A Prediction Model for Spot LNG Prices Based on Machine Learning Algorithms to Reduce Fluctuation Risks in Purchasing Prices
Abstract
:1. Introduction
1.1. LNG Market Characteristics and Trends
1.2. Problem Statement and Research Objectives
- international NG prices
- international crude oil prices
- LNG import volumes by country
- average temperatures of key Asian countries
- LNG export volumes by country
2. Literature Review
2.1. Energy Prices Prediction Using ML Algorithms
2.2. ML Applications for Price Prediction Based on Time Series Data
2.3. Comparison of Traditional and ML Methods
2.4. Limitation of Previous Research
3. Research Scope and Framework
3.1. Scope of Work
- JKM, spot LNG price index
- NBP and NG price index in Europe
- HH and NG price index in North America
- Brent: Major crude oil price index.
- LNG import Volumes of Korea
- China’s LNG import volumes
- LNG import Volumes of Japan
- Average temperatures in Seoul, Korea
3.2. Research Framework
4. Methods and Modeling
4.1. Data Collection and Categorization
4.2. Feature Selection for Modeling
4.3. Data Preprocessing
4.3.1. Missing Value Imputation
4.3.2. Reshape and Standardization of Input Data
4.3.3. Split of Training and Test Dataset
4.4. Modeling Overview
- Scenario A: Application of a one-dimensional variable to verify the effectiveness of the ML models.
- Scenario B: Application of eight-dimensional variables to test the performance of ML models.
- Scenario C: Application of seven-dimensional variables to analyze the effect of JKM on the performance of the ML models.
- Scenario D: Application of two-dimensional variables to analyze the effect of each variable on model performance.
5. Scenario A: Application of One-Dimensional Independent Variable
5.1. Training of ML Models
5.2. Training Results
5.3. Test and Validation
5.4. Abnormal Period Analysis
6. Scenario B: The Application of Eight-Dimensional Independent Variables
6.1. Training of ML Models
6.2. Training Results
6.3. Test and Validation
6.4. Abnormal Period Analysis
7. Scenario C: The Applications of 7 Dimensional Independent Variables
7.1. Training of ML Models
7.2. Training Results
7.3. Test and Validation
7.4. Abnormal Period Analysis
8. Scenario D: Applications of Two-Dimensional Independent Variables
8.1. Training of ML Models
8.2. Training Results
8.3. Test and Validation
8.4. Abnormal Period Analysis
9. Conclusions
9.1. Summary
9.2. Discussion
9.3. Contributions
10. Limitations and Further Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
CME | Chicago Mercantile Exchange |
FOB | Free on Board |
HH | Henry Hub |
ICE | Intercontinental Exchange |
ICP | Indonesian Crude Price |
JCC | Japanese Custom Cleared Crude Oil |
JKM | Japan Korea Marker |
KDPS | KOGAS Data Package Systems |
KMA | Korea Meteorological Administration |
KOGAS | Korea Gas Corporation |
LNG | Liquefied Natural Gas |
LSTM | Long Short-Term Memory |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage Error |
ML | Machine Learning |
MMBtu | Metric Million British Thermal Unit |
NBP | National Balancing Point |
NG | Natural Gas |
NYMEX | New York Mercantile Exchange |
OTC | Over the Counter |
PF | Project Financing |
RMSE | Root Mean Squared Error |
SME | Subject Matter Expert |
SVM | Support Vector Machine |
