A Review on Battery Thermal Management for New Energy Vehicles
Abstract
:1. Introduction
2. Battery Thermal Performances
3. Battery Thermal Management Systems
3.1. Air-Cooling
3.1.1. Parallel
3.1.2. Axial Air Forced Convection
3.2. Liquid-Cooling
3.2.1. Liquid-Based Direct Cooling
Material | Kinematic Viscosity at 20 °C (cSt) | Density at 20 °C (g/mL) | Thermal Conductivity (W/mK) | Dielectric Constant | Specific Heat Capacity (J/kg K) | Boiling (°C) | Flash Point (°C) |
---|---|---|---|---|---|---|---|
Water-Glycol (1:1) mixture | 4.9 | 1.08 | 0.40 | 64.92 | 3473 | 107 | 111 |
Silicone oil | 994.2 | 0.97 | 0.15 | 2.75 | 1370 | 140 | 316 |
Poly-alpha-olefins (Chevron Phillips) | 5.1 (40 °C) | 0..80 | 0.14 | 2241 | 159 | ||
Hydrofluoroethers (3M Novec 7000) | 0.3 | 1.4 | 0.08 | 7.4 | 1300 | 34 | none |
Mineral oil | 56.0 | 0.92 | 0.13 | 1900 | 115 |
3.2.2. Liquid-Based Indirect Cooling
Cold Plate
Discrete Tube
3.3. PCM-Cooling
3.4. The BTMS for NEVs
3.5. The Future Prospect of BTMS for NEVs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
LIBs | Lithium-ion batteries |
NEVs | New energy vehicles |
HEVs | Hybrid electric vehicles |
BEVs | Pure battery electric vehicles |
TR | Thermal runaway |
BTMS | Battery management system |
PCM | Phase change material |
VTMS | Vehicle thermal management system |
BMS | Battery management system |
ISC | Internal short circuit |
TSMS | Thermal safety management system |
ESC | External short circuit |
NMC | Lithium nickel manganese cobalt oxide |
NCA | Lithium nickel cobalt aluminum oxide |
LFP | Lithium iron phosphate oxide |
SEI | Solid electrolyte interface |
HVAC | Heating ventilation air condition |
PAO | Poly-alpha-olefins |
NS | Nano-silica |
PA | paraffin |
PGS | Pyrolytic graphite sheet |
EG | Expanded graphite |
TCN | Thermal conductive network |
CM | Copper mesh |
TSMS | Thermal safety management system |
FBG | Fiber Bragg grating |
References
- Duan, J.; Tang, X.; Dai, H.; Yang, Y.; Wu, W.; Wei, X.; Huang, Y. Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review. Electrochem. Energy Rev. 2020, 3, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Hao, M.; Li, J.; Park, S.; Moura, S.; Dames, C. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nat. Energy 2018, 3, 899–906. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Quijano, K.; Crawford, M.M. YOLOv5-Tassel: Detecting Tassels in RGB UAV Imagery with Improved YOLOv5 Based on Transfer Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8085–8094. [Google Scholar] [CrossRef]
- Xia, X.; Xiong, L.; Huang, Y.; Lu, Y.; Gao, L.; Xu, N.; Yu, Z. Estimation on IMU yaw misalignment by fusing information of automotive onboard sensors. Mech. Syst. Signal Process. 2022, 162, 107993. [Google Scholar] [CrossRef]
- Xia, G.; Cao, L.; Bi, G. A review on battery thermal management in electric vehicle application. J. Power Sources 2017, 367, 90–105. [Google Scholar] [CrossRef]
- Liu, W.; Xiong, L.; Xia, X.; Lu, Y.; Gao, L.; Song, S. Vision-aided intelligent vehicle sideslip angle estimation based on a dynamic model. IET Intell. Transp. Syst. 2020, 14, 1183–1189. [Google Scholar] [CrossRef]
- Xia, X.; Meng, Z.; Han, X.; Li, H.; Tsukiji, T.; Xu, R.; Zheng, Z.; Ma, J. An automated driving systems data acquisition and analytics platform. Transp. Res. Part C Emerg. Technol. 2023, 151, 104120. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Yang, X.; Gong, J.; Zhang, J. Thermal management of parallel cells—Methodology based on non-linear dynamics. eTransportation 2022, 13, 100187. [Google Scholar] [CrossRef]
