Development and Applications of Thermoelectric Oxide Ceramics and Devices
Abstract
:1. Introduction
2. Thermoelectric Fundamentals and Thermoelectric Parameters
3. Fabrication of Thermoelectric Oxide Ceramics
3.1. Lattice Structures of Thermoelectric Oxide Ceramics
3.1.1. n-Type Thermoelectric Oxides
3.1.2. p-Type Thermoelectric Oxides
3.2. Preparation Method
3.2.1. Bulk Crystal Growth
3.2.2. Solid-State Method
3.2.3. Spark Plasma Sintering
3.2.4. Mechanical Alloying
3.2.5. Liquid-Phase Synthesis
- (1)
- Colloidal Synthesis
- (2)
- Hydrothermal Synthesis
- (3)
- Solvothermal Synthesis
4. Development and Strategies to Improve the Thermoelectric Performance of Oxide Ceramics
4.1. Band Engineering
4.2. Doping
4.3. Entropy Engineering
4.4. Defect Engineering
4.5. Grain Boundary and Nanostructure Engineering
4.6. Textured Engineering
4.7. Composites
5. Device Applications
5.1. Power Generation
5.2. Sensor Devices
5.3. Flexibility and Wearable Devices
5.4. Other Application
6. Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zebarjadi, M.; Esfarjani, K.; Dresselhaus, M.S.; Ren, Z.F.; Chen, G. Perspectives on thermoelectrics: From fundamentals to device applications. Energy Environ. Sci. 2012, 5, 5147–5162. [Google Scholar] [CrossRef]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Deng, B.; Zhang, P.X.; Kim, H.S.; Jiang, P.; Liu, W.S. System efficiency and power: The bridge between the device and system of a thermoelectric power generator. Energy Environ. Sci. 2020, 13, 3514–3526. [Google Scholar] [CrossRef]
- Bu, Z.L.; Zhang, X.Y.; Hu, Y.X.; Chen, Z.W.; Lin, S.Q.; Li, W.; Xiao, C.; Pei, Y.Z. A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery. Nat. Commun. 2022, 13, 237. [Google Scholar] [CrossRef] [PubMed]
- Biswas, K.; He, J.Q.; Blum, I.D.; Wu, C.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Altenkirch, E. Elektrothermische Kälteerzeugung und reversible elektrische Heizung. Phys. Z. 1911, 12, 920–924. [Google Scholar]
- Goupil, C.; Seifert, W.; Zabrocki, K.; Müller, E.; Snyder, G.J. Thermodynamics of thermoelectric phenomena and applications. Entropy 2011, 13, 1481–1517. [Google Scholar] [CrossRef]
- Fergus, J.W. Oxide materials for high temperature thermoelectric energy conversion. J. Eur. Ceram. Soc. 2012, 32, 525–540. [Google Scholar] [CrossRef]
- Ohta, H.; Sugiura, K.; Koumoto, K. Recent progress in oxide thermoelectric materials: P-type Ca3Co4O9 and n-type SrTiO3. Inorg. Chem. 2008, 47, 8429–8436. [Google Scholar] [CrossRef]
- Bittner, M.; Helmich, L.; Nietschke, F.; Geppert, B.; Oeckler, O.; Feldhoff, A. Porous Ca3Co4O9 with enhanced thermoelectric properties derived from sol-gel synthesis. J. Eur. Ceram. Soc. 2017, 37, 3909–3915. [Google Scholar] [CrossRef]
- Xu, J.; Wei, C.P.; Jia, K. Thermoelectric performance of textured Ca3-xYbxCo4O9−δ ceramics. J. Alloys Compd. 2010, 500, 227–230. [Google Scholar] [CrossRef]
- Shi, Z.M.; Su, T.C.; Zhang, P.; Lou, Z.H.; Qin, M.J.; Gao, T.; Xu, J.; Zhu, J.H.; Gao, F. Enhanced thermoelectric performance of Ca3Co4O9 ceramics through grain orientation and interface modulation. J. Mater. Chem. A 2020, 8, 19561–19572. [Google Scholar] [CrossRef]
- Nong, N.V.; Liu, C.J.; Ohtaki, M. Improvement on the high temperature thermoelectric performance of Ga-doped misfit-layered Ca3Co4−xGaxO9+δ(x = 0, 0.05, 0.1, and 0.2). J. Alloys Compd. 2010, 491, 53–56. [Google Scholar] [CrossRef]
- Shi, Z.M.; Wang, L.X.; Li, L.L.; Wei, J.; Tong, S.J.; Zhang, J.Z.; Li, X.T.; Guo, Y.P.; Zhang, Y. Joint effect of Bi2O3 and CuO additives in regulating the thermoelectric properties of (Ca0.87Ag0.1Dy0.03)3Co4O9 composite ceramics. Mater. Sci. Eng. B 2023, 290, 116311. [Google Scholar] [CrossRef]
- Shi, Z.M.; Xu, J.; Zhu, J.H.; Zhang, Y.; Gao, T.; Qin, M.J.; Sun, H.; Dong, G.G.; Gao, F. Effect of platelet template seeds on microstructure and thermoelectric properties of Ca3Co4O9 ceramics. Ceram. Int. 2019, 45, 1977–1983. [Google Scholar] [CrossRef]
- Assadi, M.H.N.; Katayama-Yoshida, H. Restoration of long range order of Na ions in NaxCoO2 at high temperatures by sodium site doping. Comput. Mater. Sci. 2015, 109, 308–311. [Google Scholar] [CrossRef]
- Wang, Y.L.; Ni, J. Ground state structure of sodium ions in NaxCoO2: A combined Monte Carlo and first-principles approach. Phys. Rev. B 2007, 76, 094101. [Google Scholar] [CrossRef]
- Koumoto, K.; Terasaki, I.; Funahashi, R. Complex oxide materials for potential thermoelectric applications. MRS Bull. 2006, 31, 206–210. [Google Scholar] [CrossRef]
- Roger, M.; Morris, D.J.P.; Tennant, D.A.; Gutmann, M.J.; Goff, J.P.; Hoffmann, J.U.; Feyerherm, R.; Dudzik, E.; Prabhakaran, D.; Boothroyd, A.T.; et al. Patterning of sodium ions and the control of electrons in sodium cobaltate. Nature 2007, 445, 631–634. [Google Scholar] [CrossRef]
- Zhao, L.D.; He, J.Q.; Berardan, D.; Lin, Y.H.; Li, J.F.; Nan, C.W.; Drago, N. BiCuSeO oxyselenides: New promising thermoelectric materials. Energy Environ. Sci. 2014, 7, 2900–2924. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, L.D.; Zhu, Y.C.; Liu, Y.C.; Li, F.; Yu, M.J.; Liu, D.B.; Xu, W.; Lin, Y.H.; Nan, C.W. Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach. Adv. Energy Mater. 2016, 6, 1502423. [Google Scholar] [CrossRef]
