Rethinking Notions of Energy Efficiency in a Global Context
Abstract
:1. Introduction
2. Method for Selection of Papers to Review
- Energy services: It is now commonplace that people do not consume energy for the sake of it, but because of the energy services it can provide [22].
- Energy feedback effects: In the form of energy rebound, this is a recognized form of feedback [23], but it needs to be expanded in terms of scope. The energy rebound concept recognizes that improving energy efficiency can lead to the increased use of the higher-efficiency device, such as a cars, or alternatively, increased energy use in other sectors because of the money saved. Steren et al. [24] found that in Israel, the rebound effect of improved car efficiency increased over time, eventually resulting in no fuel savings because of the increased frequency of driving. However, feedbacks can also occur outside nation states or regions (such as the European Union) implementing efficiency improvements, as is discussed in the following section.
- Joint production of goods: In discussing the costs and energy inputs of bioethanol production, for example, it is acknowledged that cattle feed is produced, as well as ethanol, and that energy inputs should be partitioned between the two outputs, thus raising the efficiency of ethanol production [25].
- Cost–benefit analysis (CBA): CBA is useful analogy because it attempts to consider all the (monetary) costs and benefits of a given project, such as a new airport.
- Pollution and its control: As discussed above, air pollution was the first environmental harm recognized as resulting from energy production and use. Pollution control introduces ethical notions into energy efficiency.
- Earth System Science (ESS): This review adopts an Earth System Science (ESS) approach, which in the context of this paper, has two important aspects. First, the impact of one energy-using device can affect the energy use of other devices sharing the same building or road. Second, all feedback effects must be considered.
- Energy return on investment (EROI). EROI is a vital approach for assessing the energy inputs into energy systems, and its application will usually lead to lower values for energy efficiency [26].
3. Energy Efficiency: General Considerations
4. Energy Efficiency: Cities and Their Buildings
5. Energy Efficiency: Road Passenger Transport as a Case Study
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
AVs | automated vehicles |
BECCS | bioenergy with carbon capture and storage |
BTS | Bureau of Transportation Statistics |
CBA | cost–benefit analysis |
CC | climate change |
CCS | carbon capture and storage |
CDR | carbon dioxide removal |
CH4 | methane |
CHP | combined heat and power |
CO2 | carbon dioxide |
CO2-eq | carbon dioxide equivalent |
DAC | direct air capture |
EIA | Energy Information Administration |
EJ | exajoule (1018 joule) |
EROI | energy return on investment |
ESS | Earth System Science |
EU | European Union |
EV | electric vehicle |
FF | fossil fuels |
GDP | Gross Domestic Product |
GHG | greenhouse gas |
GJ | gigajoule (109 joule) |
Gt | gigatonne = 109 tonne |
GW | gigawatt (109 watt) |
GWh | gigawatt-hr (109 watt-hr) |
ICEV | internal combustion engine vehicle |
ICT | Information and communication technology |
IEA | International Energy Agency |
IPCC | Intergovernmental Panel on Climate Change |
LCA | Life cycle analysis |
MJ | megajoule (106 joule) |
Mt | megatonne (106 tonne) |
OECD | Organization for Economic Cooperation and Development |
OPEC | Organization of the Petroleum Exporting Countries |
ppm | parts per million (atmospheric) |
p-k | passenger-km |
PPP | purchase parity pricing |
PV | photovoltaic |
RE | renewable energy |
SG | solar geoengineering |
t CO2/cap | tonnes CO2 per capita |
TWh | terawatt-hour (1012 watt-hr) |
UHI | Urban Heat Island |
USD | US dollars |
Appendix A
References
- Smil, V. World History and Energy. In Encyclpedia of Energy; Elsevier: Amsterdam, The Netherlands, 2004; pp. 549–561. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Mitigation of Climate Change. 2022. Available online: https://www.ipcc.ch/report/ar6/wg3/ (accessed on 24 April 2023).
- International Energy Agency (IEA). World Energy Outlook 2022; IEA/OECD: Paris, France, 2022; Available online: https://www.iea.org/topics/world-energy-outlook (accessed on 24 April 2023).