- Wu, X.; Song, K.; Zhang, X.; Hu, N.; Li, L.; Li, W.; Zhang, L.; Zhang, H. Safety Issues in Lithium Ion Batteries: Materials and Cell Design. Front. Energy Res. 2019, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Wang, S.; Wu, W.; Chen, K.; Hong, S.; Lai, Y. A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers. Manag. 2019, 182, 262–281. [Google Scholar] [CrossRef]
- Zolot, M.; Pesaran, A.A.; Mihalic, M. Thermal Evaluation of Toyota Prius Battery Pack. In Proceedings of the Future Car Congress, Arlington, VA, USA, 3–5 June 2002. [Google Scholar]
- Geisbauer, C.; Wöhrl, K.; Mittmann, C.; Schweiger, H.-G. Review—Review of Safety Aspects of Calendar Aged Lithium Ion Batteries. J. Electrochem. Soc. 2020, 167, 090523. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, G.; Wang, X.; Wei, G.; Han, G.; Zhu, J.; Wei, X.; Dai, H. Investigating the critical characteristics of thermal runaway process for LiFePO4/graphite batteries by a ceased segmented method. iScience 2021, 24, 103088. [Google Scholar] [CrossRef]
- Wang, M.; Teng, S.; Xi, H.; Li, Y. Cooling performance optimization of air-cooled battery thermal management system. Appl. Therm. Eng. 2021, 195, 117242. [Google Scholar] [CrossRef]
- Malik, M.; Dincer, I.; Rosen, M.A. Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles. Int. J. Energy Res. 2016, 40, 1011–1031. [Google Scholar] [CrossRef]
- Jaguemont, J.; Van Mierlo, J. A comprehensive review of future thermal management systems for battery-electrified vehicles. J. Energy Storage 2020, 31, 101551. [Google Scholar] [CrossRef]
- He, W.; Ye, F.; Lin, J.; Wang, Q.; Xie, Q.; Pei, F.; Zhang, C.; Liu, P.; Li, X.; Wang, L.; et al. Boosting the Electrochemical Performance of Li- and Mn-Rich Cathodes by a Three-in-One Strategy. Nano-Micro Lett. 2021, 13, 205. [Google Scholar] [CrossRef]
- Hu, Y.; Choe, S.-Y.; Garrick, T.R. Measurement of heat generation rate and heat sources of pouch type Li-ion cells. Appl. Therm. Eng. 2021, 189, 116709. [Google Scholar] [CrossRef]
- Zhang, Q.; Cao, G.; Zhang, X. Study of Wet Cooling Flat Heat Pipe for Battery Thermal Management Application. Appl. Therm. Eng. 2022, 219, 119407. [Google Scholar] [CrossRef]
- Olabi, A.G.; Maghrabie, H.M.; Adhari, O.H.K.; Sayed, E.T.; Yousef, B.A.A.; Salameh, T.; Kamil, M.; Abdelkareem, M.A. Battery thermal management systems: Recent progress and challenges. Int. J. Thermofluids 2022, 15, 100171. [Google Scholar] [CrossRef]
- Tang, X.; Wei, X.; Zhang, H.; Li, D.; Zhang, G.; Wang, X.; Zhu, J.; Dai, H. Experimental and modeling analysis of thermal runaway for LiNi0.5Mn0.3Co0.2O2/graphite pouch cell under adiabatic condition. Int. J. Energy Res. 2021, 45, 10667–10681. [Google Scholar] [CrossRef]
- Li, H.; Kong, X.; Liu, C.; Zhao, J. Study on thermal stability of nickel-rich/silicon-graphite large capacity lithium ion battery. Appl. Therm. Eng. 2019, 161, 114144. [Google Scholar] [CrossRef]
- Omar, N.; Van den Bossche, P.; Mulder, G.; Daowd, M.; Timmermans, J.M.; Mierlo, J.V.; Pauwels, S. Assessment of performance of lithium iron phosphate oxide, nickel manganese cobalt oxide and nickel cobalt aluminum oxide based cells for using in plug-in battery electric vehicle applications. In Proceedings of the 2011 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 6–9 September 2011; pp. 1–7. [Google Scholar]
