Calibration of GFS Solar Irradiation Forecasts: A Case Study in Romania
Abstract
:1. Introduction
2. Data and Methodology
3. Results and Discussion
3.1. Sources of Errors
3.2. Validation of the Calibration Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviation
GFS | Global Forecast System |
NWP | Numerical Weather Prediction |
DSWRF | Downward Shortwave Radiation Flux |
MSE | Mean Squared Error |
MAE | Mean Absolute Error |
SVR | Support Vector Regression |
MLP | Multi-Layer Perceptron |
RF | Random Forest |
nRMSE | Normalized Root Mean Squared Error |
nMBE | Normalized Mean Bias Error |
MAPE | Mean Absolute Percentage Error |
R2 | Determination coefficient |
kcs | Clear sky index |
Kt | Clearness index |
SSN | Sunshine number |
SSSN | Sunshine stability number |
σ | Relative sunshine duration |
h | Solar elevation angle |
Appendix A. Statistical Measures of Accuracy
Appendix B. Post-Processed Data
- Clear sky index kcs is defined as the ratio between the measured (or forecasted) hourly global solar irradiation H at the ground level and the corresponding quantity estimated under clear-sky conditions Hcs:
- Clearness index Kt is defined as the ratio between measured (or forecasted) hourly global solar irradiation H and the corresponding deterministic quantity computed at the top of atmosphere (Hext).
- Sunshine number SSN is defined as a binary variable showing whether the Sun is shining or not [22]:
- Sunshine stability number SSSN [24] is a binary indicator for the sun’s occurrence in the sky, defined as follows:
References
- Khortsriwong, N.; Boonraksa, P.; Boonraksa, T.; Fangsuwannarak, T.; Boonsrirat, A.; Pinthurat, W.; Marungsri, B. Performance of Deep Learning Techniques for Forecasting PV Power Generation: A Case Study on a 1.5 MWp Floating PV Power Plant. Energies 2023, 16, 2119. [Google Scholar] [CrossRef]
- AL-Qaysi, A.M.M.; Bozkurt, A.; Ates, Y. Load Forecasting Based on Genetic Algorithm–Artificial Neural Network-Adaptive Neuro-Fuzzy Inference Systems: A Case Study in Iraq. Energies 2023, 16, 2919. [Google Scholar] [CrossRef]
- Blaga, R.; Sabadus, A.; Stefu, N.; Dughir, C.; Paulescu, M.; Badescu, V. A current perspective on the accuracy of incoming solar energy forecasting. Prog. Energy Combust. Sci. 2019, 70, 119–144. [Google Scholar] [CrossRef]
- Paulescu, M.; Paulescu, E. Short-term forecasting of solar irradiance. Renew. Energy 2019, 143, 985–994. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration. Global Forecast System. Available online: https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php (accessed on 1 March 2023).
- Weng, F.; Liu, Q.; Zou, X. On the environmental information for solar and wind energy facilities. Sci. China Earth Sci. 2012, 55, 796–801. [Google Scholar] [CrossRef]
- El Alani, O.; Ghennioui, A.; Ghennioui, H.; Saint-Drenan, Y.-M.; Blanc, P. Evaluation of 24-Hours Forecasts of Global Solar Irradiation from IFS, GFS and McClear Models. AIP Conf. Proc. 2020, 2307, 020053. [Google Scholar]
- Jing, H.; Rikus, L.J.; Qin, Y.; Katzfey, J. Assessing Model Performance of Daily Solar Irradiance Forecasts over Australia. Sol. Energy 2018, 176, 615–626. [Google Scholar]
- Mathiesen, P.; Kleissl, J. Evaluation of Numerical Weather Prediction for Intra-Day Solar Forecasting in the Continental United States. Sol. Energy 2011, 85, 967–977. [Google Scholar] [CrossRef]
- Glahn, H.R.; Lowry, D.A. The Use of Model Output Statistics (MOS) in Objective Weather Forecasting. J. Appl. Meteorol. Climatol. 1972, 11, 1203–2011. [Google Scholar] [CrossRef]
