Enhancing the Levelized Cost of Hydrogen with the Usage of the Byproduct Oxygen in a Wastewater Treatment Plant
Abstract
:1. Introduction
2. Literature Research and Overview of Simulation Software
3. Methodology
3.1. Model Description
3.2. Detail of System Components
- a.
- Electrolyzer
- b.
- Photovoltaic system
- c.
- Oxygen utilization in WWTPs
- d.
- Hydrogen refueling station
- -
- Delivery parameter: 70 MPa @ −40 °C (H70-T40),
- -
- Ambient temperature: 20 °C,
- -
- Initial pressure in the vehicle tank: 10 MPa,
- -
- Refueling level to be achieved: 95%.
Very Small | Small | Medium | Large | |
---|---|---|---|---|
Numbers of dispensers | 1 | 1 | 2 | 4 |
Allowed waiting time between two refueling events in min | 20 | 5 | 5 | 0 |
Max. number of refueling events per dispenser and hour | 2.5 | 6 | 6 | 10 |
Number of refueling events per day (average/max) | 10/20 | 30/38 | 60/75 | 125/180 |
Max. dispensed H2 in kg/h | 18 | 33.6 | 67.5 | 224 |
Dispensed H2 in kg/day (average/max) | 56/80 | 168/212 | 336/420 | 700/1000 |
3.3. Levelized Cost of Hydrogen
4. Results and Discussion
4.1. Simulation with Grid Power Only (Scenario 1)
4.1.1. Electricity Price Variation
4.1.1.1. Without Oxygen Use
4.1.1.2. With Oxygen Use
4.1.2. Variation of the CAPEX of Electrolyzer
4.2. Simulation with Grid and PV Power (Scenario 2) with Oxygen Use
4.2.1. Variation of CAPEX of the PV System
4.2.2. Direct Sale of Oxygen
4.2.3. Variation of the Weighted Average Cost of Capital (WACC)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter | Value | Unit | References |
---|---|---|---|
Project time (plant lifetime) | 30 | years | [81] |
PV plant peak power | 10 | MWp | [58] |
Total power generation by PV plant | 10,427,714.80 | kWh/a | [57] |
PV degradation rate | 0.25 | % | [81] |
AEL electrolyzer power (without rectifier) | 1125 | kW | |
Efficiency rectifier | 89 | % | [13] |
Stack lifetime | 10 | a | [82] |
Annual operation | 8759 | h/a | |
Deionized water | 10 | kg/kg H2 | [82] |
Hydrogen output a | 406.8 | kg/day | |
Oxygen output a | 2682 | kg/day | |
H2 storage (90 bar) | 19.62 | kg | |
H2 storage (875 bar) | 1048.3 | kg | |
O2 storage (90 bar) | 1417.95 | kg | |
Long-term storage rental | 10 | years | [13] |
System base load compressor | 1.25 | kW | [55] |
Energy consumption per compression operation | 60 | kWh | [55] |
H2 fixed refueling volume | 110,000 | kg H2/a | |
O2 demand | 1123,142 | kg O2/a | [13] |
Parameter | Value | Unit | References |
---|---|---|---|
Discount rate (equal to WACC) | 5.3 | % | [77] |
PV plant specific cost (CAPEX) | 530 | EUR/kWp | [81] |
PV plans OPEX fix | 2.5 | % of CAPEX p.a. | [81] |
Feed-in remuneration for surplus | 0.05221 | EUR/kWh | [59] |
PV electricity | |||
Grid connection cost | 1000 | EUR | [13] |
Electricity cost | 0.23 | EUR/kWh | [83] |
AEL electrolyzer CAPEX a | 700 | EUR/kW | [9] |
AEL electrolyzer OPEX fix | 19 | EUR/kW·a | [9] |
AEL electrolyzer OPEX var | 45 | % of CAPEX | [9] |
(Stack exchange) | Every 10 years | ||
Deionized water | 0.01 | EUR/L | [71] |
H2 storage (90 bar) | 22,500 | EUR/10 years | [13] |
H2 storage (875 bar) | 180,000 | EUR/10 years | [13] assumption |
O2 storage (90 bar) | 90,000 | EUR/10 years | [13] |
HRS CAPEX b | 738,850 | EUR | [55] assumption |
HRS OPEX fix | 2 | % of CAPEX p.a. | [55] assumption |
HRS OPEX var (inspection) | 2.3 | % of CAPEX | [55] assumption |
Every 5 years | |||
Hydrogen selling price at the HRS | 9.5 | EUR/kg H2 | [70] |
Hydrogen selling price for industry | 4.5 | EUR/kg H2 | [84,85] |
Aeration system for pure oxygen | 81,024 | EUR | [13] |
for aeration basins (CAPEX) | |||
Aeration system OPEX | 2 | % of CAPEX p.a. | [13] |
References
- Bundesverband WindEnergie. Wasserstoff Ist der Champagner der Energiewende; 30 September 2021. Available online: https://www.windindustrie-in-deutschland.de/expertenwissen/politik/wasserstoff-ist-der-champagner-der-energiewende (accessed on 12 April 2023).
