Appl. Energy 2017, 207, 336–345. [Google Scholar] [CrossRef]
- Omar, N.; Abdel, M.; Firouz, Y.; Salminen, J.; Smekens, J.; Hegazy, O.; Gaulous, H.; Mulder, G.; Van Den Bossche, P.; Coosemans, T. Lithium iron phosphate based battery–Assessment of the aging parameters and development of cycle life model. Appl. Energy 2014, 113, 1575–1585. [Google Scholar] [CrossRef]
- Kumar, Y.; Dewal, M.L.; Anand, R.S. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal, Image Video Process. 2014, 8, 1323–1334. [Google Scholar] [CrossRef]
- Birla, S.; Kohli, K.; Dutta, A. Machine Learning on imbalanced data in Credit Risk. In Proceedings of the 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 13–16 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Doyle, M.; Fuller, T.F.; Newman, J. Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell. J. Electrochem. Soc. 1993, 140, 1526–1533. [Google Scholar] [CrossRef]
- Dubarry, M.; Truchot, C.; Liaw, B.Y. Synthesize battery degradation modes via a diagnostic and prognostic model. J. Power Sources 2012, 219, 204–216. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, R.; Yu, Q. Fractional-Order Model-Based Incremental Capacity Analysis for Degradation State Recognition of Lithium-Ion Batteries. IEEE Trans. Ind. Electron. 2019, 66, 1576–1584. [Google Scholar] [CrossRef]
- Xing, Y.; Williard, N.; Tsui, K.-L.; Pecht, M. A comparative review of prognostics-based reliability methods for Lithium batteries. In Proceedings of the 2011 Prognostics and System Health Management Conference, Shenzhen, China, 24–25 May 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Koch, R.; Kuhn, R.; Zilberman, I.; Jossen, A. Electrochemical impedance spectroscopy for online battery monitoring-power electronics control. In Proceedings of the 2014 16th European Conference on Power Electronics and Applications, Lappeenranta, Finland, 26–28 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–10. [Google Scholar] [CrossRef]
- Saha, B.; Poll, S.; Goebel, K.; Christophersen, J. An integrated approach to battery health monitoring using bayesian regression and state estimation. In Proceedings of the 2007 IEEE Autotestcon, Baltimore, MD, USA, 17–20 September 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 646–653. [Google Scholar] [CrossRef]
- Gholami, B.; Haddad, W.M.; Tannenbaum, A.R. Relevance Vector Machine Learning for Neonate Pain Intensity Assessment Using Digital Imaging. IEEE Trans. Biomed. Eng. 2010, 57, 1457–1466. [Google Scholar] [CrossRef] [PubMed]
- Rizoug, N.; Bartholomeus, P.; Le Moigne, P. Study of the Ageing Process of a Supercapacitor Module Using Direct Method of Characterization. IEEE Trans. Energy Convers. 2012, 27, 220–228. [Google Scholar] [CrossRef]
- Fang, Q.; Wei, X.; Lu, T.; Dai, H.; Zhu, J. A State of Health Estimation Method for Lithium-Ion Batteries Based on Voltage Relaxation Model. Energies 2019, 12, 1349. [Google Scholar] [CrossRef]
- Della Giustina, D.; Ponci, F.; Repo, S. Automation for smart grids in Europe. In Application of Smart Grid Technologies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 231–274. [Google Scholar] [CrossRef]
- Rong Li, X.; Bar-Shalom, Y. Performance Prediction of Hybrid Algorithms. Appl. Soft Comput. 1995, 18, 99–151. [Google Scholar] [CrossRef]
- Satpathy, R.; Pamuru, V. Off-grid solar photovoltaic systems. In Solar PV Power; Elsevier: Cambridge, MA, USA, 2021; pp. 267–315. [Google Scholar] [CrossRef]