- Trotta, G. Assessing Energy Efficiency Improvements, Energy Dependence, and CO2 Emissions in the European Union Using a Decomposition Method. Energy Effic. 2019, 12, 1873–1890. [Google Scholar] [CrossRef]
- Mulholland, E.; Miller, J.; Bernard, Y.; Lee, K.; Rodríguez, F. The Role of NOx Emission Reductions in Euro 7/VII Vehicle Emission Standards to Reduce Adverse Health Impacts in the EU27 through 2050. Transp. Eng. 2022, 9, 100133. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Miller, J.; Henze, D.K.; Minjares, R.; Achakulwisut, P. The Global Burden of Transportation Tailpipe Emissions on Air Pollution-Related Mortality in 2010 and 2015. Environ. Res. Lett. 2019, 14, 094012. [Google Scholar] [CrossRef]
- Bradshaw, C.J.A.; Ehrlich, P.R.; Beattie, A.; Ceballos, G.; Crist, E.; Diamond, J.; Dirzo, R.; Ehrlich, A.H.; Harte, J.; Harte, M.E.; et al. Underestimating the Challenges of Avoiding a Ghastly Future. Front. Conserv. Sci. 2021, 1, 615419. [Google Scholar] [CrossRef]
- Dirzo, R.; Ceballos, G.; Ehrlich, P.R. Circling the Drain: The Extinction Crisis and the Future of Humanity. Phil. Trans. R. Soc. B 2022, 377, 20210378. [Google Scholar] [CrossRef]
- Kemp, L.; Xu, C.; Depledge, J.; Ebi, K.L.; Gibbins, G.; Kohler, T.A.; Rockström, J.; Scheffer, M.; Schellnhuber, H.J.; Steffen, W.; et al. Climate Endgame: Exploring Catastrophic Climate Change Scenarios. Proc. Natl. Acad. Sci. USA 2022, 119, e2108146119. [Google Scholar] [CrossRef]
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Gregg, J.W.; Lenton, T.M.; Palomo, I.; Eikelboom, J.A.J.; Law, B.E.; Huq, S.; Duffy, P.B.; et al. World Scientists’ Warning of a Climate Emergency. BioScience 2021, 71, 894–898. [Google Scholar] [CrossRef]
- Rising, J.; Tedesco, M.; Piontek, F.; Stainforth, D.A. The Missing Risks of Climate Change. Nature 2022, 610, 643–651. [Google Scholar] [CrossRef]
- Naeem, S.; Lu, Y.; Jackson, J. Curtailing the Collapse of the Living World. Sci. Adv. 2022, 8, eadf9317. [Google Scholar] [CrossRef] [PubMed]
- Steel, D.; DesRoches, C.T.; Mintz-Woo, K. Climate Change and the Threat to Civilization. Proc. Natl. Acad. Sci. USA 2022, 119, e2210525119. [Google Scholar] [CrossRef]
- Raymond, C.; Matthews, T.; Horton, R.M. The Emergence of Heat and Humidity Too Severe for Human Tolerance. Sci. Adv. 2020, 6, eaaw1838. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.; Greig, C.; Garnett, A. Uncertain Storage Prospects Create a Conundrum for Carbon Capture and Storage Ambitions. Nat. Clim. Chang. 2021, 11, 925–936. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Feasibility of a 100% Global Renewable Energy System. Energies 2020, 13, 5543. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Renewable Energy and Energy Reductions or Solar Geoengineering for Climate Change Mitigation? Energies 2022, 15, 7315. [Google Scholar] [CrossRef]
- Chatterjee, S.; Huang, K.-W. Unrealistic Energy and Materials Requirement for Direct Air Capture in Deep Mitigation Pathways. Nat. Commun. 2020, 11, 3287. [Google Scholar] [CrossRef] [PubMed]
- Realmonte, G.; Drouet, L.; Gambhir, A.; Glynn, J.; Hawkes, A.; Köberle, A.C.; Tavoni, M. An Inter-Model Assessment of the Role of Direct Air Capture in Deep Mitigation Pathways. Nat. Commun. 2019, 10, 3277. [Google Scholar] [CrossRef] [Green Version]
- Shove, E. What is Wrong with Energy Efficiency? Build. Res. Info. 2018, 46, 779–789. [Google Scholar] [CrossRef] [Green Version]
- Shove, E.; Walker, G. What is Energy For? Social Practice and Energy Demand. Theory Cult. Soc. 2014, 31, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Fell, M.J. Energy Services: A Conceptual Review. Energy Res. Soc. Sci. 2017, 27, 129–140. [Google Scholar] [CrossRef]
- Vivanco, D.J.; Freire-González, J.; Galvin, R.; Santarius, T.; Walnum, H.-J.; Makov, T.; Sala, S. Rebound Effect and Sustainability Science. J. Ind. Ecol. 2022, 26, 1543–1563. [Google Scholar] [CrossRef]
- Steren, A.; Rubin, O.D.; Rosenzweig, S. Energy-efficiency Policies Targeting Consumers May Not Save Energy in the Long Run: A Rebound Effect that Cannot be Ignored. Energy Res. Soc. Sci. 2022, 90, 102600. [Google Scholar] [CrossRef]
- Gnansounou, E. Coproducts Performances in Biorefineries: Development of Claiming-based Allocation Models for Environmental Policy. Bioresour. Technol. 2018, 254, 31–39. [Google Scholar] [CrossRef]
- Hall, C.A.S. Will EROI be the Primary Determinant of our Economic Future? The view of the natural scientist versus the economist. Joule 2017, 1, 635–638. [Google Scholar] [CrossRef] [Green Version]
- Daaboul, J.; Moriarty, P.; Palmer, G.; Honnery, D. Making Energy Green—A Method for Quantifying the Ecosystem Maintenance Energy and the Green Energy Return on Energy Invested. J. Clean. Prod. 2022, 344, 131037. [Google Scholar] [CrossRef]
- BP. BP Statistical Review of World Energy 2022; BP: London, UK, 2022; Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (accessed on 15 April 2023).