- Jaguemont, J.; Boulon, L.; Dubé, Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl. Energy 2016, 164, 99–114. [Google Scholar] [CrossRef]
- Ren, D.; Hsu, H.; Li, R.; Feng, X.; Guo, D.; Han, X.; Lu, L.; He, X.; Gao, S.; Hou, J.; et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries. eTransportation 2019, 2, 100034. [Google Scholar] [CrossRef]
- Tan, J.; Cannon, A.; Ryan, E. Simulating dendrite growth in lithium batteries under cycling conditions. J. Power Sources 2020, 463, 228187. [Google Scholar] [CrossRef]
- Ren, D.; Feng, X.; Liu, L.; Hsu, H.; Lu, L.; Wang, L.; He, X.; Ouyang, M. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition. Energy Storage Mater. 2021, 34, 563–573. [Google Scholar] [CrossRef]
- Fang, Q.; Wei, X.; Lu, T.; Dai, H.; Zhu, J. A State of Health Estimation Method for Lithium-Ion Batteries Based on Voltage Relaxation Model. Energies 2019, 12, 1349. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Choe, S.-Y.; Garrick, T.R. Measurement of two-dimensional heat generation rate of pouch type lithium-ion battery using a multifunctional calorimeter. J. Power Sources 2022, 532, 231350. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Luo, L.; Fan, Y.; Du, Z. A review on thermal management of lithium-ion batteries for electric vehicles. Energy 2022, 238, 121652. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Q.; Wang, G.; Lu, P.; Zhao, M.; Bao, W. A review on research status and key technologies of battery thermal management and its enhanced safety. Int. J. Energy Res. 2018, 42, 4008–4033. [Google Scholar] [CrossRef]
- Rao, Z.; Wang, S. A review of power battery thermal energy management. Renew. Sustain. Energy Rev. 2011, 15, 4554–4571. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, B.; Li, B.; Yan, Y. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew. Sustain. Energy Rev. 2016, 64, 106–128. [Google Scholar] [CrossRef]
- Henke, M.; Hailu, G. Thermal Management of Stationary Battery Systems: A Literature Review. Energies 2020, 13, 4194. [Google Scholar] [CrossRef]
- Pesaran, A.A. Battery thermal models for hybrid vehicle simulations. J. Power Sources 2002, 110, 377–382. [Google Scholar] [CrossRef]
- Lu, Z.; Meng, X.Z.; Wei, L.C.; Hu, W.Y.; Zhang, L.Y.; Jin, L.W. Thermal Management of Densely-packed EV Battery with Forced Air Cooling Strategies. Energy Procedia 2016, 88, 682–688. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Yang, N.; Zhang, X.; Li, G. Investigation of the thermal performance of axial-flow air cooling for the lithium-ion battery pack. Int. J. Therm. Sci. 2016, 108, 132–144. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Wang, X.; Zhang, J. Modeling and optimization of an enhanced battery thermal management system in electric vehicles. Front. Mech. Eng. 2019, 14, 65–75. [Google Scholar] [CrossRef]
- Chen, K.; Wu, W.; Yuan, F.; Chen, L.; Wang, S. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern. Energy 2019, 167, 781–790. [Google Scholar] [CrossRef]
- Xie, J.H.; Ge, Z.J.; Zang, M.Y.; Wang, S.F. Structural optimization of lithium-ion battery pack with forced air cooling system. Appl. Therm. Eng. 2017, 126, 583–593. [Google Scholar] [CrossRef]
- Zhao, J.; Rao, Z.; Huo, Y.; Liu, X.; Li, Y. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles. Appl. Therm. Eng. 2015, 85, 33–43. [Google Scholar] [CrossRef]