- BMWi. Nationales Reformprogramm 2020: Die Nationale Wasserstoffstrategie. Available online: https://www.bmwk.de/Redaktion/DE/Publikationen/Energie/die-nationale-wasserstoffstrategie.html (accessed on 12 April 2023).
- Maggio, G.; Nicita, A.; Squadrito, G. How the hydrogen production from RES could change energy and fuel markets: A review of recent literature. Int. J. Hydrogen Energy 2019, 44, 11371–11384. [Google Scholar] [CrossRef]
- American Association for the Advancement of Science (AAAS). Generating Green Hydrogen from Biomass, an Abundant Renewable Energy Source. Available online: https://www.eurekalert.org/news-releases/958648 (accessed on 11 June 2023).
- Giulia, Z.; Giuseppe, P.; Raffaele, P.; Samir, B. Aqueous phase reforming process for the valorization of wastewater streams: Application to different industrial scenarios. Catal. Today 2022, 387, 224–236. [Google Scholar] [CrossRef]
- DVGW. Wo Aus Wind Und Sonne Grünes Gas Wird…: Eine Übersicht der Power-to-Gas-Projekte in Deutschland. 2020. Available online: https://www.dvgw.de/themen/energiewende/power-to-gas (accessed on 23 April 2023).
- Nicita, A.; Maggio, G.; Andaloro, A.P.F.; Squadrito, G. Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant. Int. J. Hydrogen. Energy 2020, 45, 11395–11408. [Google Scholar] [CrossRef]
- SPD; BÜNDNIS 90/DIE GRÜNEN; FDP. Koalitionsvertrag 2021–2025: Mehr Fortschritt wagen: Bündnis für Freiheit, Gerechtigkeit und Nachhaltigkeit. 2021. Available online: https://www.spd.de/fileadmin/Dokumente/Koalitionsvertrag/Koalitionsvertrag_2021-2025.pdf (accessed on 12 April 2023).
- Smolinka, T.; Wiebe, N.; Sterchele, P.; Palzer, A. Studie IndWEDe–Industrialisierung der Wasserelektrolyse in Deutschland: Chancen und Herausforderungen für nachhaltigen Wasserstoff für Verkehr, Strom und Wärme. 2018. Available online: https://www.now-gmbh.de/wp-content/uploads/2020/09/indwede-studie_v04.1.pdf (accessed on 23 April 2023).
- Kato, T.; Kubota, M.; Kobayashi, N.; Suzuoki, Y. Effective utilization of by-product oxygen from electrolysis hydrogen production. Energy 2005, 30, 2580–2595. [Google Scholar] [CrossRef]
- Deutsche Energie-Agentur GmbH (dena). Baustein einer Integrierten Energiewende: Roadmap Power to Gas. 2017. Available online: https://www.dena.de/newsroom/publikationsdetailansicht/pub/broschuere-baustein-einer-integrierten-energiewende-roadmap-power-to-gas/ (accessed on 23 April 2023).
- Donner+friends UG (haftungsbeschränkt) & Co., KG. LocalHy-the Real Energy Transition. Available online: https://donnerandfriends.de/projekte/localhy.html (accessed on 12 May 2023).