- Yang, D.W.; Su, X.L.; Yan, Y.G.; Hu, T.Z.; Xie, H.Y.; He, J.; Uher, C.; Kanatzidis, M.G.; Tang, X.F. Manipulating the combustion wave during self-propagating synthesis for high thermoelectric performance of layered oxychalcogenide Bi1−xPbxCuSeO. Chem. Mater. 2016, 28, 4628–4640. [Google Scholar] [CrossRef]
- Qin, M.J.; Lou, Z.H.; Zhang, P.; Shi, Z.M.; Xu, J.; Chen, Y.S.; Gao, F. Enhancement of thermoelectric performance of Sr0.9La0.1TiO3-based ceramics regulated by nanostructures. ACS Appl. Mater. Interfaces 2020, 48, 53899–53909. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.Y.; Wang, J.; Zou, T.; Zhang, S.; Yaer, X.B.; Ding, N.; Liu, C.Y.; Miao, L.; Li, Y.; Wu, Y. High thermoelectric performance of Nb-doped SrTiO3 bulk materials with different doping levels. J. Mater. Chem. C. 2015, 3, 11406–11411. [Google Scholar] [CrossRef]
- Qin, M.J.; Gao, F.; Dong, G.G.; Xu, J.; Fu, M.S.; Wang, Y.; Reece, M.; Yan, H.X. Microstructure characterization and thermoelectric properties of Sr0.9La0.1TiO3 ceramics with nano-sized Ag as additive. J. Alloys Compd. 2018, 762, 80–89. [Google Scholar] [CrossRef]
- Devi, N.Y.; Vijayakumar, K.; Rajasekaran, P.; Nedunchezhian, A.S.A.; Sidharth, D.; Masaru, S.; Arivanandhan, M.; Jayavel, R. Effect of Gd and Nb co-substitution on enhancing the thermoelectric power factor of nanostructured SrTiO3. Ceram. Int. 2021, 47, 3201–3208. [Google Scholar] [CrossRef]
- Fu, Q.Q.; Gu, H.; Xing, J.J.; Cao, Z.; Wang, J. Controlling the A-site deficiency and oxygen vacancies by donor-doping in pre-reductive-sintered thermoelectric SrTiO3 ceramics. Acta. Mater. 2022, 229, 117785. [Google Scholar] [CrossRef]
- Zhan, B.; Lan, J.L.; Liu, Y.C.; Lin, Y.H.; Shen, Y.; Nan, C.W. High temperature thermoelectric properties of Dy-doped CaMnO3 ceramics. J. Mater. Sci. Technol. 2014, 30, 821–825. [Google Scholar] [CrossRef]
- Zhang, F.P.; Lu, Q.M.; Zhang, X.; Zhang, J.X. First principle investigation of electronic structure of CaMnO3 thermoelectric compound oxide. J. Alloys Compd. 2011, 509, 542–545. [Google Scholar] [CrossRef]
- Li, J.B.; Wang, Y.X.; Yang, X.; Kang, H.J.; Cao, Z.Q.; Jiang, X.; Chen, Z.N.; Guo, E.Y.; Wang, T.M. Processing bulk insulating CaTiO3 into a high-performance thermoelectric material. Chem. Eng. J. 2022, 428, 131121. [Google Scholar] [CrossRef]
- Zhang, R.Z.; Hu, X.Y.; Guo, P.; Wang, C.L. Thermoelectric transport coefficients of n-doped CaTiO3, SrTiO3 and BaTiO3: A theoretical study. Phys. B Condens. Matter 2012, 407, 1114–1118. [Google Scholar] [CrossRef]
- Zhu, B.B.; Zhang, T.S.; Tian, R.M.; Tan, T.T.; Donelson, R.; Li, S. Enhancement of thermoelectric properties in Sn doped (In0.95Lu0.05)2O3. J. Alloys Compd. 2015, 644, 119–123. [Google Scholar] [CrossRef]
- Lan, J.L.; Liu, Y.C.; Lin, Y.H.; Nan, C.W.; Cai, Q.; Yang, X.P. Enhanced thermoelectric performance of In2O3-based ceramics via nanostructuring and point defect engineering. Sci. Rep. 2015, 5, 7783. [Google Scholar] [CrossRef]
- Zhu, B.B.; Chen, C.; Yao, Z.C.; Chen, J.Y.; Jia, C.; Wang, Z.H.; Tian, R.M.; Tao, L.; Xue, F.; Hng, H.H. Multiple doped ZnO with enhanced thermoelectric properties. J. Eur. Ceram. Soc. 2021, 41, 4182–4188. [Google Scholar] [CrossRef]
- Arias-Serrano, B.I.; Mikhalev, S.M.; Ferro, M.C.; Tobaldi, D.M.; Frade, J.R.; Kovalevsky, A.V. On the high-temperature degradation mechanism of ZnO-based thermoelectrics. J. Eur. Ceram. Soc. 2021, 41, 1730–1734. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.Y.; Kang, H.J.; Li, Y.; Yaer, X.B.; Li, J.F.; Tan, Q.; Zhang, S.; Fan, G.H.; Liu, C.Y.; et al. Record high thermoelectric performance in bulk SrTiO3 via nano-scale modulation doping. Nano Energy 2017, 35, 387–395. [Google Scholar] [CrossRef]
- Kim, H.S.; Gibbs, Z.M.; Tang, Y.L.; Wang, H.; Snyder, G.J. Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 2015, 3, 041506. [Google Scholar] [CrossRef]
- Qin, Y.X.; Xiao, Y.; Zhao, L.D. Carrier mobility does matter for enhancing thermoelectric performance. APL Mater. 2020, 8, 010901. [Google Scholar] [CrossRef]
- Takabatake, T.; Suekuni, K.; Nakayama, T.; Kaneshita, E. Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory. Rev. Mod. Phys. 2014, 86, 669–716. [Google Scholar] [CrossRef]
- Mitchell, R.H.; Chakhmouradian, A.R.; Woodward, P.M. Crystal chemistry of perovskite-type compounds in the tausonite-loparite series, (Sr1−2xNaxLax)TiO3. Phys. Chem. Miner. 2000, 27, 583–589. [Google Scholar] [CrossRef]
- Nelmes, R.J.; Meyer, G.M.; Hutton, J. Thermal motion in SrTiO3 at room temperature: Anharmonic or disordered? Ferroelectrics 1978, 21, 461–462. [Google Scholar] [CrossRef]
- Samanta, P.K.; Chaudhuri, P.R. Substrate effect on morphology and photoluminescence from ZnO monopods and bipods. Front. Optoelectron. 2011, 4, 130–136. [Google Scholar] [CrossRef]
- Schröer, P.; Krüger, P.; Pollmann, J. First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS. Phys. Rev. B 1993, 47, 6971–6980. [Google Scholar] [CrossRef]
- Florescu, D.I.; Mourokh, L.G.; Pollak, F.H.; Look, D.C.; Cantwell, G.; Li, X. High spatial resolution thermal conductivity of bulk ZnO (0001). J. Appl. Phys. 2002, 91, 890–892. [Google Scholar] [CrossRef]
- Yin, Y.N.; Tudu, B.; Tiwari, A. Recent advances in oxide thermoelectric materials and modules. Vacuum 2017, 146, 356–374. [Google Scholar] [CrossRef]
