Analysis of Condensation Flow and Heat Transfer Characteristics Inside Spiral Tubes
Abstract
:1. Introduction
2. Principle of Experiment System
2.1. Experimental System Device
2.1.1. Temperature Measuring Point
2.1.2. Data Acquisition System
3. Data Analysis
3.1. Process Calculation
3.2. Accuracy Verification of Experiment System
4. Experimental Results and Analysis
1.83 ≤ Prl ≤ 2.11
0 < x < 1
5. Conclusions
- A high-precision experimental system was developed, and the deviation between the experimental and the classical heat transfer correlation was less than ±10%;
- The prediction errors of Shah, Neeraas and Li with experiment data were all within ±30%, and the accuracy of Shah correlation was the best, with all errors within ±25%, which can be used as the basic form of novel correlation development;
- Based on the experimental data, a novel correlation of heat transfer coefficient was developed. Additionally, the error comparison between the novel correlation prediction value and the experimental data was good, all the errors were lower than ±15%, such that the design requirements of advanced natural gas liquefaction equipment can be satisfied.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Nomenclature | |
cp | specific heat of mixed, J/(kg·K) |
d | inner diameter of tube, m |
R | the curvature diameter, m |
Fr | Froude number |
Frso | Soliman’s modified Froude number |
g | gravity acceleration, m/s2 |
h | heat transfer coefficient, W/(m2·K) |
m | mass flow rate, kg/s |
M | mass flux, kg/(m2·s) |
P | pressure, MPa |
Pr | Prandtl number, Pr = μcp/λ |
Prl | liquid turbulent Prandtl number |
q | heat flux, W/m2 |
Re | Reynolds number, Re = Md/μ |
Rel | liquid Reynolds number, Rel = Md(1 − x)/μl |
Relo | liquid only Reynolds number, Relo = Md/μl |
T | temperature, K |
We | Weber number, We = M2d/(σρ) |
x | vapor quality |
Nu | Nusselt number |
i | enthalpy, J/kg |
Xtt | Lockhart–Martinelli parameter |
Greek symbols | |
α | volume fraction or void fraction |
β | inclination angle, ° |
λ | thermal conductivity, W/(m·K) |
λl | liquid thermal conductivity, W/(m·K) |
μ | dynamic viscosity, Pa·s |
γlg | latent heat of vaporization, J/kg |
ρ | density, kg/m3 |
δ | the liquid film thickness, m |
Suberscripts | |
exp | experiment value |
g | vapor phase |
l | liquid phase |
pre | predict value |
red | critical |
Abbreviations | |
C1 | methane |
C2 | ethane |
SWHE | spiral wound tube heat exchanger |
NG | natural gas |
LNG | liquid nature gas |
References
- Luo, Y.; Cheng, N.; Zhang, S.; Tian, Z.; Xu, G.; Yang, X.; Fan, J. Comprehensive energy, economic, environmental assessment of a building integrated photovoltaic-thermoelectric system with battery storage for net zero energy building. Build. Simul. 2022, 15, 1923–1941. [Google Scholar] [CrossRef]
- Luo, Y.; Hu, L.; Ochs, F.; Tosatto, A.; Xu, G.; Tian, Z.; Dahash, A.; Yu, J.; Yuan, G.; Chen, Y.; et al. Semi-analytical modeling of large-scale water tank for seasonal thermal storage applications. Energy Build. 2023, 278, 112620. [Google Scholar] [CrossRef]
- Tian, Z.; Zheng, W.; Guo, J.; Wang, Y.; Wang, Y.; Jiang, Y. Thermodynamic analysis of structural parameters during condensation in spiral tubes. Int. J. Heat Mass Transf. 2022, 189, 122677. [Google Scholar] [CrossRef]
- Tian, Z.; Zheng, W.; Li, X.; Zheng, L.; Jiang, Y. Numerical investigation on condensation heat transfer performance of mixed hydrocarbon refrigerant in spirally tubes. Int. J. Refrig. 2022, 139, 13–24. [Google Scholar] [CrossRef]
- He, T.; Karimi, I.A.; Ju, Y. Review on the design and optimization of natural gas liquefaction processes for onshore and offshore applications. Chem. Eng. Res. Des. 2018, 132, 89–114. [Google Scholar] [CrossRef]
- Gu, A.; Xue, L. Liquefied Natural Gas (Lng) Technical Manuals; China Machine Press: Beijing, China, 2010. [Google Scholar]