- Hydrogen Power Storage & Solutions East Germany, e.V. (HYPOS). LocalHy: Dezentrale Wasserelektrolyse mit kombinierter Wasserstoff- und Sauerstoffnutzung aus Erneuerbarer Energie; 2015–2020. Available online: https://www.hypos-eastgermany.de/wasserstoffprojekte/zwanzig20/chemische-umwandlung/localhy/ (accessed on 12 April 2023).
- Rao, P.; Muller, M. Industrial oxygen: Its generation and use. ACEEE Summer Study on Energy Efficiency in Industry. 2007, Volume 6, pp. 124–135. Available online: https://www.aceee.org/files/proceedings/2007/data/papers/78_6_080.pdf (accessed on 12 April 2023).
- Hurskainen, M. Industrial Oxygen Demand in Finland. VTT Technical Research Centre of Finland. VTT Research Report No. VTT-R-06563-17. Available online: https://publications.vtt.fi/julkaisut/muut/2017/VTT-R-06563-17.pdf (accessed on 12 April 2023).
- The Business Research Company. Global Oxygen Market Report and Strategies to 2032. Available online: https://www.thebusinessresearchcompany.com/report/oxygen-market (accessed on 11 June 2023).
- Statista. Production Volume of Oxygen in Germany from 2010 to 2021. Available online: https://www.statista.com/statistics/1265697/production-of-oxygen-germany/ (accessed on 11 June 2023).
- Rivarolo, M.; Magistri, L.; Massardo, A.F. Hydrogen and methane generation from large hydraulic plant: Thermo-economic multi-level time-dependent optimization. Appl. Energy 2014, 113, 1737–1745. [Google Scholar] [CrossRef]
- Alsultannty, Y.A.; Al-Shammari, N.N. Oxygen Specific Power Consumption Comparison for Air Separation Units. Eng. J. 2014, 18, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Büttner, S.; Bauhaus-Universität Weimar. Interview. Oxygen Purity. Personal Communication, 18 May 2021. [Google Scholar]
- Saleem, M.S.; Abas, N.; Kalair, A.; Rauf, S.; Haider, A.; Tahir, M.S.; Sagir, M. Design and optimization of hybrid solar-hydrogen generation system using TRNSYS. Int. J. Hydrogen Energy 2019, 45, 15814–15830. [Google Scholar] [CrossRef]
- Riedl, S.M. Development of a Hydrogen Refueling Station Design Tool. Int. J. Hydrogen Energy 2019, 45, 1–9. [Google Scholar] [CrossRef]
- Colbertaldo, P.; Aláez, S.L.G.; Campanari, S. Zero-dimensional dynamic modeling of PEM electrolyzers. Energy Procedia 2017, 142, 1468–1473. [Google Scholar] [CrossRef]
- Sánchez, M.; Amores, E.; Abad, D.; Rodríguez, L.; Clemente-Jul, C. Aspen Plus model of an alkaline electrolysis system for hydrogen production. Int. J. Hydrogen Energy 2020, 45, 3916–3929. [Google Scholar] [CrossRef]
- INSEL: Integrated Simulation Environment Language. Quebec Canada, Stuttgart: Doppelintegral GmbH. Available online: https://insel.eu/de/ (accessed on 13 April 2023).
- EDGAR. Freiberg. Available online: https://www.freiberg-institut.de/leistungen/simulation-und-optimierung/ (accessed on 13 April 2023).