- Chen, H.; Xiong, R.; Lin, C.; Shen, W. Model predictive control based real-time energy management for a hybrid energy storage system. CSEE J. Power Energy Syst. 2020, 7, 862–874. [Google Scholar] [CrossRef]
- Herath, A.; Kodituwakku, S.; Dasanayake, D.; Binduhewa, P.; Ekanayake, J.; Samarakoon, K. Comparison of Optimization- and Rule-Based EMS for Domestic PV-Battery Installation with Time-Varying Local SoC Limits. J. Electr. Comput. Eng. 2019, 2019, 8162475. [Google Scholar] [CrossRef]
- Restrepo, M.; Cañizares, C.A.; Simpson-Porco, J.W.; Su, P.; Taruc, J. Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility. Appl. Energy 2021, 290, 116760. [Google Scholar] [CrossRef]
- Trovão, J.P.; Pereirinha, P.G.; Jorge, H.M.; Antunes, C.H. A multi-level energy management system for multi-source electric vehicles–An integrated rule-based meta-heuristic approach. Appl. Energy 2013, 105, 304–318. [Google Scholar] [CrossRef]
- Schouten, N.J.; Salman, M.A.; Kheir, N.A. Energy management strategies for parallel hybrid vehicles using fuzzy logic. Control Eng. Pract. 2003, 11, 171–177. [Google Scholar] [CrossRef]
- Zandi, M.; Payman, A.; Martin, J.-P.; Pierfederici, S.; Davat, B.; Meibody-Tabar, F. Energy Management of a Fuel Cell/Supercapacitor/Battery Power Source for Electric Vehicular Applications. IEEE Trans. Veh. Technol. 2011, 60, 433–443. [Google Scholar] [CrossRef]
- Hung, Y.-H.; Wu, C.-H. An integrated optimization approach for a hybrid energy system in electric vehicles. Appl. Energy 2012, 98, 479–490. [Google Scholar] [CrossRef]
- Song, Z.; Hofmann, H.; Li, J.; Hou, J.; Han, X.; Ouyang, M. Energy management strategies comparison for electric vehicles with hybrid energy storage system. Appl. Energy 2014, 134, 321–331. [Google Scholar] [CrossRef]
- Hredzak, B.; Agelidis, V.G.; Jang, M. A Model Predictive Control System for a Hybrid Battery-Ultracapacitor Power Source. IEEE Trans. Power Electron. 2014, 29, 1469–1479. [Google Scholar] [CrossRef]
- Zhang, S.; Xiong, R.; Sun, F. Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system. Appl. Energy 2017, 185, 1654–1662. [Google Scholar] [CrossRef]
- Sun, C.; Hu, X.; Moura, S.J.; Sun, F. Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles. IEEE Trans. Control Syst. Technol. 2015, 23, 1197–1204. [Google Scholar] [CrossRef]
- Pistoia, G. Vehicle Applications. In Battery Operated Devices and Systems; Elsevier: Amsterdam, The Netherlands, 2009; pp. 321–378. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, C. Summary of Lead-acid Battery Management System. IOP Conf. Ser. Earth Environ. Sci. 2020, 440, 022014. [Google Scholar] [CrossRef]
- Wang, S.; Fan, Y.; Stroe, D.-I.; Fernandez, C.; Yu, C.; Cao, W.; Chen, Z. Battery system active control strategies. In Battery System Modeling; Elsevier: Amsterdam, The Netherlands, 2021; pp. 313–340. [Google Scholar] [CrossRef]
- Gao, D.W. Interfacing Between an ESS and a Microgrid. In Energy Storage for Sustainable Microgrid; Elsevier: Amsterdam, The Netherlands, 2015; pp. 79–121. [Google Scholar] [CrossRef]
- Plett, G.L. Battery Management Systems, Volume I: Battery Modeling, 1st ed.; Artech: Norwood, MA, USA, 2015; ISBN 9781630810245. Available online: https://ieeexplore-ieee-org.nwulib.nwu.ac.za/document/9100168 (accessed on 26 July 2022).
- Plett, G.L. Battery Management Systems, Volume II: Equivalent-Circuit Methods, 1st ed.; Artech: Norwood, MA, USA, 2015; ISBN 9781630810283. Available online: https://ieeexplore.ieee.org/document/9100098 (accessed on 26 July 2022).