SVR | Support Vector Regression |
Appendix A. Scenario B
Training Result | 1 Day | 5 Days | 10 Days | |||
---|---|---|---|---|---|---|
MAE | Rank | MAE | Rank | MAE | Rank | |
LSTM | 0.040 | 2 | 0.043 | 2 | 0.058 | 3 |
ANN | 0.051 | 3 | 0.066 | 4 | 0.079 | 4 |
SVM | 0.055 | 4 | 0.057 | 3 | 0.058 | 2 |
ARIMA | 0.014 | 1 | 0.032 | 1 | 0.050 | 1 |
- | MAPE | Rank | MAPE | Rank | MAPE | Rank |
LSTM | 0.157 | 3 | 0.198 | 1 | 0.214 | 2 |
ANN | 0.149 | 2 | 0.207 | 4 | 0.265 | 3 |
SVM | 0.187 | 4 | 0.207 | 3 | 0.188 | 1 |
ARIMA | 0.046 | 1 | 0.204 | 2 | 0.330 | 4 |
- | RMSE | Rank | RMSE | Rank | RMSE | Rank |
LSTM | 0.003 | 2 | 0.003 | 2 | 0.006 | 2 |
ANN | 0.004 | 4 | 0.007 | 4 | 0.010 | 4 |
SVM | 0.004 | 3 | 0.004 | 3 | 0.004 | 1 |
ARIMA | 0.001 | 1 | 0.003 | 1 | 0.006 | 3 |
Test Result | 1 Day | 5 Days | 10 Days | |||
---|---|---|---|---|---|---|
MAE | Rank | MAE | Rank | MAE | Rank | |
LSTM | 0.195 | 2 | 0.199 | 2 | 0.290 | 2 |
ANN | 0.503 | 4 | 0.289 | 3 | 0.307 | 3 |
SVM | 0.488 | 3 | 0.502 | 4 | 0.515 | 4 |
ARIMA | 0.020 | 1 | 0.047 | 1 | 0.074 | 1 |
- | MAPE | Rank | MAPE | Rank | MAPE | Rank |
LSTM | 1.571 | 3 | 1.052 | 3 | 1.178 | 3 |
ANN | 4.579 | 4 | 3.030 | 4 | 3.205 | 4 |
SVM | 0.890 | 2 | 1.022 | 2 | 1.158 | 2 |
ARIMA | 0.121 | 1 | 0.487 | 1 | 0.830 | 1 |
- | RMSE | Rank | RMSE | Rank | RMSE | Rank |
LSTM | 0.058 | 2 | 0.063 | 2 | 0.132 | 2 |
ANN | 0.326 | 3 | 0.121 | 3 | 0.140 | 3 |
SVM | 0.377 | 4 | 0.391 | 4 | 0.404 | 4 |
ARIMA | 0.001 | 1 | 0.007 | 1 | 0.015 | 1 |
COVID Result | 1 Day | 5 Days | 10 Days | |||
---|---|---|---|---|---|---|
MAE | Rank | MAE | Rank | MAE | Rank | |
LSTM | 0.766 | 2 | 0.821 | 2 | 0.991 | 2 |
ANN | 1.140 | 3 | 1.116 | 3 | 1.158 | 3 |
SVM | 1.723 | 4 | 1.725 | 4 | 1.724 | 4 |
ARIMA | 0.107 | 1 | 0.217 | 1 | 0.308 | 1 |
- | MAPE | Rank | MAPE | Rank | MAPE | Rank |
LSTM | 0.836 | 2 | 0.651 | 2 | 1.076 | 2 |
ANN | 2.087 | 4 | 3.388 | 4 | 2.158 | 4 |
SVM | 0.954 | 3 | 1.074 | 3 | 1.134 | 3 |
ARIMA | 0.186 | 1 | 0.532 | 1 | 0.969 | 1 |
- | RMSE | Rank | RMSE | Rank | RMSE | Rank |
LSTM | 1.584 | 2 | 1.841 | 2 | 2.197 | 2 |
ANN | 2.605 | 3 | 3.125 | 3 | 3.137 | 3 |
SVM | 5.545 | 4 | 5.520 | 4 | 5.472 | 4 |
ARIMA | 0.165 | 1 | 0.608 | 1 | 1.045 | 1 |
Appendix B. Scenario C
Training Result | 1 Day | 5 Days | 10 Days | |||
---|---|---|---|---|---|---|
MAE | Rank | MAE | Rank | MAE | Rank | |
LSTM | 0.097 | 4 | 0.093 | 3 | 0.096 | 3 |
ANN | 0.085 | 3 | 0.118 | 4 | 0.140 | 4 |
SVM | 0.082 | 2 | 0.080 | 2 | 0.079 | 2 |
ARIMA | 0.014 | 1 | 0.032 | 1 | 0.050 | 1 |
- | MAPE | Rank | MAPE | Rank | MAPE | Rank |
LSTM | 0.228 | 3 | 0.204 | 2 | 0.277 | 2 |
ANN | 0.281 | 4 | 0.469 | 4 | 0.564 | 4 |
SVM | 0.204 | 2 | 0.214 | 3 | 0.240 | 1 |
ARIMA | 0.046 | 1 | 0.204 | 1 | 0.330 | 3 |
- | RMSE | Rank | RMSE | Rank | RMSE | Rank |
LSTM | 0.017 | 4 | 0.016 | 3 | 0.017 | 3 |
ANN | 0.014 | 3 | 0.025 | 4 | 0.035 | 4 |
SVM | 0.011 | 2 | 0.011 | 2 | 0.010 | 2 |
ARIMA | 0.001 | 1 | 0.003 | 1 | 0.006 | 1 |
Test Result | 1 Day | 5 Days | 10 Days | |||
---|---|---|---|---|---|---|
MAE | Rank | MAE | Rank | MAE | Rank | |
LSTM | 0.395 | 2 | 0.394 | 2 | 0.486 | 3 |
ANN | 0.600 | 3 | 0.468 | 3 | 0.483 | 2 |
SVM | 0.619 | 4 | 0.614 | 4 | 0.615 | 4 |
ARIMA | 0.020 | 1 | 0.047 | 1 | 0.074 | 1 |
- | MAPE | Rank | MAPE | Rank | MAPE | Rank |