- Lund, H.; Thellufsen, J.Z.; Østergaard, P.A.; Sorknæs, P.; Skov, I.R.; Mathiesen, B.V. EnergyPLAN–Advanced analysis of smart energy systems. Smart Energy 2021, 1, 100007. [Google Scholar] [CrossRef]
- Hönig, F.; Ebert, M.; Blum, U. Kläranlagen in Kombination mit der Wasserelektrolyse als neue Anbieter von Regelenergieprodukten. In Neue Energie für unser bewegtes Europa: 15. Symposium Energieinnovation: 14–16 February 2018, TU Graz, Österreich; Verlag der Technischen Universität Graz: Graz, Austria, 2018; Available online: https://www.tugraz.at/fileadmin/user_upload/Events/Eninnov2018/files/lf/Session_F6/766_LF_Hoenig.pdf (accessed on 12 April 2023). [CrossRef]
- Hönig, F.; Duque-Gonzalez, D.; Schneider, J.; Ebert, M.; Blum, U. Auslegung von dezentralen Wasserelektrolyseanlagen gekoppelt mit Erneuerbaren Energien. In Nutzung Regenerativer Energiequellen und Wasserstofftechnik 2019; Luschtinetz, T., Lehmann, J., Eds.; HOST-Hochschule Stralsund: Stralsund, Germany, 2019; pp. 110–120. Available online: https://www.hochschule-stralsund.de/storages/hs-stralsund/IRES/Dokumente/REGWA_Tagungsbaende/Tagungsband_2019-11-04.pdf (accessed on 12 April 2023).
- Hönig, F.; Duque-Gonzalez, D.; Hafemann, M.; Schneider, J.; Ebert, M.; Blum, U. Ermittlung der CO2-Emissionen von Power-to-Gas-Projekten Mittels GHOST und Validierung mit EnergyPLAN. In Energy for future-Wege zur Klimaneutralität: 16. Symposium Energieinnovation: 12–14 February 2020, TU Graz, Österreich; Verlag der Technischen Universität Graz: Graz, Austria, 2020; Available online: https://www.tugraz.at/fileadmin/user_upload/tugrazExternal/4778f047-2e50-4e9e-b72d-e5af373f95a4/files/lf/Session_F1/614_LF_Hoenig.pdf (accessed on 12 April 2023). [CrossRef]
- Büttner, S. Warum kommunale Kläranlagen Wasserstoff mittels Elektrolyse produzieren sollten. Gwf-Wasser 2020, 12, 14–17. [Google Scholar]
- Büttner, S.; Jentsch, M.F.; Hörnlein, S.; Hubner, B. Sektorenkopplung im Rahmen der Energiewende-Einsatz von Elektrolyseursauerstoff auf kommunalen Kläranlagen. In Nutzung Regenerativer Energiequellen und Wasserstofftechnik 2018; Luschtinetz, T., Lehmann, J., Eds.; HOST-Hochschule Stralsund: Stralsund, Germany, 2018; pp. 22–41. Available online: https://www.hochschule-stralsund.de/storages/hs-stralsund/IRES/Dokumente/REGWA_Tagungsbaende/Tagungsband_2018-10-30.pdf (accessed on 12 April 2023).
- Jentsch, M.F.; Büttner, S. Dezentrale Umsetzung der Energie- und Verkehrswende mit Wasserstoffsystemen auf Kläranlagen. Gwf Gas Energ. 2019, 160, 28–39. [Google Scholar]
- Minutillo, M.; Perna, A.; Forcina, A.; Di Micco, S.; Jannelli, E. Analyzing the levelized cost of hydrogen in refueling stations with on-site hydrogen production via water electrolysis in the Italian scenario. Int. J. Hydrogen Energy 2020, 46, 13667–13677. [Google Scholar] [CrossRef]
- Viktorsson, L.; Heinonen, J.T.; Skulason, J.B.; Unnthorsson, R. A Step towards the Hydrogen Economy—A Life Cycle Cost Analysis of A Hydrogen Refueling Station. Energies 2017, 10, 763. [Google Scholar] [CrossRef] [Green Version]
- Squadrito, G.; Nicita, A.; Maggio, G. A size-dependent financial evaluation of green hydrogen-oxygen co-production. Renew. Energy 2021, 163, 2165–2177. [Google Scholar] [CrossRef]
- Fasihi, M.; Breyer, C. Baseload electricity and hydrogen supply based on hybrid PV-wind power plants. J. Clean. Prod. 2020, 243, 118466. [Google Scholar] [CrossRef]
- Salzgitter, A.G. WindH2: Windwasserstoff Salzgitter. Available online: https://salcos.salzgitter-ag.com/de/windh2.html (accessed on 28 April 2023).