- Imada, M.; Fujimori, A.; Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 1998, 70, 1039–1263. [Google Scholar] [CrossRef]
- Loshkareva, N.N.; Nomerovannaya, L.V.; Mostovshchikova, E.V.; Makhnev, A.A.; Sukhorukov, Y.P.; Solin, N.I.; Arbuzova, T.I.; Naumov, S.V.; Kostromitina, N.V.; Balbashov, A.M.; et al. Electronic structure and polarons in CaMnO3−δ single crystals: Optical data. Phys. Rev. B 2004, 70, 224406. [Google Scholar] [CrossRef]
- Yang, W.C.; Zhang, H.C.; Tao, P.G.; Zhang, D.D.; Zhang, D.W.; Wang, Z.H.; Tang, G.D. Optimization of the spin entropy by incorporating magnetic ion in a misfit-layered calcium cobaltite. Ceram. Int. 2016, 42, 9744–9748. [Google Scholar] [CrossRef]
- Wu, T.; Tyson, T.A.; Bai, J.M.; Pandya, K.; Jaye, C.; Fischer, D. On the origin of enhanced thermoelectricity in Fe doped Ca3Co4O9. J. Mater. Chem. C 2013, 1, 4114–4121. [Google Scholar] [CrossRef]
- Koshibae, W.; Maekawa, S. Effects of spin and orbital degeneracy on the thermopower of strongly correlated systems. Phys. Rev. Lett. 2001, 87, 236603. [Google Scholar] [CrossRef]
- Duran, C.; Yildiz, A.; Dursun, S.; Mackey, J.; Sehirlioglu, A. Thermoelectric characteristics of textured KSr2Nb5O15 ceramics. Scr. Mater. 2016, 112, 114–117. [Google Scholar] [CrossRef]
- Liu, H.Q.; Ma, H.A.; Su, T.C.; Zhang, Y.W.; Sun, B.; Liu, B.W.; Kong, L.J.; Liu, B.M.; Jia, X.P. High-thermoelectric performance of TiO2-x fabricated under high pressure at high temperatures. J. Mater. 2017, 3, 286–292. [Google Scholar]
- Fujita, K.; Mochida, T.; Nakamura, K. High-temperature thermoelectric properties of NaxCoO2-delta single crystals. Jpn. J. Appl. Phys. 2001, 40, 4644–4647. [Google Scholar] [CrossRef]
- Shikano, M.; Funahashi, R. Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Appl. Phys. Lett. 2003, 82, 1851–1853. [Google Scholar] [CrossRef]
- Kovalevsky, A.V.; Aguirre, M.H.; Populoh, S.; Patricio, S.G.; Ferreira, N.M.; Mikhalev, S.M.; Fagg, D.P.; Weidenkaff, A.; Frade, J.R. Designing strontium titanate-based thermoelectrics: Insight into defect chemistry mechanisms. J. Mater. Chem. A 2017, 5, 3909–3922. [Google Scholar] [CrossRef]
- Hassanin, H.; Jiang, K. Net shape manufacturing of ceramic micro parts with tailored graded layers. J. Micromech. Microeng. 2014, 24, 015018. [Google Scholar] [CrossRef]
- Hassanina, H.; Jiang, K. Fabrication and characterization of stabilised zirconia micro parts via slip casting and soft moulding. Scr. Mater. 2013, 69, 433–436. [Google Scholar] [CrossRef]
- Wang, T.; Nan, P.F.; Wang, H.C.; Wang, H.; Su, W.; Sotelo, A.; Zhai, J.Z.; Wang, X.; Ran, Y.Z.; Chen, T.T.; et al. Right heterogeneous microstructure for achieving excellent thermoelectric performance in Ca0.9R0.1MnO3−δ(R.=Dy, Yb) Ceramics. Inorg. Chem. 2018, 57, 9133–9141. [Google Scholar] [CrossRef]
- Zhang, P.; Lou, Z.H.; Qin, M.H.; Xu, J.; Zhu, J.T.; Shi, Z.M.; Chen, Q.; Reece, M.J.; Yan, H.X.; Gao, F. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications. J. Mater. Sci. Technol. 2022, 97, 182–189. [Google Scholar] [CrossRef]
- Kovalevsky, A.V.; Yaremchenko, A.A.; Populoh, S.; Populoh, S.; Frade, J.R. Enhancement of thermoelectric performance in strontium titanate by praseodymium substitution. J. Appl. Phys. 2013, 113, 053704. [Google Scholar] [CrossRef]
- Lou, Z.H.; Zhang, P.; Gong, L.Y.; Xu, J.; Gong, L.Y.; Reece, M.J.; Yan, H.X.; Gao, F. A novel high-entropy perovskite ceramics Sr0.9La0.1(Zr0.25Sn0.25Ti0.25Hf0.25)O3 with low thermal conductivity and high Seebeck coefficient. J. Eur. Ceram. Soc. 2022, 42, 3480–3488. [Google Scholar] [CrossRef]
- Han, J.; Song, Y.; Liu, X.; Wang, F.P. Sintering behavior and thermoelectric properties of LaCoO3 ceramics with Bi2O3-B2O3-SiO2 as a sintering aid. RSC Adv. 2014, 4, 51995–52000. [Google Scholar] [CrossRef]
- Alvarez-Ruiz, D.T.; Azough, F.; Hernandez-Maldonado, D.; Kepaptsoglou, D.M.; Ramasse, Q.M.; Day, S.J.; Svec, P.; Svec, P.; Freer, R. Utilising unit-cell twinning operators to reduce lattice thermal conductivity in modular structures: Structure and thermoelectric properties of Ga2O3(ZnO)9. J. Alloys Compd. 2018, 762, 892–900. [Google Scholar] [CrossRef]
- Nishiyama, S.; Ichikawa, A.; Hattori, T. Thermoelectric properties of CuO-added AgSbO3 ceramics. J. Ceram. Soc. Jpn. 2004, 112, 298–300. [Google Scholar] [CrossRef]
- Azough, F.; Gholinia, A.; Alvarez-Ruiz, D.T.; Duran, E.; Kepaptsoglou, D.M.; Eggeman, A.S.; Ramasse, Q.M.; Freer, R. Self-nanostructuring in SrTiO3: A novel strategy for enhancement of thermoelectric response in oxides. ACS Appl. Mater. Interfaces 2019, 11, 32833–32843. [Google Scholar] [CrossRef]
- Shi, Z.M.; Gao, F.; Zhu, J.H.; Xu, J.; Zhang, Y.; Gao, T.; Qin, M.J. Influence of liquid-phase sintering on microstructure and thermoelectric properties of Ca3Co4O9-based ceramics with Bi2O3 additive. J. Mater. 2019, 5, 711–720. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhang, X.Y.; Shen, L.M.; Bao, N.Z.; Wan, C.L.; Park, N.H.; Koumoto, K.; Gupta, A. Nb-doped grain boundary induced thermoelectric power factor enhancement in La-doped SrTiO3 nanoceramics. J. Power Sources 2013, 241, 255–258. [Google Scholar] [CrossRef]
- Tian, T.; Cheng, L.H.; Xing, J.J.; Zheng, L.Y.; Man, Z.Y.; Hu, D.L.; Bernik, S.; Zeng, J.T.; Yang, J.; Liu, Y. Effects of sintering on the microstructure and electrical properties of ZnO-based thermoelectric materials. Mater. Des. 2017, 132, 479–485. [Google Scholar] [CrossRef]