LSTM | 3.323 | 3 | 1.836 | 2 | 1.866 | 2 |
ANN | 8.403 | 4 | 5.373 | 4 | 4.986 | 4 |
SVM | 3.128 | 2 | 3.132 | 3 | 3.047 | 3 |
ARIMA | 0.121 | 1 | 0.487 | 1 | 0.830 | 1 |
- | RMSE | Rank | RMSE | Rank | RMSE | Rank |
LSTM | 0.234 | 2 | 0.247 | 2 | 0.334 | 3 |
ANN | 0.479 | 3 | 0.278 | 3 | 0.321 | 2 |
SVM | 0.530 | 4 | 0.522 | 4 | 0.526 | 4 |
ARIMA | 0.001 | 1 | 0.007 | 1 | 0.015 | 1 |
COVID Result | 1 Day | 5 Days | 10 Days | |||
---|---|---|---|---|---|---|
MAE | Rank | MAE | Rank | MAE | Rank | |
LSTM | 1.080 | 2 | 1.099 | 2 | 1.166 | 2 |
ANN | 1.199 | 3 | 1.105 | 3 | 1.239 | 3 |
SVM | 1.759 | 4 | 1.756 | 4 | 1.756 | 4 |
ARIMA | 0.107 | 1 | 0.217 | 1 | 0.308 | 1 |
- | MAPE | Rank | MAPE | Rank | MAPE | Rank |
LSTM | 1.179 | 2 | 1.560 | 3 | 0.924 | 1 |
ANN | 5.146 | 4 | 2.697 | 4 | 2.106 | 4 |
SVM | 1.481 | 3 | 1.469 | 2 | 1.526 | 3 |
ARIMA | 0.186 | 1 | 0.532 | 1 | 0.969 | 2 |
- | RMSE | Rank | RMSE | Rank | RMSE | Rank |
LSTM | 2.769 | 2 | 2.870 | 2 | 2.682 | 2 |
ANN | 2.981 | 3 | 3.047 | 3 | 3.292 | 3 |
SVM | 5.618 | 4 | 5.599 | 4 | 5.544 | 4 |
ARIMA | 0.165 | 1 | 0.608 | 1 | 1.045 | 1 |
Appendix C. Scenario D
Training Result | 1 Day | 5 Days | 10 Days | |||
---|---|---|---|---|---|---|
MAE | Rank | MAE | Rank | MAE | Rank | |
LSTM 1 | 0.023 | 5 | 0.038 | 5 | 0.054 | 4 |
LSTM 2 | 0.024 | 7 | 0.038 | 6 | 0.055 | 6 |
LSTM 3 | 0.024 | 6 | 0.038 | 4 | 0.054 | 5 |
LSTM 4 | 0.026 | 8 | 0.038 | 3 | 0.055 | 8 |
LSTM 5 | 0.023 | 4 | 0.040 | 8 | 0.054 | 3 |
LSTM 6 | 0.023 | 3 | 0.039 | 7 | 0.055 | 7 |
LSTM 7 | 0.022 | 2 | 0.037 | 2 | 0.053 | 2 |
ARIMA | 0.014 | 1 | 0.032 | 1 | 0.050 | 1 |
- | MAPE | Rank | MAPE | Rank | MAPE | Rank |
LSTM 1 | 0.117 | 7 | 0.228 | 7 | 0.328 | 6 |
LSTM 2 | 0.116 | 6 | 0.217 | 3 | 0.325 | 5 |
LSTM 3 | 0.139 | 8 | 0.235 | 8 | 0.348 | 8 |
LSTM 4 | 0.106 | 3 | 0.219 | 5 | 0.316 | 3 |
LSTM 5 | 0.088 | 2 | 0.216 | 2 | 0.300 | 1 |
LSTM 6 | 0.116 | 5 | 0.217 | 4 | 0.319 | 4 |
LSTM 7 | 0.111 | 4 | 0.225 | 6 | 0.313 | 2 |
ARIMA | 0.046 | 1 | 0.204 | 1 | 0.330 | 7 |
- | MAPE | Rank | MAPE | Rank | MAPE | Rank |
LSTM 1 | 0.001 | 5 | 0.003 | 3 | 0.006 | 3 |
LSTM 2 | 0.001 | 7 | 0.003 | 7 | 0.006 | 7 |
LSTM 3 | 0.001 | 6 | 0.003 | 6 | 0.006 | 4 |
LSTM 4 | 0.001 | 8 | 0.003 | 5 | 0.006 | 5 |
LSTM 5 | 0.001 | 3 | 0.003 | 8 | 0.005 | 2 |
LSTM 6 | 0.001 | 4 | 0.003 | 4 | 0.006 | 6 |
LSTM 7 | 0.001 | 2 | 0.003 | 2 | 0.005 | 1 |
ARIMA | 0.001 | 1 | 0.003 | 1 | 0.006 | 8 |
Test Result | 1 Day | 5 Days | 10 Days | |||
---|---|---|---|---|---|---|
MAE | Rank | MAE | Rank | MAE | Rank | |
LSTM 1 | 0.039 | 6 | 0.060 | 5 | 0.083 | 6 |
LSTM 2 | 0.038 | 5 | 0.060 | 4 | 0.082 | 4 |
LSTM 3 | 0.046 | 7 | 0.063 | 7 | 0.085 | 7 |
LSTM 4 | 0.077 | 8 | 0.125 | 8 | 0.181 | 8 |
LSTM 5 | 0.036 | 4 | 0.062 | 6 | 0.080 | 3 |
LSTM 6 | 0.035 | 3 | 0.059 | 3 | 0.083 | 5 |
LSTM 7 | 0.034 | 2 | 0.057 | 2 | 0.080 | 2 |
ARIMA | 0.020 | 1 | 0.047 | 1 | 0.074 | 1 |
- | MAPE | Rank | MAPE | Rank | MAPE | Rank |
LSTM 1 | 0.260 | 6 | 0.456 | 4 | 0.901 | 6 |
LSTM 2 | 0.225 | 4 | 0.469 | 5 | 0.849 | 4 |
LSTM 3 | 0.254 | 5 | 0.475 | 6 | 0.874 | 5 |
LSTM 4 | 0.261 | 7 | 0.492 | 8 | 0.996 | 8 |
LSTM 5 | 0.280 | 8 | 0.445 | 2 | 0.717 | 1 |
LSTM 6 | 0.220 | 3 | 0.437 | 1 | 0.946 | 7 |
LSTM 7 | 0.210 | 2 | 0.449 | 3 | 0.842 | 3 |
ARIMA | 0.121 | 1 | 0.487 | 7 | 0.830 | 2 |