- Salzgitter Mannesmann Forschung GmbH. GrInHy2.0: Green Industrial Hydrogen. Available online: https://www.green-industrial-hydrogen.com/ (accessed on 28 April 2023).
- Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS. Großelektrolyseur Leuna Gewinner im Ideenwettbewerb Reallabore der Energiewende: GreenHydroChem Mitteldeutschland wird gefördert; 18 July 2019. Available online: https://www.imws.fraunhofer.de/de/presse/pressemitteilungen/reallabor-leuna-elektrolyse-wasserstoff.html (accessed on 28 April 2023).
- Raffinerie Heide GmbH. Westküste 100: Sektorenkopplung Komplett: Grüner Wasserstoff und Dekarbonisierung im Industriellen Maßstab. Available online: https://www.westkueste100.de/ (accessed on 28 April 2023).
- ARGE Wasserstoff-Initiative-Vorpommern. Solarer Wasserstoff in Mecklenburg-Vorpommern: Utopie oder Zukunftstechnologie. 2002. Available online: https://www.yumpu.com/de/document/view/6899239/arge-wasserstoff-initiative-vorpommern (accessed on 28 April 2023).
- Forschungsinstitut für Wasser- und Abfallwirtschaft an der RWTH Aachen (FiW) e.V. WaStraK NRW “Einsatz der Wasserstofftechnologie in der Abwasserbeseitigung”-Phase I: Abschlussbericht: 1–178. Available online: https://www.lanuv.nrw.de/fileadmin/forschung/wasser/klaeranlage_abwasser/WaStraK_Abschlussbericht_Teil%201.pdf (accessed on 28 April 2023).
- Schäfer, M.; Gretzschel, O.; Steinmetz, H. The Possible Roles of Wastewater Treatment Plants in Sector Coupling. Energies 2022, 13, 2088. [Google Scholar] [CrossRef] [Green Version]
- Alstone, P.; Gershenson, D.; Kammen, D.M. Decentralized energy systems for clean electricity access. Nat. Clim. Chang. 2015, 5, 305–314. [Google Scholar] [CrossRef]
- Reuters. Imported Hydrogen Can Beat EU Production Costs by 2030-Study. Available online: https://www.reuters.com/business/energy/imported-hydrogen-can-beat-eu-production-costs-by-2030-study-2023-01-24/ (accessed on 11 June 2023).
- Bayern Innovativ GmbH. Production and Import Costs of Hydrogen. Available online: https://www.bayern-innovativ.de/en/page/production-and-import-costs-of-hydrogen (accessed on 11 June 2023).
- FuelCellsWorks. 92nd German hydrogen Station Opens as TOTAL Opens Two New Hydrogen Stations. Available online: https://fuelcellsworks.com/news/92nd-germany-station-open-as-total-opens-two-new-hydrogen-stations/ (accessed on 11 June 2023).
- Artuso, P.; Zuccari, F.; Dell’era, A.; Orecchini, F. PV-Electrolyzer Plant: Models and Optimization Procedure. J. Sol. Energy Eng. 2010, 132, 031016. [Google Scholar] [CrossRef]
- Parra, D.; Patel, M.K. Techno-economic implications of the electrolyser technology and size for power-to-gas systems. Int. J. Hydrogen Energy 2016, 41, 3748–3761. [Google Scholar] [CrossRef]
- Ferrero, D.; Gamba, M.; Lanzini, A.; Santarelli, M. Power-to-Gas Hydrogen: Techno-economic Assessment of Processes towards a Multi-purpose Energy Carrier. Energy Procedia 2016, 101, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Yates, J.; Daiyan, R.; Patterson, R.; Egan, R.; Amal, R.; Ho-Baille, A.; Chang, N.L. Techno-economic Analysis of Hydrogen Electrolysis from Off-Grid Stand-Alone Photovoltaics Incorporating Uncertainty Analysis. Cell Rep. Phys. Sci. 2020, 1, 100209. [Google Scholar] [CrossRef]
- Grimm, A.; de Jong, W.A.; Kramer, G.J. Renewable hydrogen production: A techno-economic comparison of photoelectrochemical cells and photovoltaic-electrolysis. Int. J. Hydrogen Energy 2020, 45, 22545–22555. [Google Scholar] [CrossRef]
- Gutiérrez-Martín, F.; Amodio, L.; Pagano, M. Hydrogen production by water electrolysis and off-grid solar PV. Int. J. Hydrogen Energy 2020, 44, 11371. [Google Scholar] [CrossRef]
- H2 POWERCELL GmbH. Interview. Components of a Hydrogen Refueling Station. Wettringen. Personal Communication, 22 September 2021. [Google Scholar]
- Smolinka, T.; Günther, M.; Garche, J. NOW-Studie: “Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien”: Kurzfassung des Abschlussberichts. 2011. Available online: https://www.now-gmbh.de/projektfinder/studie-wasserelektrolyse/ (accessed on 25 April 2023).