- Al-Zareer, M.; Dincer, I.; Rosen, M.A. A review of novel thermal management systems for batteries. Int. J. Energy Res. 2018, 42, 3182–3205. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, J.; Kim, G.-H.; Yang, C.; Pesaran, A. Comparison of different cooling methods for lithium ion battery cells. Appl. Therm. Eng. 2016, 94, 846–854. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, G.; Zhu, J.; Feng, X.; Wei, X.; Ouyang, M.; Dai, H. Multi-objective optimization design and experimental investigation for a parallel liquid cooling-based Lithium-ion battery module under fast charging. Appl. Therm. Eng. 2022, 211, 118503. [Google Scholar] [CrossRef]
- Pesaran, A. Battery Thermal Management in EVs and HEVs: Issues and Solutions. Battery Man 2001, 43, 34–49. [Google Scholar]
- Suresh Patil, M.; Seo, J.-H.; Lee, M.-Y. A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management. Energy Convers. Manag. 2021, 229, 113715. [Google Scholar] [CrossRef]
- Roe, C.; Feng, X.; White, G.; Li, R.; Wang, H.; Rui, X.; Li, C.; Zhang, F.; Null, V.; Parkes, M.; et al. Immersion cooling for lithium-ion batteries—A review. J. Power Sources 2022, 525, 231094. [Google Scholar] [CrossRef]
- Deng, Y.; Feng, C.; E, J.; Zhu, H.; Chen, J.; Wen, M.; Yin, H. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review. Appl. Therm. Eng. 2018, 142, 10–29. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Li, H.B.; Qu, Z.G.; Zhang, J.F. Recent progress in lithium-ion battery thermal management for a wide range of temperature and abuse conditions. Int. J. Hydrogen Energy 2022, 47, 9428–9459. [Google Scholar] [CrossRef]
- An, Z.; Jia, L.; Li, X.; Ding, Y. Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel. Appl. Therm. Eng. 2017, 117, 534–543. [Google Scholar] [CrossRef]
- Hirano, H.; Tajima, T.; Hasegawa, T.; Sekiguchi, T.; Uchino, M. Boiling Liquid Battery Cooling for Electric Vehicle. In Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014; pp. 1–4. [Google Scholar]
- Patil, M.; Seo, J.-H.; Bang, Y.-M.; Kim, D.-W.; Ekanayake, G.; Singh, G.; Kim, H.-M.; Choi, Y.-H.; Lee, M.-Y. A Novel Design for Lithium ion Battery Cooling using Mineral Oil. In Proceedings of the 3rd International Mega-Conference on Green and Smart Technology (GST 2016), Jeju Island, Republic of Korea, 21–23 December 2016. [Google Scholar]
- Matsuoka, M.; Matsuda, K.; Kubo, H. Liquid immersion cooling technology with natural convection in data center. In Proceedings of the 2017 IEEE 6th International Conference on Cloud Networking (CloudNet), Prague, Czech Republic, 25–27 September 2017; pp. 1–7. [Google Scholar]
- Wypych, G. 11—Selection for Different Polymers. In Handbook of Antiblocking, Release, and Slip Additives, 4th ed.; Wypych, G., Ed.; ChemTec Publishing: Scarborough, ON, Canada, 2021; pp. 133–225. [Google Scholar]
- Birbarah, P.; Gebrael, T.; Foulkes, T.; Stillwell, A.; Moore, A.; Pilawa-Podgurski, R.; Miljkovic, N. Water immersion cooling of high power density electronics. Int. J. Heat Mass Transf. 2020, 147, 118918. [Google Scholar] [CrossRef]
- Marchionni, G.; Petricci, S.; Guarda, P.A.; Spataro, G.; Pezzin, G. The comparison of thermal stability of some hydrofluoroethers and hydrofluoropolyethers. J. Fluor. Chem. 2004, 125, 1081–1086. [Google Scholar] [CrossRef]