- Petzl, M.; Danzer, M.A. Advancements in OCV Measurement and Analysis for Lithium-Ion Batteries. IEEE Trans. Energy Convers. 2013, 28, 675–681. [Google Scholar] [CrossRef]
- Smokers, R.T.M.; Verbeek, M.; van Zyl, S. EVs and post 2020 CO2 targets for passenger cars. In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17–20 November 2013; IEEE: Barcelona, Spain, 2013; pp. 1–11. [Google Scholar] [CrossRef]
- Ahmadi, L.; Fowler, M.; Young, S.B.; Fraser, R.A.; Gaffney, B.; Walker, S.B. Energy efficiency of Li-ion battery packs re-used in stationary power applications. Sustain. Energy Technol. Assess. 2014, 8, 9–17. [Google Scholar] [CrossRef]
- Chen, M.; Rincon-Mora, G.A. Accurate electrical battery model capable of predicting runtime and I-V performance. IEEE Trans. Energy Convers. 2006, 21, 504–511. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z.; Wang, J. Design for battery management system hardware-in-loop test platform. In Proceedings of the 2009 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 16–19 August 2009; IEEE: Beijing, China, 2009; pp. 3-399–3-402. [Google Scholar] [CrossRef]
- Stolitzka, D. An electronic fuel gauge accuracy study. In Proceedings of the The Twelfth Annual Battery Conference on Applications and Advances, Long Beach, CA, USA, 14–17 January 1997; IEEE: Long Beach, CA, USA, 1997; pp. 211–213. [Google Scholar] [CrossRef]
- Avvari, G.V.; Pattipati, B.; Balasingam, B.; Pattipati, K.R.; Bar-Shalom, Y. Experimental set-up and procedures to test and validate battery fuel gauge algorithms. Appl. Energy 2015, 160, 404–418. [Google Scholar] [CrossRef]
- Balasingam, B.; Ahmed, M.; Pattipati, K. Battery Management Systems—Challenges and Some Solutions. Energies 2020, 13, 2825. [Google Scholar] [CrossRef]
- Balasingam, B.; Avvari, G.V.; Pattipati, B.; Pattipati, K.R.; Bar-Shalom, Y. A robust approach to battery fuel gauging, part II: Real time capacity estimation. J. Power Sources 2014, 269, 949–961. [Google Scholar] [CrossRef]
- Balasingam, B.; Avvari, G.V.; Pattipati, K.R.; Bar-Shalom, Y. Performance analysis results of a battery fuel gauge algorithm at multiple temperatures. J. Power Sources 2015, 273, 742–753. [Google Scholar] [CrossRef]
- Pattipati, B.; Balasingam, B.; Avvari, G.V.; Pattipati, K.R.; Bar-Shalom, Y. Open circuit voltage characterization of lithium-ion batteries. J. Power Sources 2014, 269, 317–333. [Google Scholar] [CrossRef]
- Eddahech, A.; Briat, O.; Bertrand, N.; Delétage, J.-Y.; Vinassa, J.-M. Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. Int. J. Electr. Power Energy Syst. 2012, 42, 487–494. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Zhang, X.; Chen, Z. A novel state of health estimation method of Li-ion battery using group method of data handling. J. Power Sources 2016, 327, 457–464. [Google Scholar] [CrossRef]
- Cope, R.; Podrazhansky, Y. The Art of Battery Charging. In Fourteenth Annual Battery Conference on Applications and Advances, Proceedings of the Conference (Cat. No.99TH8371), Long Beach, CA, USA, 12–15 January 1999; IEEE: Long Beach, CA, USA, 1999; pp. 233–235. [Google Scholar] [CrossRef]
- Waag, W.; Sauer, D.U. Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination. Appl. Energy 2013, 111, 416–427. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. Mater. Int. 2018, 28, 653–666. [Google Scholar] [CrossRef]
- Tran, D.; Zhou, H.; Khambadkone, A.M. Energy management and dynamic control in Composite Energy Storage System for micro-grid applications. In Proceedings of the IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, Glendale, CA, USA, 7–10 November 2010; IEEE: Glendale, CA, USA, 2010; pp. 1818–1824. [Google Scholar] [CrossRef]