- PV*SOL premium: Die Planungs- und Simulationssoftware für Photovoltaik-Systeme. Berlin. Available online: https://valentin-software.com/produkte/pvsol-premium/ (accessed on 25 April 2023).
- BMWi. Verordnung Zur Einführung von Ausschreibungen der finanziellen Förderung für Freiflächenanlagen sowie zur Änderung Weiterer Verordnungen zur Förderung der erneuerbaren Energien: Freiflächenausschreibungsverordnung-FFAV. 2015, pp. 1–105. Available online: https://www.bmwk.de/Redaktion/DE/Downloads/V/verordnung-zur-einfuehrung-von-ausschreibungen-der-finanziellen-foerderung-fuer-freiflaechenanlagen.pdf (accessed on 25 April 2023).
- Bundesnetzagentur. Solar Freifläche: Beendete Ausschreibungen/Statistiken. Available online: https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Ausschreibungen/Solaranlagen1/BeendeteAusschreibungen/BeendeteAusschreibungen_node.html (accessed on 25 April 2023).
- Fricke, K. Energieeffizienz kommunaler Kläranlagen; Umweltbundesamt: Dessau-Roßlau, Germany, 2009; Available online: https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3855.pdf (accessed on 25 April 2023).
- Dettmar, J.; Brombach, H. Im Spiegel der Statistik: Abwasserkanalisation und Regenwasserbehandlung in Deutschland. Korresp. Abwasser 2019, 66, 354–364. [Google Scholar]
- Büttner, S.; Bauhaus-Universität Weimar. Interview. Disproportionately High Oxygen Demand. Personal Communication, 27 April 2021. [Google Scholar]
- SAE International. SAE J2601 Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles: J2601_202005. 2020th ed. Available online: https://www.sae.org/standards/content/j2601_202005/ (accessed on 25 April 2023).
- Landesagentur für Elektromobilität und Brennstoffzellentechnologie Baden-Württemberg GmbH (e-mobil BW) in Kooperation mit dem Fraunhofer-Institut für Solare Energiesysteme ISE. Wasserstoff-Infrastruktur für eine nachhaltige Mobilität: Entwicklungsstand und Forschungsbedarf 2013. Available online: https://www.e-mobilbw.de/fileadmin/media/e-mobilbw/Publikationen/Studien/Wasserstoff-Infrastruktur_fuer_eine_nachhaltige_Mobilitaet_-_final_WEB.pdf (accessed on 25 April 2023).
- NOW GmbH. Einführung von Wasserstoffbussen im ÖPNV: Fahrzeuge, Infrastruktur und betriebliche Aspekte. 2018. Available online: https://www.now-gmbh.de/wp-content/uploads/2018/12/NOW-Broschuere_Wasserstoffbusse-im-OePNV.pdf (accessed on 25 April 2023).