- Diaz-Chao, P.; Giovannelli, F.; Lebedev, O.; Chateigner, D.; Lutterotti, L.; Delorme, F.; Guilmeau, E. Textured Al-doped ZnO ceramics with isotropic grains. J. Eur. Ceram. Soc. 2014, 34, 4247–4256. [Google Scholar] [CrossRef]
- Qin, M.J.; Lou, Z.J.; Shi, Z.J.; Zhang, R.J.; Xu, J.; Gao, F. Enhanced thermoelectric properties of Sr0.9La0.1TiO3 ceramics fabricated by SPS with nanosized Ti addition. J. Mater. Sci.-Mater. Electron. 2020, 31, 6919–6926. [Google Scholar] [CrossRef]
- Chen, Y.X.; Shi, K.D.; Li, F.; Xu, X.; Ge, Z.H.; He, J.Q. Highly enhanced thermoelectric performance in BiCuSeO ceramics realized by Pb doping and introducing Cu deficiencies. J. Am. Ceram. Soc. 2019, 102, 5989–5996. [Google Scholar] [CrossRef]
- Jeong, A.; Suekuni, K.; Ohtaki, M.; Jang, B.K. Thermoelectric properties of In- and Ga-doped spark plasma sintered ZnO ceramics. Ceram. Int. 2021, 47, 23927–23934. [Google Scholar] [CrossRef]
- Mori, T. Novel principles and nanostructuring methods for enhanced thermoelectrics. Small 2017, 13, 1702013. [Google Scholar] [CrossRef]
- Ito, M.; Ohira, N. Effects of TiB2 addition on spark plasma sintering and thermoelectric performance of Y-doped SrTiO3 synthesized by polymerized complex process. Compos. Part B Eng. 2016, 88, 108–113. [Google Scholar] [CrossRef]
- Novitskii, A.; Guelou, G.; Voronin, A.; Mori, T.; Khovaylo, V. Direct synthesis of p-type bulk BiCuSeO oxyselenides by reactive spark plasma sintering and related thermoelectric properties. Scr. Mater. 2020, 187, 317–322. [Google Scholar] [CrossRef]
- Liu, D.Q.; Zhang, Y.W.; Kang, H.J.; Li, J.L.; Chen, Z.N.; Wang, T.M. Direct preparation of La-doped SrTiO3 thermoelectric materials by mechanical alloying with carbon burial sintering. J. Eur. Ceram. Soc. 2018, 38, 807–811. [Google Scholar] [CrossRef]
- Feng, B.; Li, G.Q.; Pan, Z.; Hu, X.M.; Liu, P.H.; He, Z.; Li, Y.W.; Fan, X.A. Effect of synthesis processes on the thermoelectric properties of BiCuSeO oxyselenides. J. Alloys Compd. 2018, 754, 131–138. [Google Scholar] [CrossRef]
- Park, K.; Son, J.S.; Woo, S.I.; Shin, K.; Oh, M.W.; Park, S.D.; Hyeon, T. Colloidal synthesis and thermoelectric properties of La-doped SrTiO3 nanoparticles. J. Mater. Chem. A 2014, 2, 4217–4224. [Google Scholar] [CrossRef]
- Yue, Z.W.; Ji, X.L.; Zhou, W.; Ji, Z.H.; Guo, F. Enhanced thermoelectric performance of hydrothermal synthesized Ag incorporated Cu2-xS micro/nano composites. Ceram. Int. 2023, 49, 8428–8434. [Google Scholar] [CrossRef]
- Baghbanzadeh, M.; Carbone, L.; Cozzoli, P.D.; Kappe, C.O. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 11312–11359. [Google Scholar] [CrossRef]
- Park, D.; Ju, H.; Kim, J. One-pot fabrication of Ag-SrTiO3 nanocomposite and its enhanced thermoelectric properties. Ceram. Int. 2019, 45, 16969–16975. [Google Scholar] [CrossRef]
- Mehta, R.J.; Zhang, Y.L.; Karthik, C.; Singh, B.; Siegel, R.W.; Borca-Tasciuc, T.; Ramanath, G. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat. Mater. 2012, 11, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Populoh, S.; Trottmann, M.; Aguire, M.H.; Weidenkaff, A. Nanostructured Nb-substituted CaMnO3 n-type thermoelectric material prepared in a continuous process by ultrasonic spray combustion. J. Mater. Res. 2011, 26, 1947–1952. [Google Scholar] [CrossRef]
- Sun, Y.F.; Cheng, H.; Gao, S.; Liu, Q.H.; Sun, Z.H.; Xiao, C.; Wu, C.Z.; Wei, S.P.; Xie, Y. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J. Am. Chem. Soc. 2012, 134, 20294–20297. [Google Scholar] [CrossRef] [PubMed]
- Samanta, M.; Guin, S.N.; Biswas, K. Ultrathin few layer oxychalcogenide BiCuSeO nanosheets. Inorg. Chem. Front. 2017, 4, 84–90. [Google Scholar] [CrossRef]
- Dehkordi, A.M.; Zebarjadi, M.; He, J.; Tritt, T.M. Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials. Mater. Sci. Eng. R 2015, 97, 1–22. [Google Scholar] [CrossRef]
- Ren, G.K.; Lan, J.L.; Zhao, L.D.; Liu, C.; Yuan, H.C.; Shi, Y.; Zhou, Z.F.; Lin, Y.H. Layered oxygen-containing thermoelectric materials: Mechanisms, strategies, and beyond. Mater. Today 2019, 29, 68–85. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, P.; Qin, M.J.; Lou, Z.H.; Gong, L.Y.; Xu, J.; Kong, J.; Yan, H.X.; Gao, F. Effect of La3+, Ag+ and Bi3+ doping on thermoelectric properties of SrTiO3: First-principles investigation. Ceram. Int. 2022, 48, 13803–13816. [Google Scholar] [CrossRef]
- Benthem, K.V.; Elsässer, C.; French, R.H. Bulk electronic structure of SrTiO3: Experiment and theory. J. Appl. Phys. 2001, 90, 6156–6164. [Google Scholar] [CrossRef]
- Fumega, A.O.; Fu, Y.H.; Pardo, V.; Singh, D.J. Understanding the lattice thermal conductivity of SrTiO3 from an ab initio perspective. Phys. Rev. Mater. 2020, 4, 033606. [Google Scholar] [CrossRef]
- Kovalevsky, A.V.; Yaremchenko, A.A.; Populoh, S.; Thiel, P.; Fagg, D.P.; Weidenkaff, A.; Frade, J.R. Towards a high thermoelectric performance in rare-earth substituted SrTiO3: Effects provided by strongly-reducing sintering conditions. Phys. Chem. Chem. Phys. 2014, 16, 26946–26954. [Google Scholar] [CrossRef] [PubMed]
- Putri, Y.E.; Said, S.M.; Refinel, R.; Ohtaki, M.; Syukri, S. Low thermal conductivity of RE-doped SrO(SrTiO3)1 Ruddlesden Popper phase bulk materials prepared by molten salt method. Electron. Mater. Lett. 2018, 14, 556–562. [Google Scholar] [CrossRef]