- Ross, J.N.; Kalogirou, S.A. System Electronics. In McEvoy’s Handbook of Photovoltaics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 765–788. [Google Scholar] [CrossRef]
- Salas, V. Stand-alone photovoltaic systems. In The Performance of Photovoltaic (PV) Systems; Woodhead Publishing; Elsevier: Sawston, UK, 2017; pp. 251–296. [Google Scholar] [CrossRef]
- Ashok Kumar, L.; Albert Alexander, S.; Rajendran, M. Charge controls and maximum power point tracking. In Power Electronic Converters for Solar Photovoltaic Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 331–369. [Google Scholar] [CrossRef]
- Chong, L.W.; Wong, Y.W.; Rajkumar, R.K.; Rajkumar, R.K.; Isa, D. Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems. Renew. Sustain. Energy Rev. 2016, 66, 174–189. [Google Scholar] [CrossRef]
- Rezkallah, M.; Chandra, A.; Ibrahim, H.; Feger, Z.; Aissa, M. Control systems for hybrid energy systems. In Hybrid Renewable Energy Systems and Microgrids; Elsevier: Amsterdam, The Netherlands, 2021; pp. 373–397. [Google Scholar] [CrossRef]
- Kuperman, A.; Aharon, I. Battery–ultracapacitor hybrids for pulsed current loads: A review. Renew. Sustain. Energy Rev. 2011, 15, 981–992. [Google Scholar] [CrossRef]
- Dougal, R.A.; Liu, S.; White, R.E. Power and life extension of battery-ultracapacitor hybrids. IEEE Trans. Compon. Packag. Technol. 2002, 25, 120–131. [Google Scholar] [CrossRef]
- Barcellona, S.; Piegari, L.; Villa, A. Passive hybrid energy storage system for electric vehicles at very low temperatures. J. Energy Storage 2019, 25, 100833. [Google Scholar] [CrossRef]
- Castelli Dezza, F.; Musolino, V.; Piegari, L.; Rizzo, R. Hybrid battery–supercapacitor system for full electric forklifts. IET Electr. Syst. Transp. 2019, 9, 16–23. [Google Scholar] [CrossRef]
- Chen, Z. High pulse power system through engineering battery-capacitor combination. In Collection of Technical Papers, Proceedings of the 35th Intersociety Energy Conversion Engineering Conference and Exhibit (IECEC) (Cat. No.00CH37022), Las Vegas, NV, USA, 24–28 July 2000; American Inst. Aeronaut. & Astronautics: Las Vegas, NV, USA, 2000; Volume 2, pp. 752–755. [Google Scholar] [CrossRef]
- Miller, J.R.; Outlaw, R.A.; Holloway, B.C. Graphene Double-Layer Capacitor with ac Line-Filtering Performance. Science 2010, 329, 1637–1639. [Google Scholar] [CrossRef]
- Gao, L.; Dougal, R.A.; Liu, S. Power Enhancement of an Actively Controlled Battery/Ultracapacitor Hybrid. IEEE Trans. Power Electron. 2005, 20, 236–243. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, D.; Wang, B.; Tong, F. Battery Degradation Minimization-Oriented Hybrid Energy Storage System for Electric Vehicles. Energies 2020, 13, 246. [Google Scholar] [CrossRef]
- Grün, T.; Smith, A.; Ehrenberg, H.; Doppelbauer, M. Passive Hybrid Storage Systems: Influence of circuit and system design on performance and lifetime. Energy Procedia 2018, 155, 336–349. [Google Scholar] [CrossRef]
- Castaings, A.; Lhomme, W.; Trigui, R.; Bouscayrol, A. Comparison of energy management strategies of a battery/supercapacitors system for electric vehicle under real-time constraints. Appl. Energy 2016, 163, 190–200. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, G. Experimental Study on a Semi-Active Battery-Supercapacitor Hybrid Energy Storage System for Electric Vehicle Application. IEEE Trans. Power Electron. 2020, 35, 1014–1021. [Google Scholar] [CrossRef]