- International Energy Agency (IEA). Key World Energy Statistics 2021; IEA/OECD: Paris, France, 2021. [Google Scholar]
- United Nations (UN). World Energy Supplies in Selected Years 1929–1950; UN: New York, NY, USA, 1952. [Google Scholar]
- Junker, C.; Liousse, C. A Global Emission Inventory of Carbonaceous Aerosol from Historic Records of Fossil Fuel and Biofuel Consumption for the Period 1860–1997. Atmos. Chem. Phys. 2008, 8, 1195–1207. Available online: www.atmos-chem-phys.net/8/1195/2008/ (accessed on 24 April 2023). [CrossRef] [Green Version]
- World Bank. GDP, PPP (Constant 2017 International $); World Bank: Washington, DC, USA, 2023; Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.PP.KD (accessed on 20 March 2023).
- Intergovernmental Panel on Climate Change (IPCC). Synthesis Report of the IPCC Sixth Assessment Report (AR6): Summary for Policymakers. 2023. Available online: https://report.ipcc.ch/ar6syr/pdf/IPCC_AR6_SYR_SPM.pdf (accessed on 21 March 2023).
- Moriarty, P.; Honnery, D. What is the Global Potential for Renewable Energy? Renew. Sustain. Energy Rev. 2012, 16, 244–252. [Google Scholar] [CrossRef]
- Stoddard, I.; Anderson, K.; Capstick, S.; Carton, W.; Depledge, J.; Facer, K.; Gough, C.; Hache, F.; Hoolohan, C.; Hultman, M.; et al. Three Decades of Climate Mitigation: Why Haven’t We Bent the Global Emissions Curve? Annu. Rev. Environ. Resour. 2021, 46, 653–689. Available online: https://www.annualreviews.org/doi/pdf/10.1146/annurev-environ-012220-011104 (accessed on 24 April 2023). [CrossRef]
- Laitner, J.A. An Overview of the Energy Efficiency Potential. Environ. Innov. Soc. Transit. 2013, 9, 38–42. [Google Scholar] [CrossRef]
- Lovins, A.B. How Big is the Energy Efficiency Resource? Environ. Res. Lett. 2018, 13, 090401. [Google Scholar] [CrossRef] [Green Version]
- Thema, J.; Suerkemper, F.; Couder, J.; Mzavanadze, N.; Chatterjee, S.; Teubler, J.; Thomas, S.; Ürge-Vorsatz, D.; Hansen, M.B.; Stefan Bouzarovski, S.; et al. The Multiple Benefits of the 2030 EU Energy Efficiency Potential. Energies 2019, 12, 2798. [Google Scholar] [CrossRef] [Green Version]
- Mills, M.P. Mines, Minerals, and Green Energy: A Reality Check. Manhattan Institute Report, July 2020. Available online: http://www.goinggreencanada.ca/green_energy_reality_check.pdf (accessed on 24 April 2023).
- Lawton, G. Net Zero’s Dirty Secret. New Sci. 2021, 252, 38–43. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). The Role of Critical Minerals in Clean Energy Transitions. 2022. Available online: https://iea.blob.core.windows.net/assets/ffd2a83b-8c30-4e9d-980a-52b6d9a86fdc/TheRoleofCriticalMineralsinCleanEnergyTransitions.pdf (accessed on 24 April 2023).