- Kahalya, M.U.; Schwingenschlögl, U. Thermoelectric performance enhancement of SrTiO3 by Pr doping. J. Mater. Chem. A 2014, 2, 10379–10383. [Google Scholar] [CrossRef]
- Cui, Y.; Salvador, J.R.; Yang, J.; Wang, H.; Amow, G.; Kleinke, H. Thermoelectric properties of heavily doped n-type SrTiO3 bulk materials. J. Electron. Mater. 2009, 38, 1002–1007. [Google Scholar] [CrossRef]
- Kovalevsky, A.V.; Populoh, S.; Patrício, S.G.; Thiel, P.; Ferro, M.C.; Fagg, D.P.; Frade, J.R.; Weidenkaff, A. Design of SrTiO3-based thermoelectrics by tungsten substitution. J. Phys. Chem. C 2015, 119, 4466–4478. [Google Scholar] [CrossRef]
- Singsoog, K.; Seetawan, T.; Vora-Ud, A.; Thanachayanont, C. Theoretical enhancement of thermoelectric properties of Sr1−xLaxTiO3. Integr. Ferroelectr. 2014, 155, 111–118. [Google Scholar] [CrossRef]
- Liu, J.; Wang, C.L.; Li, Y.; Su, W.B.; Zhu, Y.H.; Li, J.C.; Mei, L.M. Influence of rare earth doping on thermoelectric properties of SrTiO3 ceramics. J. Appl. Phys. 2013, 114, 223714. [Google Scholar] [CrossRef]
- Lin, J.H.; Hwang, C.S.; Sie, F.R. Preparation and thermoelectric properties of Nd and Dy co-doped SrTiO3 bulk materials. Mater. Res. Bull. 2020, 122, 110650. [Google Scholar] [CrossRef]
- Flahaut, D.; Mihara, T.; Funahashi, R.; Nabeshima, N.; Lee, K.; Ohta, H.; Koumoto, K. Thermoelectrical properties of A-site substituted Ca1−xRexMnO3 system. J. Appl. Phys. 2006, 100, 084911. [Google Scholar] [CrossRef]
- Sanmathi, C.S.; Takahashi, Y.; Sawaki, D.; Klein, Y.; Retoux, R.; Terasaki, I.; Noudem, J.G. Microstructure control on thermoelectric properties of Ca0.96Sm0.04MnO3 synthesised by co-precipitation technique. Mater. Res. Bull. 2010, 45, 558. [Google Scholar] [CrossRef]
- Kabir, R.; Tian, R.M.; Zhang, T.S.; Donelson, R.; Tan, T.T.; Li, S. Role of Bi doping in thermoelectric properties of CaMnO3. J. Alloys Compd. 2015, 628, 347–351. [Google Scholar] [CrossRef]
- Kuganathan, N.; Chroneos, A. Defect and dopant properties in CaMnO3. AIP Adv. 2021, 11, 055106. [Google Scholar] [CrossRef]
- Xu, G.J.; Funahashi, R.; Pu, Q.R.; Liu, B.; Tao, R.H.; Wang, G.S.; Ding, Z.J. High-temperature transport properties of Nb and Ta substituted CaMnO3 system. Solid State Ion. 2004, 171, 147–151. [Google Scholar] [CrossRef]
- Bocher, L.; Aguirre, M.H.; Logvinovich, D.; Shkabko, A.; Robert, R.; Trottmann, M.; Weidenkaff, A. CaMn1−xNbxO3 (x ≤ 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials. Inorg. Chem. 2008, 47, 8077–8085. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Su, W.B.; Liu, J.; Zhou, Y.C.; Li, J.C.; Zhang, X.H.; Du, Y.L.; Wang, C.L. Effects of Dy and Yb co-doping on thermoelectric properties of CaMnO3 ceramics. Ceram. Int. 2015, 41, 1535–1539. [Google Scholar] [CrossRef]
- Liu, K.K.; Liu, Z.Y.; Zhang, F.P.; Zhang, J.X.; Yang, X.Y.; Zhang, J.W.; Shi, J.L.; Ren, G.; He, T.W.; Duan, J.J. Improved thermoelectric performance in Pr and Sr Co-doped CaMnO3 materials. J. Alloys Compd. 2019, 808, 151476. [Google Scholar] [CrossRef]
- Ohtaki, M.; Araki, K.; Yamamoto, K. High thermoelectric performance of dually doped ZnO ceramics. J. Electron. Mater. 2009, 38, 1234–1238. [Google Scholar] [CrossRef]
- Pham, A.T.T.; Luu, T.A.; Pham, N.K.; Thi, H.K.; Nguyen, T.H.; Hoang, D.V.; Lai, H.T.; Tran, V.C.; Park, J.H.; Lee, J.K.; et al. Multi-scale defects in ZnO thermoelectric ceramic materials co-doped with In and Ga. Ceram. Int. 2020, 46, 10748–10758. [Google Scholar] [CrossRef]
- Zhang, D.B.; Zhang, B.P.; Ye, D.S.; Liu, Y.C.; Li, S. Enhanced Al/Ni co-doping and power factor in textured ZnO thermoelectric ceramics prepared by hydrothermal synthesis and spark plasma sintering. J. Alloys Compd. 2016, 656, 784–792. [Google Scholar] [CrossRef]
- Constantinescu, G.; Rasekh, S.; Torres, M.A.; Bosque, P.; Diez, J.C.; Madre, M.A.; Sotelo, A. Effect of Na doping on the Ca3Co4O9 thermoelectric performance. Ceram. Int. 2015, 41, 10897–10903. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Tan, T.T.; Liu, Y.; Zheng, J.; Yang, Y.L.; Hou, X.J.; Feng, L.; Suo, G.Q.; Ye, X.H.; et al. Thermoelectric performance enhancement by manipulation of Sr/Ti doping in two sublayers of Ca3Co4O9. J. Adv. Ceram. 2020, 9, 769–781. [Google Scholar] [CrossRef]
- Constantinescu, G.; Rasekh, S.; Torres, M.A.; Madre, M.A.; Sotelo, A.; Diez, J.C. Improvement of thermoelectric properties in Ca3Co4O9 ceramics by Ba doping. J. Mater. Sci. Mater. Electron. 2015, 26, 3466–3473. [Google Scholar] [CrossRef]
- Delorme, F.; Diaz-Chao, P.; Giovannelli, F. Effect of Ca substitution by Fe on the thermoelectric properties of Ca3Co4O9 ceramics. J. Electroceram. 2018, 40, 107–114. [Google Scholar] [CrossRef]
- Demirel, S.; Altin, E.; Oz, E.; Altin, S.; Bayri, A. An enhancement ZT and spin state transition of Ca3Co4O9 with Pb doping. J. Alloys Compd. 2015, 627, 430–437. [Google Scholar] [CrossRef]
- Park, K.; Hakeem, D.A.; Cha, J.S. Synthesis and structural properties of thermoelectric Ca3−xAgxCo4O9+δ powders. Dalton Trans. 2016, 45, 6990–6997. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, G.; Madre, M.A.; Rasekh, S.; Torres, M.A.; Diez, J.C.; Sotelo, A. Effect of Ga addition on Ca-deficient Ca3Co4O9 thermoelectric materials. Ceram. Int. 2014, 40, 6255–6260. [Google Scholar] [CrossRef]