- Goussian, A.; LeBel, F.-A.; Trovão, J.P.; Boulon, L. Passive hybrid energy storage system based on lithium-ion capacitor for an electric motorcycle. J. Energy Storage 2019, 25, 100884. [Google Scholar] [CrossRef]
Advantages | Disadvantages | |
---|---|---|
Experimental—Direct | ||
Ah counting | Simple application Least affected by other parameters (i.e., DoD, temperature and c-rate) | Time and energy consuming Accuracy relies on the quality of the measuring probes Requires a constant low current feed and constant 25 °C—this is unrealistic in real-life applications |
Capacity test | Easy method Good accuracy | Challenging to inspect in real-time as fully charged capacity is not transient |
Ohmic internal resistance | Simple and easy technique | Sensitive to sampling frequency, SOC, temperature, and timescale of measuring techniques |
Electrochemical impedance spectroscopy (EIS) | Several crucial battery parameters are measured—double layer capacitance, SEI-resistance and charge-transfer resistance Noninvasive | Large fluctuations are observed due to insufficient algorithm and calibration platforms SOC and temperature sensitive |
Destructive test | Precise deterioration information can provide high SOH estimation accuracy | Techniques require destructive intervention, thus not suitable for systems in industrial settings |
Cycle number counting | Simple and easy technique No requirement for specialised equipment | Full cycles are rarely used Capacity fade alters the duration of a cycle |
Experimental—Indirect | ||
Charging curve | Good reliability Easy implementation | Less accurate—does not account for effect of temperature Accuracy requires discharge/charge maximum and minimum voltage be the same as that of the full-health charging curve |
Ultrasonic analysis | Detects internal flaws without dismantling Noncontact, nondestructive method; can be combined with other techniques to improve accuracy | Requires a pulse generator, receiver, transducer and monitor Extensive research and refinement of this method is still required |
ICA-DVA | Applicable to various types of batteries Provides more sensitive ageing-information than charge/discharge curves Can be combined with machine learning to improve precision | Requires small current rates—C/25, for credible accuracy Requires microcontrollers to perform complex numerical deductions with higher computational work Requires effective filtering to remove noise Estimation is sensitive to temperature change |
Acoustic emission | Seldomly requires the battery’s history Detects sound waves where the battery is not subjected to external mechanical stimulus | Less effective on a battery that is not in the charge/discharge process |
FBG | Nonelectrical Outputs are not affected by electromagnetic interference Can simultaneously measure battery surface strain and temperature distribution | Needs further research and refinement |
Model-based—Data-driven | ||
Optimization algorithm | Small requirement of prior knowledge Stable outcome High accuracy | Different model parameter combinations result in different discrepancies Long computational time |
Empirical and fitting | Does not require a thorough understanding of the electrochemical cell design or material properties Faster computational deductions | Quality of experimental data largely influences this model; certainty of a single variable is difficult to achieve |
Sample entropy | Higher computational speed than approximate entropy Self-match cancellation features Can be combined with machine learning to improve performance | Can require large memory for computation as well as large computational time |