- | RMSE | Rank | RMSE | Rank | RMSE | Rank |
LSTM 1 | 0.003 | 6 | 0.007 | 4 | 0.013 | 4 |
LSTM 2 | 0.003 | 5 | 0.007 | 3 | 0.013 | 3 |
LSTM 3 | 0.004 | 7 | 0.007 | 7 | 0.014 | 6 |
LSTM 4 | 0.010 | 8 | 0.024 | 8 | 0.049 | 8 |
- | RMSE | Rank | RMSE | Rank | RMSE | Rank |
LSTM 1 | 0.003 | 3 | 0.007 | 6 | 0.012 | 1 |
LSTM 2 | 0.003 | 4 | 0.007 | 5 | 0.013 | 5 |
LSTM 3 | 0.002 | 2 | 0.007 | 1 | 0.012 | 2 |
LSTM 4 | 0.001 | 1 | 0.007 | 2 | 0.015 | 7 |
COVID Result | 1 Day | 5 Days | 10 Days | |||
---|---|---|---|---|---|---|
MAE | Rank | MAE | Rank | MAE | Rank | |
LSTM 1 | 0.395 | 5 | 0.444 | 3 | 0.516 | 6 |
LSTM 2 | 0.392 | 4 | 0.451 | 5 | 0.501 | 4 |
LSTM 3 | 0.408 | 7 | 0.456 | 6 | 0.515 | 5 |
LSTM 4 | 0.519 | 8 | 0.560 | 8 | 0.660 | 8 |
LSTM 5 | 0.406 | 6 | 0.481 | 7 | 0.548 | 7 |
LSTM 6 | 0.374 | 2 | 0.444 | 4 | 0.499 | 3 |
LSTM 7 | 0.388 | 3 | 0.442 | 2 | 0.496 | 2 |
ARIMA | 0.107 | 1 | 0.217 | 1 | 0.308 | 1 |
- | MAPE | Rank | MAPE | Rank | MAPE | Rank |
LSTM 1 | 0.278 | 4 | 0.537 | 4 | 0.772 | 4 |
LSTM 2 | 0.282 | 5 | 0.527 | 2 | 0.742 | 3 |
LSTM 3 | 0.301 | 7 | 0.560 | 7 | 0.862 | 6 |
LSTM 4 | 0.326 | 8 | 0.468 | 1 | 0.647 | 1 |
LSTM 5 | 0.256 | 2 | 0.591 | 8 | 0.937 | 7 |
LSTM 6 | 0.284 | 6 | 0.542 | 6 | 0.808 | 5 |
LSTM 7 | 0.259 | 3 | 0.538 | 5 | 0.734 | 2 |
ARIMA | 0.186 | 1 | 0.532 | 3 | 0.969 | 8 |
- | RMSE | Rank | RMSE | Rank | RMSE | Rank |
LSTM 1 | 0.757 | 3 | 0.866 | 2 | 1.065 | 6 |
LSTM 2 | 0.789 | 5 | 0.895 | 5 | 1.037 | 2 |
LSTM 3 | 0.786 | 4 | 0.895 | 4 | 1.053 | 5 |
LSTM 4 | 0.979 | 8 | 0.952 | 7 | 1.172 | 7 |
LSTM 5 | 0.868 | 7 | 1.030 | 8 | 1.249 | 8 |
LSTM 6 | 0.729 | 2 | 0.889 | 3 | 1.026 | 1 |
LSTM 7 | 0.815 | 6 | 0.927 | 6 | 1.052 | 4 |
ARIMA | 0.165 | 1 | 0.608 | 1 | 1.045 | 3 |
References
- Korea Gas Corporation. Natural Gas Extraction and Refining. Available online: https://www.kogas.or.kr:9450/site/koGas/1040301000000 (accessed on 30 November 2022).
- BP plc. Statistical Review of World Energy 2021: A Dramatic Impact on Energy Markets. Available online: https://www.bp.com/en/global/corporate/news-and-insights/press-releases/bp-statistical-review-of-world-energy-2021-a-dramatic-impact-on-energy-markets.html (accessed on 5 December 2022).
- Statista. Countries with Largest Liquefied Natural Gas (LNG) Export Capacity in Operation Worldwide as of July 2022. Available online: https://www.statista.com/statistics/1262074/global-lng-export-capacity-by-country/ (accessed on 13 February 2023).
- Raj, R.; Suman, R.; Ghandehariun, S.; Kumar, A.; Ticonflicti, M.K. A techno-economic assessment of the liquefied natural gas (LNG) production facilities in Western Canada. Sustain. Energy Technol. Assess. 2016, 18, 140–152. [Google Scholar] [CrossRef]
- Sorge, M. The Nature of Credit Risk in Project Finance. BIS Q. Rev. Dec. 2011. Available online: https://ssrn.com/abstract=1967464 (accessed on 7 December 2022).
- Bosma, P.; Nagelvoort, R.K. Liquefaction technology; developments through history. In Proceedings of the 1st Annual Gas Processing Symposium, Doha, Qatar, 10–12 January 2009; pp. 19–31. [Google Scholar]
- International Group of Liquefied Natural Gas Importers. GIIGNL 2022 Annual Report. Available online: https://giignl.org/document/giignl-2022-annual-report/ (accessed on 5 December 2022).