- Torres-Barrán, A.; Alonso, A.; Dorronsoro, J.R. Regression tree ensembles for wind energy and solar radiation prediction. Neurocomputing 2019, 326–327, 151–160. [Google Scholar] [CrossRef]
- Verbois, H.; Huva, R.; Rusydi, A.; Walsh, W. Solar Irradiance Forecasting in the Tropics Using Numerical Weather Prediction and Statistical Learning. Sol. Energy 2018, 162, 265–277. [Google Scholar] [CrossRef]
- Hategan, S.M.; Paulescu, M. Analysis and Calibration of GFS Solar Irradiation Forecasts for Timisoara, Romania. In Proceedings of the TIM22 Physics Conference, Timisoara, Romania, 23–25 November 2022. [Google Scholar]
- Mayer, M.J.; Yang, D. Calibration of deterministic NWP forecasts and its impact on verification. Int. J. Forecast. 2023, 39, 981–991. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.C.; Kaufman, L.; Smola, A.; Vapnik, V. Support Vector Regression Machines. In Advances in Neural Information Processing Systems 9 (NIPS 1996); MIT Press: Cambridge, MA, USA, 1996; pp. 155–161. [Google Scholar]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall PTR: Hoboken, NJ, USA, 1994. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Markovics, D.; Mayer, M.J. Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. Renew. Sustain. Energy Rev. 2022, 161, 112364. [Google Scholar] [CrossRef]
- Solar Platform of the West University of Timisoara. Available online: http://solar.physics.uvt.ro/srms/ (accessed on 1 March 2023).
- Long, C.N.; Ackerman, T.P. Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. J. Geophys. Res. 2000, 105, 15609–15626. [Google Scholar] [CrossRef]
- Stefu, N.; Paulescu, M.; Blaga, R.; Calinoiu, D.; Pop, N.; Boata, R.; Paulescu, E. A theoretical framework for Ångström equation. Its virtues and liabilities in solar energy estimation. Energ. Convers. Manag. 2016, 112, 236–245. [Google Scholar] [CrossRef]
- Badescu, V.; Paulescu, M. Statistical properties of the sunshine number illustrated with measurements from Timisoara (Romania). Atmos. Res. 2011, 101, 194–204. [Google Scholar] [CrossRef]
- World Meteorological Organization. Guide to Meteorological Instruments and Methods of Observation. WMO-No.8/2008. 2022. Available online: https://community.wmo.int/activity-areas/imop/wmo-no_8 (accessed on 15 September 2022).
- Paulescu, M.; Badescu, V. New approach to measure the stability of the solar radiative regime. Theor. Appl. Climatol. 2011, 103, 459–470. [Google Scholar] [CrossRef]
- Blaga, R.; Paulescu, M. Quantifiers for the solar irradiance variability: A new perspective. Sol. Energy 2018, 174, 606–616. [Google Scholar] [CrossRef]
Model | nMBE | nRMSE [%] | MAPE [%] | R2 |
---|---|---|---|---|
GFS | 0.055 | 39.6 | 50.1 | 0.651 |
SVR | −0.011 | 34.0 | 49.6 | 0.684 |
MLP | 0.021 | 33.4 | 48.8 | 0.693 |
RF | 0.004 | 34.8 | 50.2 | 0.669 |
Ensemble 1 | 0.005 | 33.0 | 48.1 | 0.701 |
Ensemble 2 | 0.005 | 33.4 | 48.7 | 0.693 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hategan, S.-M.; Stefu, N.; Paulescu, M. Calibration of GFS Solar Irradiation Forecasts: A Case Study in Romania. Energies 2023, 16, 4290. https://doi.org/10.3390/en16114290
Hategan S-M, Stefu N, Paulescu M. Calibration of GFS Solar Irradiation Forecasts: A Case Study in Romania. Energies. 2023; 16(11):4290. https://doi.org/10.3390/en16114290
Chicago/Turabian StyleHategan, Sergiu-Mihai, Nicoleta Stefu, and Marius Paulescu. 2023. "Calibration of GFS Solar Irradiation Forecasts: A Case Study in Romania" Energies 16, no. 11: 4290. https://doi.org/10.3390/en16114290
APA StyleHategan, S. -M., Stefu, N., & Paulescu, M. (2023). Calibration of GFS Solar Irradiation Forecasts: A Case Study in Romania. Energies, 16(11), 4290. https://doi.org/10.3390/en16114290