Machine learning | Flexible Real-time implementation High prediction accuracy | Collecting training data is lengthy and expensive |
Model-based—Adaptive filtering | ||
Electrochemical model | Combination of various validation data can yield very accurate results; usage in real-time battery state-estimation | Solution deduction complexity High computational load Validation data combination is difficult to achieve; |
Equivalent circuit model (ECM) | Low computational load Convenient real-time application | Computational complexity Results are sensitive to model accuracy |
Hybrid techniques | High accuracy Good online application prospect; | Noise can diminish parameter identification Can lead to cross-interference, which can impede algorithm accuracy and numerical stability Require further testing on the variety of batteries |
Direct | State Estimation | Prediction | |||||
---|---|---|---|---|---|---|---|
Time (s) | SOC (%) | Function | SOC (%) | m | Function | SOC (%) | |
0 | 100 | Historical data: linear pattern (y = mx + c) where m = Δy/Δx | |||||
1 | 99.5 | ||||||
2 | 99 | ||||||
3 | 98.5 | ||||||
4 | 98 | ||||||
5 | 97.5 | ||||||
6 | 97 | ||||||
7 | 96.5 | ||||||
8 | 96 | ||||||
9 | 95.5 | ||||||
10 | 95 | ||||||
11 | 94.5 | 94.5 | −0.5 | f(x) = (−0.5)x + 100 | 94.5 | ||
12 | 94 | 94 | −0.5 | f(x) = (−0.5)x + 100 | 94 | ||
13 | 93 | 93.5 | −0.5 | f(x) = (−0.5)x + 100 | 93.5 | ||
14 | 91.5 | 93 | −1 | f(x) = (−1)x + 106 | 92 | ||
15 | 88 | 92.5 | −1.5 | f(x) = (−1.5)x + 112.5 | 90 | ||
16 | 83.5 | 92 | −3.5 | f(x) = (−3.5)x + 140.5 | 84.5 | ||
17 | 77.5 | 91.5 | −4.5 | f(x) = (−4.5)x + 155.5 | 79 | ||
18 | 70 | 91 | −6 | f(x) = (−6)x + 179.5 | 71.5 | ||
19 | 59.5 | 90.5 | −7.5 | f(x) = (−7.5)x + 205 | 62.5 | ||
20 | 48 | 90 | −10.5 | f(x) = (−10.5)x + 259 | 49 |
Direct Measurement | State Estimation | Prediction | |||
---|---|---|---|---|---|
Time (s) | SOC (%) | SOC(%) | % Error | SOC (%) | % Error |
11 | 94.5 | 94.5 | 0.00 | 94.5 | 0.00 |
12 | 94 | 94 | 0.00 | 94 | 0.00 |
13 | 93 | 93.5 | 0.54 | 93.5 | 0.54 |
14 | 91.5 | 93 | 1.64 | 92 | 0.55 |
15 | 88 | 92.5 | 5.11 | 90 | 2.27 |
16 | 83.5 | 92 | 10.18 | 84.5 | 1.20 |
17 | 77.5 | 91.5 | 18.06 | 79 | 1.94 |
18 | 70 | 91 | 30.00 | 71.5 | 2.14 |
19 | 59.5 | 90.5 | 52.10 | 62.5 | 5.04 |
20 | 48 | 90 | 87.50 | 49 | 2.08 |
Load Difference | Load Efficiency | Total Time Delay (s) | Time Efficiency (%) | ||
---|---|---|---|---|---|
2 s Sample interval | RB | 0 | ~1 | 4 | ~79 |
OB | 0 | ~1 | 4 | ~79 | |
1 s Sample interval | RB | 0 | ~1 | 3 | ~84 |
OB | +5 | ~1.2 | 2 | ~89 | |
0.5 s Sample interval | RB | 0 | ~1 | 2.5 | ~87 |
OB | +1.25 | ~1.03 | 1 | ~95 | |
0.1 s Sample interval | RB | 0 | ~1 | 2.1 | ~89 |
OB | +0.25 | ~1.003 | 0.2 | ~99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Townsend, A.; Gouws, R. A Comparative Review of Capacity Measurement in Energy Storage Devices. Energies 2023, 16, 4253. https://doi.org/10.3390/en16104253
Townsend A, Gouws R. A Comparative Review of Capacity Measurement in Energy Storage Devices. Energies. 2023; 16(10):4253. https://doi.org/10.3390/en16104253
Chicago/Turabian StyleTownsend, Ashleigh, and Rupert Gouws. 2023. "A Comparative Review of Capacity Measurement in Energy Storage Devices" Energies 16, no. 10: 4253. https://doi.org/10.3390/en16104253
APA StyleTownsend, A., & Gouws, R. (2023). A Comparative Review of Capacity Measurement in Energy Storage Devices. Energies, 16(10), 4253. https://doi.org/10.3390/en16104253