- Saini, S.; Yaddanapudi, H.S.; Tian, K.; Yin, Y.; Magginetti, D.; Tiwari, A. Terbium ion doping in Ca3Co4O9: A step towards high-performance thermoelectric materials. Sci. Rep. 2017, 7, 44621. [Google Scholar] [CrossRef]
- Bhaskar, A.; Huang, Y.C.; Liu, C. Improvement on the low-temperature thermoelectric characteristics of Ca3−xYbxCo4O9+δ (0 ≤ x ≤ 0.10). Ceram. Int. 2014, 40, 5937–5943. [Google Scholar] [CrossRef]
- Yang, W.C.; Qian, H.J.; Gan, J.Y.; Wei, W.; Wang, Z.H.; Tang, G.D. Effects of Lu and Ni substitution on thermoelectric properties of Ca3Co4O9+δ. J. Electron. Mater. 2016, 45, 4171–4176. [Google Scholar] [CrossRef]
- Wang, Y.; Sui, Y.; Ren, P.; Wang, L.; Wang, X.J.; Su, W.H.; Fan, H.J. Strongly correlated properties and enhanced thermoelectric response in Ca3Co4−xMxO9 (M = Fe, Mn, and Cu). Chem. Mater. 2009, 22, 1155–1163. [Google Scholar] [CrossRef]
- Huang, Y.A.; Zhao, B.C.; Lin, S.; Ang, R.; Song, W.H.; Sun, Y.P. Strengthening of thermoelectric performance via Ir doping in layered Ca3Co4O9 system. J. Am. Ceram. Soc. 2014, 97, 798–804. [Google Scholar] [CrossRef]
- Ou, Y.; Peng, J.; Li, F.; Yu, Z.X.; Ma, F.Y.; Xie, S.H.; Li, J.F.; Li, J.Y. The effects of dual doping on the thermoelectric properties of Ca3−xMxCo4−yCuyO9 (M = Na, La). J. Alloys Compd. 2012, 526, 139–144. [Google Scholar] [CrossRef]
- Zhang, F.P.; Zhang, X.; Lu, Q.M.; Zhang, J.X.; Liu, Y.Q.; Zhang, G.Z. Preparation and high temperature thermoelectric properties of Ca3-xAgxCo4O9+δ oxides. Solid State Ion. 2011, 201, 1–5. [Google Scholar] [CrossRef]
- Ito, M.; Nagira, T.; Hara, S. Thermoelectric properties of NaxCo2O4 with rare-earth metals doping prepared by polymerized complex method. J. Alloys Compd. 2006, 408, 1217–1221. [Google Scholar] [CrossRef]
- Ito, M.; Furumoto, D. Effects of noble metal addition on microstructure and thermoelectric properties of NaxCo2O4. J. Alloys Compd. 2008, 450, 494–498. [Google Scholar] [CrossRef]
- Ito, M.; Furumoto, D. Microstructure and thermoelectric properties of NaxCo2O4/Ag composite synthesized by the polymerized complex method. J. Alloys Compd. 2008, 450, 517–520. [Google Scholar] [CrossRef]
- Park, K.; Jang, K.U.; Kwon, H.C.; Kim, J.G.; Cho, W.S. Influence of partial substitution of Cu for Co on the thermoelectric properties of NaCo2O4. J. Alloys Compd. 2006, 419, 213–219. [Google Scholar] [CrossRef]
- Kurosaki, K.; Muta, H.; Uno, M.; Yamanaka, S. Thermoelectric properties of NaCo2O4. J. Alloys Compd. 2001, 315, 234–236. [Google Scholar] [CrossRef]
- Akram, R.; Khan, J.; Rafique, S.; Hussain, M.; Maqsood, A.; Naz, A.A. Enhanced thermoelectric properties of single phase Na doped NaxCoO2 thermoelectric material. Mater. Lett. 2021, 300, 130180. [Google Scholar] [CrossRef]
- Feng, D.; Zheng, F.S.; Wu, D.; Wu, M.H.; Li, W.; Huang, L.; Zhao, L.D.; He, J.Q. Investigation into the extremely low thermal conductivity in Ba heavily doped BiCuSeO. Nano Energy 2016, 27, 167–174. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Y.H.; Xu, W.; Cheng, B.; Lan, J.L.; Chen, D.L.; Zhu, H.M.; Nan, C.W. High-temperature transport property of In2−xCexO3 (0 ≤ x ≤ 0.10) fine grained ceramics. J. Am. Ceram. Soc. 2012, 95, 2568–2572. [Google Scholar] [CrossRef]
- Lan, J.L.; Lin, Y.H.; Liu, Y.; Xu, S.L.; Nan, C.W. High thermoelectric performance of nanostructured In2O3-based ceramics. J. Am. Ceram. Soc. 2012, 95, 2465–2469. [Google Scholar] [CrossRef]
- Wu, H.J.; Chen, L.L.; Ning, S.T.; Zhao, X.D.; Deng, S.P.; Qi, N.; Ren, F.; Chen, Z.Q.; Tang, J. Extremely low thermal conductivity and enhanced thermoelectric performance of porous Gallium-doped In2O3. ACS Appl. Energy Mater. 2021, 4, 12943–12953. [Google Scholar] [CrossRef]
- Zhang, P.; Lou, Z.H.; Gong, L.Y.; Xu, J.; Chen, Q.; Reece, M.J.; Yan, H.X.; Dashevsky, Z.; Gao, F. High-entropy MTiO3 perovskite oxides with glass-like thermal conductivity for thermoelectric applications. J. Alloys Compd. 2023, 937, 168366. [Google Scholar] [CrossRef]
- Zhang, P.; Gong, L.Y.; Lou, Z.H.; Xu, J.; Cao, S.Y.; Zhu, J.T.; Yan, H.X.; Gao, F. Reduced lattice thermal conductivity of perovskite-type high-entropy (Ca0.25Sr0.25Ba0.25RE0.25)TiO3 ceramics by phonon engineering for thermoelectric applications. J. Alloys Compd. 2022, 898, 162858. [Google Scholar] [CrossRef]
- Zhang, P.; Lou, Z.H.; Hu, G.X.; Wu, Z.Z.; Xu, J.; Gong, L.Y.; Gao, F. In-situ construction of all-scale hierarchical microstructure and thermoelectric properties of (Sr0.25Ca0.25Ba0.25La0.25)TiO3/Pb@Bi composite oxide ceramics. J. Mater. 2023; in press. [Google Scholar] [CrossRef]
- Zhang, R.Z.; Gucci, F.; Zhu, H.Y.; Chen, K.; Reece, M.J. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorg. Chem. 2018, 57, 13027–13033. [Google Scholar] [CrossRef]
- Liu, R.H.; Chen, H.Y.; Zhao, K.P.; Qin, Y.T.; Jiang, B.B.; Zhang, T.S.; Sha, G.; Shi, X.; Uher, C.; Zhang, W.Q.; et al. Entropy as a gene-like performance indicator promoting thermoelectric materials. Adv. Mater. 2017, 29, 1702712. [Google Scholar] [CrossRef]
- Zheng, Y.P.; Zou, M.C.; Zhang, W.Y.; Yi, D.; Lan, J.L.; Nan, C.W.; Lin, Y.H. Electrical and thermal transport behaviours of high-entropy perovskite thermoelectric oxides. J. Adv. Ceram. 2021, 10, 377–384. [Google Scholar] [CrossRef]