- Dhisale, M. CFD Simulation of Thermal Management System (Immersion Cooling) of Lithium Ion Batteries in EVs; Indian Institute of Technology Bombay: Mumbai, India, 2021. [Google Scholar]
- Jin, L.W.; Lee, P.S.; Kong, X.X.; Fan, Y.; Chou, S.K. Ultra-thin minichannel LCP for EV battery thermal management. Appl. Energy 2014, 113, 1786–1794. [Google Scholar] [CrossRef]
- Yin, B.; Zuo, S.; Xu, Y.; Chen, S. Performance of liquid cooling battery thermal management system in vibration environment. J. Energy Storage 2022, 53, 105232. [Google Scholar] [CrossRef]
- Wu, C.; Zhao, J.; Liu, C.; Rao, Z. Performance and prediction of baffled cold plate based battery thermal management system. Appl. Therm. Eng. 2023, 219, 119466. [Google Scholar] [CrossRef]
- Liu, W.; Tan, G.; Guo, X.; Li, J.; Gao, Y.; Li, W. Boiling Coolant Vapor Fraction Analysis for Cooling the Hydraulic Retarder. SAE Int. J. Engines 2015, 8, 1629–1637. [Google Scholar] [CrossRef]
- Liu, W.; Tan, G.; Li, J.; Li, X.; Mou, F.; Ge, Y. Integrated Cooling Evaporation System for the Hydraulic Retarder; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Bandhauer, T.M.; Garimella, S. Passive, internal thermal management system for batteries using microscale liquid–vapor phase change. Appl. Therm. Eng. 2013, 61, 756–769. [Google Scholar] [CrossRef]
- Panchal, S.; Khasow, R.; Dincer, I.; Agelin-Chaab, M.; Fraser, R.; Fowler, M. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery. Appl. Therm. Eng. 2017, 122, 80–90. [Google Scholar] [CrossRef]
- Smith, J.; Hinterberger, M.; Hable, P.; Koehler, J. Simulative method for determining the optimal operating conditions for a cooling plate for lithium-ion battery cell modules. J. Power Sources 2014, 267, 784–792. [Google Scholar] [CrossRef]
- Monika, K.; Datta, S.P. Comparative assessment among several channel designs with constant volume for cooling of pouch-type battery module. Energy Convers. Manag. 2022, 251, 114936. [Google Scholar] [CrossRef]
- Khan, S.A.; Eze, C.; Dong, K.; Shahid, A.R.; Patil, M.S.; Ahmad, S.; Hussain, I.; Zhao, J. Design of a new optimized U-shaped lightweight liquid-cooled battery thermal management system for electric vehicles: A machine learning approach. Int. Commun. Heat Mass Transf. 2022, 136, 106209. [Google Scholar] [CrossRef]
- Wang, N.; Li, C.; Li, W.; Chen, X.; Li, Y.; Qi, D. Heat dissipation optimization for a serpentine liquid cooling battery thermal management system: An application of surrogate assisted approach. J. Energy Storage 2021, 40, 102771. [Google Scholar] [CrossRef]
- Huo, Y.; Rao, Z.; Liu, X.; Zhao, J. Investigation of power battery thermal management by using mini-channel cold plate. Energy Convers. Manag. 2015, 89, 387–395. [Google Scholar] [CrossRef]
- Qian, Z.; Li, Y.; Rao, Z. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Convers. Manag. 2016, 126, 622–631. [Google Scholar] [CrossRef]
- Pakrouh, R.; Hosseini, M.J.; Bahrampoury, R.; Ranjbar, A.A.; Borhani, S.M. Cylindrical battery thermal management based on microencapsulated phase change slurry. J. Energy Storage 2021, 40, 102602. [Google Scholar] [CrossRef]
- Lan, C.; Xu, J.; Qiao, Y.; Ma, Y. Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Appl. Therm. Eng. 2016, 101, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Lan, C.; Qiao, Y.; Ma, Y. Prevent thermal runaway of lithium-ion batteries with minichannel cooling. Appl. Therm. Eng. 2017, 110, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Gao, Q.; Wang, G.; Gu, Y.; Wang, Y.; Bao, W.; Zhang, D. Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process. Appl. Therm. Eng. 2017, 116, 655–662. [Google Scholar] [CrossRef]