- Li, S.; Cai, W.; Chen, J.; Zhang, H.; Jiang, Y. Numerical study on the flow and heat transfer characteristics of forced convective condensation with propane in a spiral pipe. Int. J. Heat Mass Transf. 2018, 117, 1169–1187. [Google Scholar] [CrossRef]
- Yu, J.; Jiang, Y.; Cai, W.; Li, F. Heat transfer characteristics of hydrocarbon mixtures refrigerant during condensation in a helical tube. Int. J. Therm. Sci. 2018, 133, 196–205. [Google Scholar] [CrossRef]
- Yu, J.; Jiang, Y.; Cai, W.; Li, F. Forced convective condensation flow and heat transfer characteristics of hydrocarbon mixtures refrigerant in helically coiled tubes. Int. J. Heat Mass Transf. 2018, 124, 646–654. [Google Scholar] [CrossRef]
- Li, S.; Cai, W.; Chen, J.; Zhang, H.; Jiang, Y. Evaluation analysis of correlations for predicting void fraction of condensation hydrocarbon refrigerant upward flow in a spiral pipe. Appl. Therm. Eng. 2018, 140, 716–732. [Google Scholar] [CrossRef]
- Hui, P.; Chen, J. Application and technical analysis on the localization of spiral-wound heat exchanger in large-scale natural gas liquefaction plant. Refrig. Techonol. 2011, 3, 26–29. [Google Scholar]
- Zhang, X.; Jiang, F. Present situation of the technical research on spiral tube. Refrig. Air Cond. 2014, 28, 75–80. [Google Scholar]
- Neeraas, B.O. Condensation of Hydrocarbon Mixtures in Coil-Wound Lng Heat Exchangers. Tube-Side Heat Transfer and Pressure Drop; Norwegian Institute of Technology: Trondheim, Norway, 1993. [Google Scholar]
- Shao, L.; Han, J.T.; Su, G.P.; Pan, J.H. Condensation heat transfer of r-134a in horizontal straight and helical cooled tubes. J. Refrig. 2007, 28, 23–26. [Google Scholar]
- Boyko, L.; Kruzhilin, G. Heat transfer and hydraulic resistance during condensation of steam in a horizontal tube and in a bundle of tubes. Int. J. Heat Mass Transf. 1967, 10, 361–373. [Google Scholar] [CrossRef]
- Ananiev, E.P.; Boyko, L.D.; Kruzhilin, G. Heat transfer in the presence of steam condensation in a horizontal tube. Int. Dev. Heat Transf. 1961, 2, 290–295. [Google Scholar]
- Zheng, S.; Mu, J.; Wen, F. Resistance characteristic experiment of two-phase flow in spiral pipe. Trans. Chin. Soc. Agric. Mach. 2013, 44, 87–90. [Google Scholar]
- Li, G.; Guo, L.; Gao, H. Flow patterns of oil-water liquid-liquid two-phase flow in helically coild tubes. J. Chem. Ind. Eng. 2000, 51, 39–242. [Google Scholar]
- Li, S.; Cai, W.; Chen, J.; Zhang, H.; Jiang, Y. Numerical study on condensation heat transfer and pressure drop characteristics of ethane/propane mixture upward flow in a spiral pipe. Int. J. Heat Mass Transf. 2018, 121, 170–186. [Google Scholar] [CrossRef]
- Song, Q.; Wang, D.; Shen, J.; Zhao, Y.; Gong, M. Flow condensation pressure drop characteristics of zeotropic mixtures of tetrafluoromethane/ethane: Experimental and analytical investigation. Int. J. Heat Mass Transf. 2022, 182, 122045. [Google Scholar] [CrossRef]
- Moghaddam, H.A.; Sarmadian, A.; Asnaashari, A.; Joushani, H.A.; Islam, M.S.; Saha, S.C.; Ghasemi, G.; Shafaee, M. Condensation heat transfer and pressure drop characteristics of Isobutane in horizontal channels with twisted tape inserts. Int. J. Refrig. 2020, 118, 31–40. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.P.; Xu, X.W. Numerical simulation of heat transfer performance of r410a in condensing-superheated zone. Int. J. Refrig. 2021, 128, 206–217. [Google Scholar] [CrossRef]
- AlHajeri, H.M.; Almutairi, A.; Al-Hajeri, M.H.; Alenezi, A.; Alajmi, R.; Koluib, A.M. Condensation Heat Transfer of R-407C in Helical Coiled Tube Heat Exchanger. Processes 2020, 8, 1157. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Xu, X. Experimental investigation on flow condensation of methane in a horizontal smooth tube. Int. J. Refrig. 2017, 78, 193–214. [Google Scholar] [CrossRef]
- Zhuang, X.R.; Chen, G.F.; Guo, H.; Song, Q.L.; Tang, Q.X.; Yang, Z.Q.; Zou, X.; Gong, M.Q. Experimental investigation on flow condensation of zeotropic mixtures of methane/ethane in a horizontal smooth tube. Int. J. Refrig. 2018, 85, 120–134. [Google Scholar] [CrossRef]