- Banerjee, R.; Chatterjee, S.; Ranjan, M.; Bhattacharya, T.; Mukherjee, S.; Jana, S.S.; Dwivedi, A.; Maiti, T. High-entropy perovskites: An emergent class of oxide thermoelectrics with ultralow thermal conductivity. ACS Sustain. Chem. Eng. 2020, 8, 17022–17032. [Google Scholar] [CrossRef]
- Shi, Z.M.; Zhang, J.Z.; Wei, J.; Hou, X.; Cao, S.Y.; Tong, S.J.; Liu, S.Y.; Li, X.T.; Zhang, Y. A-site deficiency improved the thermoelectric performance of high-entropy perovskite manganite-based ceramics. J. Mater. Chem. C 2022, 10, 15582–15592. [Google Scholar] [CrossRef]
- Langenberg, E.; Ferreiro-Vila, E.; Leborán, V.; Fumega, A.O.; Pardo, V.; Rivadulla, F. Analysis of the temperature dependence of the thermal conductivity of insulating single crystal oxides. APL Mater. 2016, 4, 104815. [Google Scholar] [CrossRef]
- Yu, J.C.; Chen, K.; Azough, F.; Alvarez-Ruiz, D.T.; Reece, M.J.; Freer, R. Enhancing the thermoelectric performance of Calcium Cobaltite ceramics by tuning composition and processing. ACS Appl. Mater. Interfaces 2020, 12, 47634–47646. [Google Scholar] [CrossRef]
- Srivastava, D.; Norman, C.; Azough, F.; Schäfer, M.C.; Guilmeau, E.; Kepaptsoglou, D.; Ramasse, Q.M.; Nicotrad, G.; Freer, R. Tuning the thermoelectric properties of A-site deficient SrTiO3 ceramics by vacancies and carrier concentration. Phys. Chem. Chem. Phys. 2016, 18, 26475–26486. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.L.; Zhang, H.R.; Lei, W.; Sinclair, D.C.; Reaney, I.M. High-figure-of-merit thermoelectric La-doped A-site-deficient SrTiO3 ceramics. Chem. Mater. 2016, 28, 925–935. [Google Scholar] [CrossRef]
- Rahman, J.U.; Nam, W.H.; Van Du, N.; Rahman, G.; Rahman, A.U.; Shin, W.H.; Seo, W.S.; Kim, M.H.; Lee, S. Oxygen vacancy revived phonon-glass electron-crystal in SrTiO3. J. Eur. Ceram. Soc. 2019, 39, 358–365. [Google Scholar] [CrossRef]
- Bakhshi, H.; Sarraf-Mamoory, R.; Yourdkhani, A.; AbdelNabi, A.A.; Mozharivskyj, Y. Highly dense Sr0.95Sm0.0125Dy0.0125□0.025Ti0.90Nb0.10O3±δ/ZrO2 composite preparation directly through spark plasma sintering and its thermoelectric properties. Dalton Trans. 2020, 49, 17–22. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, C.; Fan, S.J.; Deng, Y.; Zhang, W.S.; Ye, B.J.; Xie, Y. Dual vacancies: An effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. J. Am. Chem. Soc. 2015, 137, 6587–6593. [Google Scholar] [CrossRef]
- Voneshen, D.J.; Refson, K.; Borissenko, E.; Krisch, M.; Bosak, A.; Piovano, A.; Cemal, E.; Enderle, M.; Gutmann, M.J.; Hoesch, M.; et al. Suppression of thermal conductivity by rattling modes in thermoelectric sodium cobaltate. Nat. Mater. 2013, 12, 1028–1032. [Google Scholar] [CrossRef]
- Buscaglia, M.T.; Maglia, F.; Anselmi-Tamburini, U.; Marré, D.; Pallecchi, I.; Ianculescu, A.; Canu, G.; Viviani, M.; Fabrizio, M.; Buscaglia, V. Effect of nanostructure on the thermal conductivity of La-doped SrTiO3 ceramics. J. Eur. Ceram. Soc. 2014, 34, 307–316. [Google Scholar] [CrossRef]
- Wang, Y.F.; Fujinami, K.; Zhang, R.Z.; Wan, C.L.; Wang, N.; Ba, Y.S.; Koumoto, K. Interfacial thermal resistance and thermal conductivity in nanograined SrTiO3. Appl. Phys. Express 2010, 3, 031101. [Google Scholar] [CrossRef]
- Ohta, S.; Nomura, T.; Ohta, H.; Koumoto, K. High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 2005, 97, 034106. [Google Scholar] [CrossRef]
- Dehkordi, A.M.; Bhattacharya, S.; Darroudi, T.; Graff, J.W.; Schwingenschlogl, U.; Alshareef, H.N.; Tritt, T.M. Large thermoelectric power factor in Pr-Doped SrTiO3-δ ceramics via grain-boundary-induced mobility enhancement. Chem. Mater. 2014, 26, 2478–2485. [Google Scholar] [CrossRef]
- Dehkordi, A.M.; Bhattacharya, S.; He, J.; Alshareef, H.N.; Tritt, T.M. Significant enhancement in thermoelectric properties of polycrystalline Pr-doped SrTiO3−δ ceramics originating from nonuniform distribution of Pr dopants. Appl. Phys. Lett. 2014, 104, 193902. [Google Scholar] [CrossRef]
- Srivastava, D.; Norman, C.; Azough, F.; Schäfer, M.C.; Guilmeau, E.; Freer, R. Improving the thermoelectric properties of SrTiO3-based ceramics with metallic inclusions. J. Alloys Compd. 2018, 731, 723–730. [Google Scholar] [CrossRef]
- Zhang, P.; Qin, M.J.; Lou, Z.H.; Cao, S.Y.; Gong, L.Y.; Xu, J.; Reece, M.J.; Yan, H.X.; Dashevsky, Z.; Gao, F. Grain orientation evolution and multi-scale interfaces enhanced thermoelectric properties of textured Sr0.9La0.1TiO3 based ceramics. J. Eur. Ceram. Soc. 2022, 42, 7017–7026. [Google Scholar] [CrossRef]
- Jiang, L.; Han, L.H.; Lu, C.H.; Yang, S.Y.; Liu, Y.X.; Jiang, H.Z.; Yan, Y.G.; Tang, X.F.; Yang, D.W. Cu2Se as textured adjuvant for Pb-doped BiCuSeO materials leading to high thermoelectric performance. ACS Appl. Mater. Interfaces 2021, 13, 11977–11984. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Cao, S.Y.; Song, W.; Xie, Y.; Yan, Z.X.; Xu, J.; Gao, F. Comparing investigation of the anisotropic thermoelectric properties of textured KSr2Nb5O15 ceramics. J. Phys. Chem. Solids 2023, 175, 111204. [Google Scholar] [CrossRef]
- Shi, Z.M.; Gao, F.; Xu, J.; Zhu, J.H.; Zhang, Y.; Gao, T.; Qin, M.J.; Reece, M.; Yan, H.X. Two–step processing of thermoelectric (Ca0.9Ag0.1)3Co4O9/nano–sized Ag composites with high ZT. J. Eur. Ceram. Soc. 2019, 39, 3088–3093. [Google Scholar] [CrossRef]