- Brogaard, J.; Ringgenberg, M.C.; Sovich, D. The economic impact of index investing. Rev. Financ. Stud. 2019, 32, 3461–3499. [Google Scholar] [CrossRef]
- National Gas. Gas Winter Outlook 2022/23. Available online: https://www.nationalgas.com/document/140921/download (accessed on 7 December 2022).
- Korea Energy Economics Institute. World Energy Market Insight. Available online: http://www.keei.re.kr/insight?open&p=%2Fweb_energy_new%2Finsight.nsf%2Finsight_list.html&s=%3Fopen%26menu%3Dinsight%26doctype%3D0%26region%3Dall (accessed on 17 November 2022).
- Xiong, P.; Li, K.; Shu, H.; Wang, J. Forecast of natural gas consumption in the Asia-Pacific region using a fractional-order incomplete gamma grey model. Energy 2021, 237, 121533. [Google Scholar] [CrossRef]
- Korea Economic Research Institute. Economy. Available online: http://www.keri.org/web/eng/economic-trends-and-outlook (accessed on 7 December 2022).
- S&P Global Inc. Platts JKM™ (Japan Korea Marker) LNG Price Assessment. Available online: https://www.spglobal.com/commodityinsights/en/our-methodology/price-assessments/lng/jkm-japan-korea-marker-gas-price-assessments (accessed on 6 December 2022).
- CME Group. Henry Hub Natural Gas. Available online: https://www.cmegroup.com/markets/energy/natural-gas/natural-gas.quotes.html (accessed on 13 December 2022).
- ICE. UK NBP Natural Gas Futures. Available online: https://www.ice.com/products/910/UK-Natural-Gas-Futures (accessed on 13 December 2022).
- S&P Global Commodity Insights. Platts LNG Daily. Available online: https://www.spglobal.com/commodityinsights/en/products-services/lng/lng-daily (accessed on 13 December 2022).
- Gao, S.; Lei, Y. A new approach for crude oil price prediction based on stream learning. Geosci. Front. 2017, 8, 183–187. [Google Scholar] [CrossRef]
- Su, M.; Zhang, Z.; Zhu, Y.; Zha, D.; Wen, W. Data driven natural gas spot price prediction models using machine learning methods. Energies 2019, 12, 1680. [Google Scholar] [CrossRef]
- Xian, L.J.; Ismail, S.; Mustapha, A.; Abd Wahab, M.H.; Idrus, S.Z.S. Crude oil price forecasting using hybrid support vector machine. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Penang, Malaysia, 17–18 April 2020; p. 012045. [Google Scholar]
- Gupta, N.; Nigam, S. Crude oil price prediction using artificial neural network. Procedia Comput. Sci. 2020, 170, 642–647. [Google Scholar] [CrossRef]
- Seo, S.H. Forecasting Korean LNG Import Price Using ARIMAX, VECM, LSTM and Hybrid Models. Master’s Thesis, Graduate School of Technology and Innovation Management, Ulsan, Republic of Korea, 2021. [Google Scholar]
- Mouchtaris, D.; Sofianos, E.; Gogas, P.; Papadimitriou, T. Forecasting Natural Gas Spot Prices with Machine Learning. Energies 2021, 14, 5782. [Google Scholar] [CrossRef]
- Fetih, K.; BALKAYA, C. Artificial Intelligence in Crude Oil Price Forecasting. TAS J. 2021, 1, 14–24. [Google Scholar]
- Kaymak, Ö.Ö.; Kaymak, Y. Prediction of crude oil prices in COVID-19 outbreak using real data. Chaos Solitons Fractals 2022, 158, 111990. [Google Scholar] [CrossRef]
- Tschora, L.; Pierre, E.; Plantevit, M.; Robardet, C. Electricity price forecasting on the day-ahead market using machine learning. Appl. Energy 2022, 313, 118752. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Shen, Y.X.; Yu, X.Y.; Lu, X. Day-ahead electricity price forecasting employing a novel hybrid frame of deep learning methods: A case study in NSW, Australia. Electr. Power Syst. Res. 2023, 220, 109300. [Google Scholar] [CrossRef]
- Qin, Q.; Huang, Z.; Zhou, Z.; Chen, C.; Liu, R. Crude oil price forecasting with machine learning and Google search data: An accuracy comparison of single-model versus multiple-model. Eng. Appl. Artif. Intell. 2023, 123, 106266. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Butt, S.; Chohan, M.A.; Ahmad, H. Forecasting Malaysian exchange rate using machine learning techniques based on commodities prices. In Proceedings of the 2017 International Conference on Research and Innovation in Information Systems (ICRIIS), Langkawi, Malaysia, 16–17 July 2017; pp. 1–5. [Google Scholar]