- Moreau, V.; Dos Reis, P.C.; Vuille, F. Enough Metals? Resource constraints to supply a Fully Renewable Energy System. Resources 2019, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.H. There’s No Free Lunch in Clean Energy. Nature 2023, 615, 563. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Energy Efficiency: Lessons from Transport. Energy Policy 2012, 46, 1–3. [Google Scholar] [CrossRef]
- Hedges and Company. How Many Cars Are There in the World in 2023? Available online: https://hedgescompany.com/ (accessed on 6 June 2023).
- Gunderson, R.; Stuart, D.; Petersen, B. The Fossil Fuel Industry’s Framing of Carbon Capture and Storage: Faith in Innovation, Value Instrumentalization, and Status Quo Maintenance. J. Clean. Prod. 2020, 252, 119767. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dryden, H.; Duncan, D. Climate Disruption Caused by a Decline in Marine Biodiversity and Pollution. Int. J. Environ. Clim. Chang. 2022, 12, 3414–3436. [Google Scholar] [CrossRef]
- Georgian, S.; Hameed, S.; Morgan, L.; Amon, D.J.; Sumaila, U.R.; Johns, D.; Ripple, W.J. Scientists’ Warning of an Imperiled Ocean. Biol. Conserv. 2022, 272, 109595. [Google Scholar] [CrossRef]
- Heinze, C.; Blenckner, T.; Martins, H.; Rusiecka, D.; Döscher, R.; Gehlen, M.; Gruber, N.; Holland, E.; Hov, Ø.; Joos, F.; et al. The Quiet Crossing of Ocean Tipping Points. Proc. Natl. Acad. Sci. USA 2021, 118, e2008478118. [Google Scholar] [CrossRef]
- Gross, M. Pollution Passes Boundaries. Curr. Biol. 2022, 32, R141–R157. [Google Scholar] [CrossRef]
- Sonter, L.J.; Dade, M.C.; Watson, J.E.M.; Valenta, R.K. Renewable Energy Production Will Exacerbate Mining Threats to Biodiversity. Nat. Commun. 2020, 11, 4174. [Google Scholar] [CrossRef] [PubMed]
- Brodie, J.F.; Watson, J.E.M. Human Responses to Climate Change Will Likely Determine the Fate of Biodiversity. Proc. Natl. Acad. Sci. USA 2023, 120, e2205512120. [Google Scholar] [CrossRef]
- Vérez, D.; Borri, E.; Cabeza, L.F. Trends in Research on Energy Efficiency in Appliances and Correlations with Energy Policies. Energies 2022, 15, 3047. [Google Scholar] [CrossRef]
- Davis, S.C.; Boundy, R.G. Transportation Energy Data Book, Edition 40. ORNL/TM-2022/2376. Available online: https://tedb.ornl.gov/wp-content/uploads/2022/03/TEDB_Ed_40.pdf (accessed on 24 April 2023).
- Kim, S.W.; Brown, R.D. Urban Heat Island (UHI) Intensity and Magnitude estimations: A Systematic Literature Review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef]
- Elnabawi, M.H.; Alhumaidi, A.; Osman, B.; Alshehhi, R. Cool Roofs in Hot Climates: A Conceptual Review of Modelling Methods and Limitations. Buildings 2022, 12, 1968. [Google Scholar] [CrossRef]
- Krarti, M.; Ybyraiymkul, D.; Ja, M.K.; Burhan, M.; Chen, Q.; Shahzad, M.W.; Ng, K.C. Energy performance of hybrid evaporative-vapor compression air conditioning systems for Saudi residential building stocks. J. Build. Eng. 2023, 69, 106344. [Google Scholar] [CrossRef]
- Aram, F.; Solgi, E.; Higueras García, E.; Mosavi, A.; Várkonyi-Kóczy, A.R. The Cooling Effect of Large-Scale Urban Parks on Surrounding Area Thermal Comfort. Energies 2019, 12, 3904. [Google Scholar] [CrossRef] [Green Version]
- Ayala-Azcárraga, C.; Diaz, D.; Zambrano, L. Characteristics of Urban Parks and Their Relation to User Well-Being. Landsc. Urban Plan. 2019, 189, 27–35. [Google Scholar] [CrossRef]
- Small, G.; Jimenez, I.; Salzl, M.; Paliza Shrestha, P. Urban Heat Island Mitigation Due to Enhanced Evapotranspiration in an Urban Garden in Saint Paul, Minnesota, USA. WIT Trans. Ecol. Environ. 2020, 243, 39–45. [Google Scholar] [CrossRef]