- Du, X.; Qian, Z.; Chen, Z.; Rao, Z. Experimental investigation on mini-channel cooling–based thermal management for Li-ion battery module under different cooling schemes. Int. J. Energy Res. 2018, 42, 2781–2788. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, B.; Zhang, T.; Jiang, Z.; Ding, J.; Ding, Y. A comprehensive review of composite phase change material based thermal management system for lithium-ion batteries. Renew. Sustain. Energy Rev. 2022, 167, 112667. [Google Scholar] [CrossRef]
- Liu, C.; Xu, D.; Weng, J.; Zhou, S.; Li, W.; Wan, Y.; Jiang, S.; Zhou, D.; Wang, J.; Huang, Q. Phase Change Materials Application in Battery Thermal Management System: A Review. Materials 2020, 13, 4622. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Huang, Q.; Li, X.; Zhang, G.; Ouyang, D.; Chen, M.; Yuen, A.C.Y.; Li, A.; Lee, E.W.M.; Yang, W.; et al. Safety issue on PCM-based battery thermal management: Material thermal stability and system hazard mitigation. Energy Storage Mater. 2022, 53, 580–612. [Google Scholar] [CrossRef]
- Lv, Y.; Situ, W.; Yang, X.; Zhang, G.; Wang, Z. A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management. Energy Convers. Manag. 2018, 163, 250–259. [Google Scholar] [CrossRef]
- Oya, T.; Nomura, T.; Tsubota, M.; Okinaka, N.; Akiyama, T. Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles. Appl. Therm. Eng. 2013, 61, 825–828. [Google Scholar] [CrossRef]
- Li, W.Q.; Qu, Z.G.; He, Y.L.; Tao, Y.B. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials. J. Power Sources 2014, 255, 9–15. [Google Scholar] [CrossRef]
- Samimi, F.; Babapoor, A.; Azizi, M.; Karimi, G. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers. Energy 2016, 96, 355–371. [Google Scholar] [CrossRef]
- Shirazi, A.H.N.; Mohebbi, F.; Azadi Kakavand, M.R.; He, B.; Rabczuk, T. Paraffin Nanocomposites for Heat Management of Lithium-Ion Batteries: A Computational Investigation. J. Nanomater. 2016, 2016, 2131946. [Google Scholar] [CrossRef] [Green Version]
- Goli, P.; Legedza, S.; Dhar, A.; Salgado, R.; Renteria, J.; Balandin, A.A. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J. Power Sources 2014, 248, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Wu, W.; Wang, S. Thermal optimization of composite PCM based large-format lithium-ion battery modules under extreme operating conditions. Energy Convers. Manag. 2017, 153, 22–33. [Google Scholar] [CrossRef]
- Wu, W.; Yang, X.; Zhang, G.; Ke, X.; Wang, Z.; Situ, W.; Li, X.; Zhang, J. An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack. Energy 2016, 113, 909–916. [Google Scholar] [CrossRef]
- Nascimento, M.; Novais, S.; Ding, M.S.; Ferreira, M.S.; Koch, S.; Passerini, S.; Pinto, J.L. Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries. J. Power Sources 2019, 410–411, 1–9. [Google Scholar] [CrossRef]
- Li, L.; Xu, C.; Chang, R.; Yang, C.; Jia, C.; Wang, L.; Song, J.; Li, Z.; Zhang, F.; Fang, B.; et al. Thermal-Responsive, Super-Strong, Ultrathin Firewalls for Quenching Thermal Runaway in High-Energy Battery Modules. Energy Storage Mater. 2021, 40, 329–336. [Google Scholar] [CrossRef]
- Quintiere, J.G. On methods to measure the energetics of a lithium ion battery in thermal runaway. Fire Saf. J. 2020, 111, 102911. [Google Scholar] [CrossRef]