- Fu, S.; Li, Y.; Sun, S.; Li, H. Evolutionary support vector machine for RMB exchange rate forecasting. Phys. A Stat. Mech. Appl. 2019, 521, 692–704. [Google Scholar] [CrossRef]
- Vijh, M.; Chandola, D.; Tikkiwal, V.A.; Kumar, A. Stock closing price prediction using machine learning techniques. Procedia Comput. Sci. 2020, 167, 599–606. [Google Scholar] [CrossRef]
- Truong, Q.; Nguyen, M.; Dang, H.; Mei, B. Housing price prediction via improved machine learning techniques. Procedia Comput. Sci. 2020, 174, 433–442. [Google Scholar] [CrossRef]
- Kim, H.-M.; Bock, G.-W.; Lee, G. Predicting Ethereum prices with machine learning based on Blockchain information. Expert Syst. Appl. 2021, 184, 115480. [Google Scholar] [CrossRef]
- Choi, S.-W.; Lee, E.-B.; Kim, J.-H. The Engineering Machine-Learning Automation Platform (EMAP): A Big-Data-Driven AI Tool for Contractors’ Sustainable Management Solutions for Plant Projects. Sustainability 2021, 13, 10384. [Google Scholar] [CrossRef]
- Kurani, A.; Doshi, P.; Vakharia, A.; Shah, M. A comprehensive comparative study of artificial neural network (ANN) and support vector machines (SVM) on stock forecasting. Ann. Data Sci. 2021, 10, 183–208. [Google Scholar] [CrossRef]
- Chhajer, P.; Shah, M.; Kshirsagar, A. The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction. Decis. Anal. J. 2022, 2, 100015. [Google Scholar] [CrossRef]
- Xiong, X.; Qing, G. A hybrid day-ahead electricity price forecasting framework based on time series. Energy 2023, 264, 126099. [Google Scholar] [CrossRef]
- Iftikhar, H.; Bibi, N.; Canas Rodrigues, P.; López-Gonzales, J.L. Multiple Novel Decomposition Techniques for Time Series Forecasting: Application to Monthly Forecasting of Electricity Consumption in Pakistan. Energies 2023, 16, 2579. [Google Scholar] [CrossRef]
- Gosasang, V.; Chandraprakaikul, W.; Kiattisin, S. A comparison of traditional and neural networks forecasting techniques for container throughput at Bangkok port. Asian J. Shipp. Logist. 2011, 27, 463–482. [Google Scholar] [CrossRef]
- Siami-Namini, S.; Namin, A.S. Forecasting economics and financial time series: ARIMA vs. LSTM. arXiv 2018, arXiv:1803.06386. [Google Scholar] [CrossRef]
- Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. Statistical and Machine Learning forecasting methods: Concerns and ways forward. PLoS ONE 2018, 13, e0194889. [Google Scholar] [CrossRef] [PubMed]
- Sagheer, A.; Kotb, M. Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing 2019, 323, 203–213. [Google Scholar] [CrossRef]
- Guo, J. Oil price forecast using deep learning and ARIMA. In Proceedings of the 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 8–10 November 2019; pp. 241–247. [Google Scholar]
- Calkoen, F.; Luijendijk, A.; Rivero, C.R.; Kras, E.; Baart, F. Traditional vs. machine-learning methods for forecasting sandy shoreline evolution using historic satellite-derived shorelines. Remote Sens. 2021, 13, 934. [Google Scholar] [CrossRef]
- Poggi, A.; Di Persio, L.; Ehrhardt, M. Electricity Price Forecasting via Statistical and Deep Learning Approaches: The German Case. Appl. Math. 2023, 3, 316–342. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Open MET Data Portal. Available online: https://data.kma.go.kr/resources/html/en/aowdp.html (accessed on 18 January 2023).
- Zou, Q.; Yi, C.; Wang, K.; Yin, X.; Zhang, Y. Global LNG market: Supply-demand and economic analysis. IOP Conf. Ser. Earth Environ. Sci. 2022, 983, 012051. [Google Scholar] [CrossRef]
- Center on Global Energy Policy. Asian LNG Trading Hubs: Myth or Reality. Available online: https://www.energypolicy.columbia.edu/publications/asian-lng-trading-hubs-myth-or-reality (accessed on 18 January 2023).
- Korea Meteorological Administration. World Climate. Available online: https://www.kma.go.kr/eng/weather/climate/worldclimate.jsp (accessed on 13 December 2022).