- Zeng, C.C.; Butt, S.; Lin, Y.H.; Li, M.; Nan, C.W. Enhanced thermoelectric performance of SmBaCuFeO5+δ/Ag composite ceramics. J. Am. Ceram. Soc. 2016, 99, 1266–1270. [Google Scholar] [CrossRef]
- Hinterding, R.; Wolf, M.; Jakob, M.; Oeckler, O.; Feldhoff, A. Improved thermoelectric properties in ceramic composites based on Ca3Co4O9 and Na2Ca2Nb4O13. Open Ceram. 2021, 8, 100198. [Google Scholar] [CrossRef]
- Jana, S.S.; Maiti, T. Enhanced thermoelectric performance in oxide composites of La and Nb codoped SrTiO3 by using graphite as the electron mobility booster. ACS Appl. Mater. Interfaces 2022, 14, 14174–14181. [Google Scholar] [CrossRef] [PubMed]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef]
- Ekren, D.; Cao, J.Y.; Azough, F.; Kepaptsoglou, D.; Ramasse, Q.; Kinloch, I.A.; Freer, R. Controlling the thermoelectric behavior of La-doped SrTiO3 through processing and addition of graphene oxide. ACS Appl. Mater. Interfaces 2022, 14, 53711–53723. [Google Scholar] [CrossRef]
- Dey, P.; Jana, S.S.; Anjum, F.; Bhattacharya, T.; Maiti, T. Effect of semiconductor to metal transition on thermoelectric performance in oxide nanocomposites of SrTi0.85Nb0.15O3 with graphene oxide. Appl. Mater. Today 2020, 21, 100869. [Google Scholar] [CrossRef]
- Zavjalov, A.; Tikhonov, S.; Kosyanov, D. TiO2-SrTiO3 biphase nanoceramics as advanced thermoelectric materials. Materials 2019, 12, 2895. [Google Scholar] [CrossRef]
- Skomedal, G.; Vehus, T.; Kanas, N.; Singh, S.P.; Einarsrud, M.A.; Wiik, K.; Middleton, P.H. Long term stability testing of oxide unicouple thermoelectric modules. Mater. Today 2019, 8, 696–705. [Google Scholar] [CrossRef]
- Shi, X.L.; Zou, J.; Chen, Z.G. Advanced thermoelectric design: From materials and structures to devices. Chem. Rev. 2020, 120, 7399–7515. [Google Scholar] [CrossRef]
- Shin, H.S.; Lee, J.S.; Jeon, S.G.; Yu, J.; Song, J.Y. Thermopower detection of single nanowire using a MEMS device. Measurement 2014, 51, 470–475. [Google Scholar] [CrossRef]
- Lim, C.H.; Choi, S.M.; Seo, W.S.; Lee, M.H.; Lee, K.H.; Park, H.H. A study of electrodes for thermoelectric oxides. Electron. Mater. Lett. 2013, 9, 445–449. [Google Scholar] [CrossRef]
- Choi, S.M.; Lee, K.H.; Lim, C.H.; Seo, W.S. Oxide-based thermoelectric power generation module using p-type Ca3Co4O9 and n-type (ZnO)7In2O3 legs. Energ. Convers. Manag. 2011, 52, 335–339. [Google Scholar] [CrossRef]
- Funahashi, R.; Matsumura, Y.; Urata, T.; Hiroyo, M.; Hitomi, I.; Shinya, S.; Shigeaki, S. Relationship between tensile strength and durability of oxide thermoelectric modules. J. Electron. Mater. 2021, 50, 3996–4005. [Google Scholar] [CrossRef]
- Tougas, I.M.; Amani, M.; Gregory, O.J. Metallic and ceramic thin film thermocouples for gas turbine engines. Sensors 2013, 13, 15324–15347. [Google Scholar] [CrossRef] [PubMed]
- Yakaboylu, G.A.; Pillai, R.C.; Sabolsky, K.; Sabolsky, E.M. Fabrication and thermoelectric characterization of transition metal silicide-based composite thermocouples. Sensors 2018, 18, 3759. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.; Mele, P.; Miyazaki, K.; Tiwari, A. On-chip thermoelectric module comprised of oxide thin film legs. Energy Convers. 2016, 114, 251–257. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, J.; Yaer, X.; Kang, H.J.; Wang, X.H.; Liu, H.M.; Yang, D.Z.; Wang, T.M. Pencil painting like preparation for flexible thermoelectric material of high-performance p-type Na1.4Co2O4 and novel n-type NaxCo2O4. J. Mater. 2021, 7, 1153–1160. [Google Scholar] [CrossRef]
- Repaka, D.V.M.; Suwardi, A.; Kumar, P. New paradigm for efficient thermoelectrics. In Energy Saving Coating Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 183–196. [Google Scholar]
- Kraemer, D.; Poudel, B.; Feng, H.P.; Caylor, J.C.; Yu, B.; Yan, X.; Ma, Y.; Wang, X.W.; Wang, D.Z.; Muto, A.; et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532–538. [Google Scholar] [CrossRef]
- Ohta, H.; Kim, S.W.; Mune, Y.; Mizoguchi, T.; Nomura, K.; Ohta, S.; Nomura, T.; Nakanishi, Y.; Ikuhara, Y.; Hirano, M.; et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 2007, 6, 129–134. [Google Scholar] [CrossRef]
- Trocha, P.; Siuda, E. Spin-thermoelectric effects in a quantum dot hybrid system with magnetic insulator. Sci. Rep. 2022, 12, 5348. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Lou, Z.; Gong, L.; Wu, Z.; Chen, X.; Xu, W.; Wang, Y.; Xu, J.; Dashevsky, Z.; Gao, F. Development and Applications of Thermoelectric Oxide Ceramics and Devices. Energies 2023, 16, 4475. https://doi.org/10.3390/en16114475
Zhang P, Lou Z, Gong L, Wu Z, Chen X, Xu W, Wang Y, Xu J, Dashevsky Z, Gao F. Development and Applications of Thermoelectric Oxide Ceramics and Devices. Energies. 2023; 16(11):4475. https://doi.org/10.3390/en16114475
Chicago/Turabian StyleZhang, Ping, Zhihao Lou, Lingyun Gong, Zhuozhao Wu, Xuanjie Chen, Weihang Xu, Yiqi Wang, Jie Xu, Zinovi Dashevsky, and Feng Gao. 2023. "Development and Applications of Thermoelectric Oxide Ceramics and Devices" Energies 16, no. 11: 4475. https://doi.org/10.3390/en16114475
APA StyleZhang, P., Lou, Z., Gong, L., Wu, Z., Chen, X., Xu, W., Wang, Y., Xu, J., Dashevsky, Z., & Gao, F. (2023). Development and Applications of Thermoelectric Oxide Ceramics and Devices. Energies, 16(11), 4475. https://doi.org/10.3390/en16114475