Serial of the BTMS | Details |
---|---|
BTMS I (Z-type) | Both the inlet and outlet are perpendicular to the cooling channels and have opposite directions (Figure 2b–I). |
BTMS II (U-type) | The inlet and outlet are both perpendicular to the cooling channels and have the same direction (Figure 2b–II). |
BTMS III | Based on Z-type air-cooling BTMS, the inlet region’s direction is modified to be parallel to the cooling channels’ directions (Figure 2b–III). |
BTMS IV | Based on BTMS III, the air inlet manifold is repositioned to the middle side of the battery pack, perpendicular to the cooling channels (Figure 2b–IV). |
BTMS V | Based on BTMS III, the air inlet manifold is repositioned to the end of the divergence plenum (Figure 2b–V). |
BTMS VI | Based on U-type air-cooling BTMS, the outlet manifold’s direction is modified to be parallel to the cooling channels’ directions (Figure 2b–VI). |
BTMS VII | Based on BTMS IV, the air outlet manifold is shifted to the middle side of the battery pack, perpendicular to the cooling channels (Figure 2b–VII). |
BTMS VIII | Based on BTMS VI, the outlet manifold’s position is shifted to the end of the convergence plenum (Figure 2b–VIII). |
BTMS IX | Both the inlet region and the outlet region are aligned parallel to the cooling channels. The inlet duct is located in the middle of the divergence plenum, while the outlet region is positioned in the middle of the convergence plenum (Figure 2b–IX). |
PCM/Thermal Conductivity (W/mK) | Additives/Thermal Conductivity (W/mk) | Composites Thermal Conductivity (W/mk) | Ratio of Composite (% wt) | Latent Heat of PCM without/with Additives (kJ/kg) |
---|---|---|---|---|
Paraffin/0.2 | Silicon/- & expanded graphite/4–100 & polyethylene/- | 3.5 | 7/5.5/30 | -/77.8 |
Paraffin/0.21 | Carbon fiber/50 | 0.42 | 0.69 | 242/- |
Paraffin/0.2697 | Expanded graphite/4–100 | 4.676 | 6.25 | -/- |
Paraffin/0.31 | Graphite powder/2–90 | 0.46 | 12 | 133.1/90 |
Erthritol/0.733 | Nickel particle/90.3 | 4.72 | 34 (vol%) | -/- |
Hexadecane/0.15 | Aluminum particles | 1.25 | - | 236/167 |
Paraffin/0.25 | Carbon nanotubes/3000 | 2.5 | 5 (vol%) | -/- |
Paraffin/0.25 | Graphene/3000 | 0.6 | 5 (vol%) | -/- |
Air Forced | Liquid | PCM | |
---|---|---|---|
Life | ≥20 years | 3–5 years | ≥20 years |
Ease of use | Easy | Difficult | Easy |
Integration | Easy | Difficult | Easy |
Energy density | Low | High | Low |
Maintenance | Easy | Difficult | Easy |
Temperature distribution | Uneven | Even | Even |
Efficiency | Low | High | High |
Temperature drop in cell | Small | Large | Large |
Annual cost | Low | High | Low |
First cost | Low | High | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Zhou, Y.; Zhang, H.; Tang, X. A Review on Battery Thermal Management for New Energy Vehicles. Energies 2023, 16, 4845. https://doi.org/10.3390/en16134845
Li W, Zhou Y, Zhang H, Tang X. A Review on Battery Thermal Management for New Energy Vehicles. Energies. 2023; 16(13):4845. https://doi.org/10.3390/en16134845
Chicago/Turabian StyleLi, Wenzhe, Youhang Zhou, Haonan Zhang, and Xuan Tang. 2023. "A Review on Battery Thermal Management for New Energy Vehicles" Energies 16, no. 13: 4845. https://doi.org/10.3390/en16134845
APA StyleLi, W., Zhou, Y., Zhang, H., & Tang, X. (2023). A Review on Battery Thermal Management for New Energy Vehicles. Energies, 16(13), 4845. https://doi.org/10.3390/en16134845