- Bauer, A.; Mayer, T.; Semmel, M.; Morales, M.A.G.; Wind, J. Energetic evaluation of hydrogen refueling stations with liquid or gaseous stored hydrogen. Int. J. Hydrogen Energy 2019, 44, 6795–6812. [Google Scholar] [CrossRef]
- Reddi, K.; Elgowainy, A.; Sutherland, E. Hydrogen refueling station compression and storage optimization with tube-trailer deliveries. Int. J. Hydrogen Energy 2014, 39, 19169–19181. [Google Scholar] [CrossRef] [Green Version]
- Ozsaban, M.; Midilli, A.; Dincer, I. Exergy analysis of a high pressure multistage hydrogen gas storage system. Int. J. Hydrogen Energy 2011, 36, 11440–11450. [Google Scholar] [CrossRef]
- H2 MOBILITY. 70MPa Hydrogen Refuelling Station Standardization: Functional Description of Station Modules. 2010. Available online: https://www.now-gmbh.de/wissensfinder (accessed on 25 April 2023).
- Filling up with H2: Hydrogen Mobility Starts Now. 2023. Available online: https://h2.live/ (accessed on 25 April 2023).
- Kuckshinrichs, W.; Ketelaer, T.; Koj, J.C. Economic Analysis of Improved Alkaline Water Electrolysis. Front. Energy Res. 2017, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Blohm, H.; Lüder, K.; Schaefer, C. (Eds.) Investition: Schwachstellenanalyse des Investitionsbereichs und Investitionsrechnung, 9th ed.; Vahlen: München, Germay, 2006. [Google Scholar]
- Wöhe, G.; Döring, U. (Eds.) Einführung in Die Allgemeine Betriebswirtschaftslehre, 24th ed.; Vahlen: München, Germay, 2010. [Google Scholar]
- Kruschwitz, L. (Ed.) Investitionsrechnung, 12th ed.; Oldenbourg Wissenschaftsverlag: München, Germay, 2009. [Google Scholar]
- Fraunhofer, I.S.E. Current and Future Cost of Photovoltaics: Long-term Scenarios for Market Development, System Prices and LCOE of Utility-Scale PV Systems. 2015. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/AgoraEnergiewende_Current_and_Future_Cost_of_PV_Feb2015_web.pdf (accessed on 25 April 2023).
- High Volume Oxygen. How Much Does Oxygen Cost? 2021. Available online: https://highvolumeoxygen.com/how-much-does-oxygen-cost/ (accessed on 11 June 2023).
- KPMG. Cost of Capital Study 2020: Global Economy-Search for Orientation? 2020. Available online: https://kpmg.com/de/en/home/insights/2020/10/cost-of-capital-study-2020.html (accessed on 25 April 2023).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development 2015. Available online: https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981 (accessed on 25 April 2023).
- Die Bundesregierung. Deutsche Nachhaltigkeitsstrategie: Weiterentwicklung 2021. Available online: https://www.bundesregierung.de/resource/blob/998006/1873516/9d73d857a3f7f0f8df5ac1b4c349fa07/2021-03-10-dns-2021-finale-langfassung-barrierefrei-data.pdf?download=1 (accessed on 25 April 2023).
- Stratmann, K. Energieintensive Industrie fordert radikalen Schnitt beim Strompreis: Große Energieverbraucher kämpfen dafür, dass die Strompreise auf ein wettbewerbsfähiges Niveau gesenkt werden. Sie wissen den Bundeskanzler auf ihrer Seite. 2022. Available online: https://www.handelsblatt.com/politik/ (accessed on 25 April 2023).
- Fraunhofer Institute for Solar Energy Systems ISE. Levelized Cost of Electricity: Renewable Energy Technologies. 2021. Available online: https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/EN2021_Fraunhofer-ISE_LCOE_Renewable_Energy_Technologies.pdf (accessed on 25 April 2023).
- Koj, J.C.; Wulf, C.; Schreiber, A.; Zapp, P. Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis. Energies 2017, 10, 860. [Google Scholar] [CrossRef] [Green Version]
- Statista. Strompreise für Gewerbe- und Industriekunden in Deutschland in den Jahren 2011 bis 2021. 2021. Available online: https://de.statista.com/statistik/daten/studie/154902/umfrage/strompreise-fuer-industrie-und-gewerbe-seit-2006/ (accessed on 10 May 2023).
- statista. Forecast Hydrogen Selling Price of Selected Giga-Scale Projects Worldwide by 2021 Wind and Solar Costs. 2021. Available online: https://www.statista.com/statistics/1260117/projected-selling-prices-of-large-scale-hydrogen-green-projects/ (accessed on 5 May 2023).