- Jin, T. The effectiveness of Combined Heat and Power (CHP) Plant for Carbon Mitigation: Evidence from 47 Countries Using CHP Plants. Sustain. Energy Technol. Assess. 2022, 50, 101809. [Google Scholar] [CrossRef]
- Seruga, P.; Krzywonos, M.; den Boer, E.; Niedzwiecki, Ł.; Urbanowska, A.; Pawlak-Kruczek, H. Anaerobic Digestion as a Component of Circular Bioeconomy—Case Study Approach. Energies 2023, 16, 140. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Burhan, M.; Ybyraiymkul, D.; Ng, K.C. Desalination processes’ efficiency and future roadmap. Entropy 2019, 21, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, K.C.; Burhan, M.; Chen, Q.; Ybyraiymkul, D.; Akhtar, F.H.; Kumja, M.; Field, R.W.; Shahzad, M.W. A thermodynamic platform for evaluating the energy efficiency of combined power generation and desalination plants. npj Clean Water 2021, 4, 25. [Google Scholar] [CrossRef]
- Shesho, I.K.; Tashevski, D.J.; Filkoski, R.V. Heat transfer between heated, partially heated and nonheated residential units in buildings. IOP Conf. Ser. Earth Environ. Sci. 2020, 410, 012025. [Google Scholar] [CrossRef]
- Court, V.; Fizaine, F. Long-term Estimates of the Energy-Return-On-Investment (EROI) of Coal, Oil, and Gas Global Productions. Ecol. Econ. 2017, 138, 145–159. [Google Scholar] [CrossRef]
- Lark, T.J.; Hendricks, N.P.; Smith, A.; Gibbs, H.K. Environmental Outcomes of the US Renewable Fuel Standard. Proc. Natl. Acad. Sci. USA 2022, 119, e2101084119. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; Yamamoto, T.; Morikawa, T. Exploring the Interactive Effects of Ambient Temperature and Vehicle Auxiliary Loads on Electric Vehicle Energy Consumption. Appl. Energy 2018, 227, 324–331. [Google Scholar] [CrossRef]
- Moriarty, P. Electric Vehicles Can Have Only a Minor Role in Reducing Transport’s Energy and Environmental Challenges. AIMS Energy 2022, 10, 131–148. [Google Scholar] [CrossRef]
- Morse, I. A Dead Battery Dilemma. Science 2021, 372, 780–783. [Google Scholar] [CrossRef]
- Skeete, J.-P.; Wells, P.; Dong, X.; Heidrich, O.; Harper, G. Beyond the EVent Horizon: Battery Waste, Recycling, and Sustainability in the United Kingdom Electric Vehicle Transition. Energy Res. Soc. Sci. 2020, 69, 101581. [Google Scholar] [CrossRef]
- Couglan, A. The Workout Pill: Why Exercise is the Best Medicine. New Sci. 2012, 2879. Available online: https://www.newscientist.com/article/mg21528792-300-the-workout-pill-why-exercise-is-the-best-medicine/ (accessed on 24 April 2023).
- Pontzer, H. Step on It. New Sci. 2019, 242, 34–37. [Google Scholar] [CrossRef]
Topic | References Cited |
---|---|
Energy, etc., statistics | [1,3,28,29,30,34] |
Climate/environmental problems | [2,5,6,7,8,9,10,11,12,13,14,31,32,33,35] |
Energy efficiency—general | [4,20,21,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53] |
Energy efficiency—cities/buildings | [54,55,56,57,58,59,60,61,62,63,64,65,66] |
Energy efficiency—private transport | [67,68,69,70,71,72,73,74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moriarty, P.; Honnery, D. Rethinking Notions of Energy Efficiency in a Global Context. Energies 2023, 16, 4706. https://doi.org/10.3390/en16124706
Moriarty P, Honnery D. Rethinking Notions of Energy Efficiency in a Global Context. Energies. 2023; 16(12):4706. https://doi.org/10.3390/en16124706
Chicago/Turabian StyleMoriarty, Patrick, and Damon Honnery. 2023. "Rethinking Notions of Energy Efficiency in a Global Context" Energies 16, no. 12: 4706. https://doi.org/10.3390/en16124706
APA StyleMoriarty, P., & Honnery, D. (2023). Rethinking Notions of Energy Efficiency in a Global Context. Energies, 16(12), 4706. https://doi.org/10.3390/en16124706