- Yan, W.-L. Stock index futures price prediction using feature selection and deep learning. N. Am. J. Econ. Financ. 2023, 64, 101867. [Google Scholar] [CrossRef]
- Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature selection in machine learning: A new perspective. Neurocomputing 2018, 300, 70–79. [Google Scholar] [CrossRef]
- García, S.; Luengo, J.; Herrera, F. Tutorial on practical tips of the most influential data preprocessing algorithms in data mining. Knowl.-Based Syst. 2016, 98, 1–29. [Google Scholar] [CrossRef]
- Moon, T.; Lee, J.W.; Son, J.E. Accurate Imputation of Greenhouse Environment Data for Data Integrity Utilizing Two-Dimensional Convolutional Neural Networks. Sensors 2021, 21, 2187. [Google Scholar] [CrossRef]
- Farhangfar, A.; Kurgan, L.A.; Pedrycz, W. A novel framework for imputation of missing values in databases. IEEE Trans. Syst. Man Cybern. Syst. 2007, 37, 692–709. [Google Scholar] [CrossRef]
- Donders, A.R.T.; Van Der Heijden, G.J.; Stijnen, T.; Moons, K.G. A gentle introduction to imputation of missing values. J. Clin. Epidemiol. 2006, 59, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, J. Long Short-Term Memory Networks with Python: Develop Sequence Prediction Models with Deep Learning; Machine Learning Mastery: San Juan, PR, USA, 2017. [Google Scholar]
- Brownlee, J. Data Preparation for Machine Learning: Data Cleaning, Feature Selection, and Data Transforms in Python; Machine Learning Mastery: San Juan, PR, USA, 2020. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009; Volume 2. [Google Scholar]
- Ding, J.G.; He, Y.H.C.; Kong, L.P.; Peng, W. Camber Prediction Based on Fusion Method with Mechanism Model and Machine Learning in Plate Rolling. ISIJ Int. 2021, 61, 2540–2551. [Google Scholar] [CrossRef]
- Tang, Y.; Song, Z.; Zhu, Y.; Yuan, H.; Hou, M.; Ji, J.; Tang, C.; Li, J. A survey on machine learning models for financial time series forecasting. Neurocomputing 2022, 512, 363–380. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Veza, I.; Irianto; Panchal, H.; Paristiawan, P.A.; Idris, M.; Fattah, I.M.R.; Putra, N.R.; Silambarasan, R. Improved prediction accuracy of biomass heating value using proximate analysis with various ANN training algorithms. Results Eng. 2022, 16, 100688. [Google Scholar] [CrossRef]
- Duval, F. Artificial Neural Networks: Concepts, Tools and Techniques Explained for Absolute Beginners; Cre-ateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2018. [Google Scholar]
- Li, Y.; Huang, X.; Zhao, C.; Ding, P. A novel remaining useful life prediction method based on multi-support vector regression fusion and adaptive weight updating. ISA Trans. 2022, 131, 444–459. [Google Scholar] [CrossRef]
- Ernst, F.; Schweikard, A. Fundamentals of Machine Learning: Support Vector Machines Made Easy; UTB GmbH: Stuttgart, Germany, 2020. [Google Scholar]
- Salman, A.G.; Kanigoro, B. Visibility Forecasting Using Autoregressive Integrated Moving Average (ARIMA) Models. Procedia Comput. Sci. 2021, 179, 252–259. [Google Scholar] [CrossRef]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Takase, T.; Oyama, S.; Kurihara, M. Effective neural network training with adaptive learning rate based on training loss. Neural Netw. 2018, 101, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, L.; Wang, S.; Lai, K.K. Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method. Energy Econ. 2009, 31, 768–778. [Google Scholar] [CrossRef]
- Shen, Z. Optimal Oil-based Exotic Options Strategies Under the Background of War: An Empirical Study in the Context of the Russia-Ukraine Conflict. In Proceedings of the 2022 2nd International Conference on Enterprise Management and Economic Development (ICEMED 2022), Dalian, China, 27–29 May 2022; pp. 954–961. [Google Scholar] [CrossRef]
- Agaton, C.B. Will a Geopolitical Conflict Accelerate Energy Transition in Oil-Importing Countries? A Case Study of the Philippines from a Real Options Perspective. Resources 2022, 11, 59. [Google Scholar] [CrossRef]
- Monge, M.; Romero Rojo, M.F.; Gil-Alana, L.A. The impact of geopolitical risk on the behavior of oil prices and freight rates. Energy 2023, 269, 126779. [Google Scholar] [CrossRef]
No | Category | Details |
---|---|---|
A | International Natural Gas Prices | JKM, NBP, TTF, HH |
B | International Crude Oil Prices | Brent, WTI, JCC |
C | LNG Import Volume by Country | Korea, Japan, China, Taiwan, India, etc. |
D | Average Temperature of Asia Key Country | Korea, Japan, China, Taiwan, India |
E | LNG Export Volume by Country | Qatar, Australia, North America, Malaysia, etc. |