- Solanki, A.K.; Kumar, R. Two-phase flow condensation heat transfer characteristic of R-600a inside the horizontal smooth and dimpled helical coiled tube in shell type heat exchanger. Int. J. Refrig. 2019, 107, 155–164. [Google Scholar] [CrossRef]
- Zenkour, A.M.; Abouelregal, A.E. State-space approach for an infinite medium with a spherical cavity based upon two-temperature generalized thermoelasticity theory and fractional heat conduction. Z. Für Angew. Math. Und Phys. 2013, 65, 149–164. [Google Scholar] [CrossRef]
- Shah, M.M. An improved and extended general correlation for heat transfer during condensation in plain tubes. HVAC&R Res. 2009, 15, 889–913. [Google Scholar]
- Dittus, F.W.; Boelter, L.M.K. Heat transfer in automobile radiators of the tubular type. Int. Commun. Heat Mass Transf. 1985, 12, 3–22. [Google Scholar] [CrossRef]
- Gnielinski, V. New equation for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng. 1976, 16, 359–368. [Google Scholar]
- Li, P.H.; Norris, S. Heat transfer correlations for co2 flowing condensation in a tube at low temperatures. Appl. Therm. Eng. 2016, 93, 872–883. [Google Scholar] [CrossRef]
Numbering | Equipment Name |
---|---|
U | Test sample |
T1-T15 | Temperature sensor |
P01-P07 | Pressure sensor |
dP | Pressure drop sensor |
M1, M2 | Mass flow meter |
P1, P2 | Circulating pump |
E1, E2 | Heat exchange |
H1, H2 | Heating |
C | Buffer tank |
S1, S2 | Glass windows |
R | Refrigerating machine |
N | Liquid nitrogen container |
V | Control valve |
Measuring Instruments | Product Model | Range | Maximum Uncertainty | Measuring Instruments |
---|---|---|---|---|
Mass flow meter | OPTIMASS6000 | 50 to 200 kg/h | ±0.1% | Mass flow meter |
Mass flow meter | OPTIMASS6000 | 240 to 320 kg/h | ±0.1% | Mass flow meter |
Temperature sensor | PT100 | −160 to 30 °C | ±0.1 K | Temperature sensor |
Pressure sensor | TDS4033 (high) | 0 to 6 MPa | ±0.1% | Pressure sensor |
Pressure sensor | A0910 | 0 to 6 MPa | ±0.5% | Pressure sensor |
Pressure sensor | TDS4033 (low) | 0 to 1.6 MPa | ±0.1% | Pressure sensor |
Number | (R/Ω)/(t/°C) | ||||
---|---|---|---|---|---|
35.53/−160 | 60.26/−100 | 80.31/−50 | 96.09/−10 | 111.67/30 | |
T1 | 0.07 | 0.27 | 0.19 | 0.25 | 0.31 |
T2 | 0.07 | 0.19 | 0.19 | 0.24 | 0.26 |
T3 | 0.04 | 0.07 | 0.01 | 0 | −0.05 |
T4 | −0.01 | −0.01 | −0.08 | −0.09 | −0.10 |
T5 | 0.03 | 0.07 | 0.03 | 0.03 | 0.01 |
T6 | 0.01 | 0.13 | 0.06 | 0.04 | 0.07 |
T7 | 0.01 | 0.13 | 0.13 | 0.20 | 0.19 |
T8 | 0.16 | 0.29 | 0.32 | 0.36 | 0.38 |
T9 | 0.10 | 0.18 | 0.18 | 0.21 | 0.19 |
T10 | 0.04 | 0.15 | 0.17 | 0.17 | 0.21 |
T11 | −0.21 | −0.16 | −0.13 | −0.03 | 0.14 |
T12 | 0.63 | 0.53 | 0.51 | 0.52 | 0.59 |
T13 | −0.03 | −0.16 | −0.07 | −0.02 | 0.10 |
T14 | −0.10 | −0.18 | −0.13 | 0.01 | 0.14 |
T15 | 0.69 | 0.7 | 0.87 | 0.84 | 1.40 |
Maximum error | 0.69 | 0.7 | 0.87 | 0.84 | 1.40 |
Minimum error | 0.01 | −0.01 | 0.01 | 0 | 0.01 |
Pressure (MPa) | Mass Flux (kg·(m2·s)−1) |
---|---|
2, 3, 4 | 200, 400, 600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Chen, J.; Jiang, Y.; Zheng, W. Analysis of Condensation Flow and Heat Transfer Characteristics Inside Spiral Tubes. Energies 2023, 16, 4323. https://doi.org/10.3390/en16114323
Li F, Chen J, Jiang Y, Zheng W. Analysis of Condensation Flow and Heat Transfer Characteristics Inside Spiral Tubes. Energies. 2023; 16(11):4323. https://doi.org/10.3390/en16114323
Chicago/Turabian StyleLi, Fengzhi, Jie Chen, Yiqiang Jiang, and Wenke Zheng. 2023. "Analysis of Condensation Flow and Heat Transfer Characteristics Inside Spiral Tubes" Energies 16, no. 11: 4323. https://doi.org/10.3390/en16114323
APA StyleLi, F., Chen, J., Jiang, Y., & Zheng, W. (2023). Analysis of Condensation Flow and Heat Transfer Characteristics Inside Spiral Tubes. Energies, 16(11), 4323. https://doi.org/10.3390/en16114323