- IRENA. Hydrogen: A renewable Energy Perspective, Report prepared for the 2nd Hydrogen Energy Ministerial Meeting. 2019. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_Hydrogen_2019.pdf (accessed on 5 May 2023).
Literature | Grid | PV | Electrolyzer | Compressor and Storage | Additional Components | Amount of H2 Produced | Electrolyzer Size | LCOH [EUR/kg H2] |
---|---|---|---|---|---|---|---|---|
Artuso et al., 2010 [49] | ✓ | ✓ | 840.15 kg/year | 26 kW | 17.71 | |||
Parra and Patel, 2016 [50] | ✓ | ✓ | ✓ | 1 GW | 2.55 | |||
Ferrero et al., 2016 [51] | ✓ | ✓ | ✓ | 10 MW | 3.8 | |||
Yates et al., 2020 [52] | ✓ | ✓ | 1 MW | 2.39 | ||||
Grimm et al., 2020 [53] | ✓ | ✓ | 10.000 kg/day | 5.14 | ||||
Gutiérrez-Martín et al., 2020 [54] | ✓ | ✓ | ✓ | Battery storage | 522.8 kg/year | 7.97 kW | 5.89 | |
Gutiérrez-Martín et al., 2020 [54] | ✓ | ✓ | ✓ | 522.8 kg/year | 10.9 kW | 6.42 | ||
Nicita et al., 2020 [7] | ✓ | ✓ | ✓ | 12.7 kg/day | 180 kW | 38.59 | ||
Minutillo et al., 2020 [34] | ✓ | ✓ | ✓ | ✓ | Refrigeration and H2-dispensing unit | 200 kg/day | 472 kW | 9.29 |
WWTP Size | Number of inhabitants | Specific Power Consumption [kWh/PE·a] |
---|---|---|
Size class 1 | <1000 | 75 |
Size class 2 | 1001–5000 | 55 |
Size class 3 | 5001–10,000 | 44 |
Size class 4 | 10,001–100,000 | 35 |
Size class 5 | >100,000 | 32 |
Simulation Scenarios | Grid | PV | Electrolyzer | Compressor and Storage | Additional Components | Amount of H2 Produced | Electrolyzer Size | LCOH [EUR/kg H2] | LCOHO2 [EUR/kg H2] |
---|---|---|---|---|---|---|---|---|---|
Scenario 1 | ✓ | ✓ | ✓ | Refrigeration and H2-dispensing unit | 407 kg/day | 1. 125 MW | 7.91 | 7.44 | |
Scenario 2 | ✓ | ✓ | ✓ | ✓ | Refrigeration and H2-dispensing unit | 407 kg/day | 1. 125 MW | 6.75 | 6.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hönig, F.; Rupakula, G.D.; Duque-Gonzalez, D.; Ebert, M.; Blum, U. Enhancing the Levelized Cost of Hydrogen with the Usage of the Byproduct Oxygen in a Wastewater Treatment Plant. Energies 2023, 16, 4829. https://doi.org/10.3390/en16124829
Hönig F, Rupakula GD, Duque-Gonzalez D, Ebert M, Blum U. Enhancing the Levelized Cost of Hydrogen with the Usage of the Byproduct Oxygen in a Wastewater Treatment Plant. Energies. 2023; 16(12):4829. https://doi.org/10.3390/en16124829
Chicago/Turabian StyleHönig, Franziska, Ganesh Deepak Rupakula, Diana Duque-Gonzalez, Matthias Ebert, and Ulrich Blum. 2023. "Enhancing the Levelized Cost of Hydrogen with the Usage of the Byproduct Oxygen in a Wastewater Treatment Plant" Energies 16, no. 12: 4829. https://doi.org/10.3390/en16124829
APA StyleHönig, F., Rupakula, G. D., Duque-Gonzalez, D., Ebert, M., & Blum, U. (2023). Enhancing the Levelized Cost of Hydrogen with the Usage of the Byproduct Oxygen in a Wastewater Treatment Plant. Energies, 16(12), 4829. https://doi.org/10.3390/en16124829