No | Category | No | Selected Variables |
---|---|---|---|
A | International Natural Gas Prices | 1 | Japan Korea Marker (JKM) |
2 | Henry Hub Futures (HH) | ||
3 | National Balancing Point (NBP) | ||
B | International Crude Oil Prices | 4 | Brent Futures (Brent) |
C | LNG Import Volume by Country | 5 | LNG Import Volume of Korea (Korea Import Vol.) |
6 | LNG Import Volume of Japan (Japan Import Vol.) | ||
7 | LNG Import Volume of China (China Import Vol.) | ||
D | Average Temperature of Asia Key Country | 8 | Average Temperature of Seoul (Average Temp.) |
E | LNG Export Volume by Country | - | None Selected |
Object | Collecting Period (from, to) | Sample Size |
---|---|---|
Training Dataset | 2010~2017 (8 y) | 23,376 |
Test Dataset | 2018~2019 (2 y) | 5840 |
COVID-19 Dataset | 2020~2021 (2 y) | 5848 |
Category | Specification |
---|---|
Application | Google Colaboratory |
Language | Python 3.7.15 |
Operating Systems | Windows 10 Education ver. |
CPU | Intel® Core™ i5-10400 CPU @ 2.90 Ghz |
RAM | 8.00 GB |
GPU | NVIDIA GeForce GT 1030 |
GPU RAM | 6.00 GB |
Hyperparameters | Value |
---|---|
Epoch | 200 |
Batch size | 32 |
Learning rate | 0.001 |
Training Result | 1 Day | 5 Days | 10 Days | |||
---|---|---|---|---|---|---|
MAE | Rank | MAE | Rank | MAE | Rank | |
LSTM | 0.023 | 3 | 0.038 | 4 | 0.053 | 4 |
ANN | 0.017 | 2 | 0.034 | 2 | 0.051 | 3 |
SVM | 0.028 | 4 | 0.037 | 3 | 0.049 | 1 |
ARIMA | 0.014 | 1 | 0.032 | 1 | 0.050 | 2 |
- | MAPE | Rank | MAPE | Rank | MAPE | Rank |
LSTM | 0.087 | 3 | 0.218 | 3 | 0.329 | 3 |
ANN | 0.074 | 2 | 0.212 | 2 | 0.325 | 1 |
SVM | 0.114 | 4 | 0.237 | 4 | 0.327 | 2 |
ARIMA | 0.046 | 1 | 0.204 | 1 | 0.330 | 4 |
- | RMSE | Rank | RMSE | Rank | RMSE | Rank |
LSTM | 0.001 | 3 | 0.003 | 4 | 0.006 | 3 |
ANN | 0.001 | 2 | 0.002 | 1 | 0.005 | 2 |
SVM | 0.001 | 4 | 0.003 | 3 | 0.005 | 1 |
ARIMA | 0.001 | 1 | 0.003 | 2 | 0.006 | 4 |
Test Result | 1 Day | 5 Days | 10 Days | |||
---|---|---|---|---|---|---|
MAE | Rank | MAE | Rank | MAE | Rank | |
LSTM | 0.035 | 3 | 0.058 | 4 | 0.081 | 4 |
ANN | 0.025 | 2 | 0.051 | 2 | 0.077 | 3 |
SVM | 0.039 | 4 | 0.055 | 3 | 0.075 | 2 |
ARIMA | 0.020 | 1 | 0.047 | 1 | 0.074 | 1 |
- | MAPE | Rank | MAPE | Rank | MAPE | Rank |
LSTM | 0.248 | 3 | 0.443 | 2 | 0.840 | 4 |
ANN | 0.164 | 2 | 0.418 | 1 | 0.738 | 1 |
SVM | 0.336 | 4 | 0.490 | 4 | 0.823 | 2 |
ARIMA | 0.121 | 1 | 0.487 | 3 | 0.830 | 3 |
- | RMSE | Rank | RMSE | Rank | RMSE | Rank |
LSTM | 0.003 | 3 | 0.007 | 4 | 0.013 | 2 |
ANN | 0.002 | 2 | 0.006 | 1 | 0.013 | 3 |
SVM | 0.003 | 4 | 0.006 | 2 | 0.011 | 1 |
ARIMA | 0.001 | 1 | 0.007 | 3 | 0.015 | 4 |
COVID Result | 1 Day | 5 Days | 10 Days | |||
---|---|---|---|---|---|---|
MAE | Rank | MAE | Rank | MAE | Rank | |
LSTM | 0.339 | 2 | 0.406 | 2 | 0.487 | 2 |
ANN | 0.396 | 3 | 0.472 | 3 | 0.557 | 3 |
SVM | 0.954 | 4 | 0.957 | 4 | 0.956 | 4 |
ARIMA | 0.107 | 1 | 0.217 | 1 | 0.308 | 1 |
- | MAPE | Rank | MAPE | Rank | MAPE | Rank |
LSTM | 0.319 | 3 | 0.540 | 2 | 0.805 | 2 |
ANN | 0.285 | 2 | 0.547 | 3 | 0.766 | 1 |
SVM | 0.470 | 4 | 0.604 | 4 | 0.828 | 3 |
ARIMA | 0.186 | 1 | 0.532 | 1 | 0.969 | 4 |
- | RMSE | Rank | RMSE | Rank | RMSE | Rank |
LSTM | 0.578 | 2 | 0.722 | 2 | 0.958 | 1 |
ANN | 0.869 | 3 | 1.087 | 3 | 1.329 | 3 |
SVM | 3.880 | 4 | 3.867 | 4 | 3.858 | 4 |
ARIMA | 0.165 | 1 | 0.608 | 1 | 1.045 | 2 |
Scenario No. of LSTM | Combination of Variables |
---|---|
LSTM 1 | JKM + Average Temperature of Seoul |
LSTM 2 | JKM + LNG Import Volume of Japan |
LSTM 3 | JKM + LNG Import Volume of Korea |
LSTM 4 | JKM + LNG Import Volume of China |
LSTM 5 | JKM + Brent |
LSTM 6 | JKM + HH |
LSTM 7 | JKM + NBP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.-F.; Choi, S.-W.; Lee, E.-B. A Prediction Model for Spot LNG Prices Based on Machine Learning Algorithms to Reduce Fluctuation Risks in Purchasing Prices. Energies 2023, 16, 4271. https://doi.org/10.3390/en16114271
Yang S-F, Choi S-W, Lee E-B. A Prediction Model for Spot LNG Prices Based on Machine Learning Algorithms to Reduce Fluctuation Risks in Purchasing Prices. Energies. 2023; 16(11):4271. https://doi.org/10.3390/en16114271
Chicago/Turabian StyleYang, Sun-Feel, So-Won Choi, and Eul-Bum Lee. 2023. "A Prediction Model for Spot LNG Prices Based on Machine Learning Algorithms to Reduce Fluctuation Risks in Purchasing Prices" Energies 16, no. 11: 4271. https://doi.org/10.3390/en16114271
APA StyleYang, S. -F., Choi, S. -W., & Lee, E. -B. (2023). A Prediction Model for Spot LNG Prices Based on Machine Learning Algorithms to Reduce Fluctuation Risks in Purchasing Prices. Energies, 16(11), 4271. https://doi.org/10.3390/en16114271