Reservoir Characteristics and Development Model of Subaqueous Pyroclastic Rocks in a Continental Lacustrine Basin: A Case Study of the Chaganhua Subsag in the Changling Fault Depression, Songliao Basin
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Experimental Methods
3.1. Samples
3.2. Experimental Methods
3.2.1. Mercury Intrusion Porosimetry (MIP)
3.2.2. Low-Temperature Nitrogen Adsorption (LTNA)
3.2.3. X-ray Diffraction (XRD)
3.2.4. Analysis and Calculation of Surface Porosity
4. Lithological Characteristics
5. Reservoir Characteristics
5.1. Reservoir Space Characteristics
5.1.1. Primary Pores
Devitrification Pores
5.1.2. Secondary Pores
Dissolved Pores
Intercrystalline Micropores
5.1.3. Fracture
5.2. Reservoir Physical Properties
5.3. Reservoir Microscopic Pore Structure Characteristics
6. Discussion
6.1. The Reason for Different Types of Reservoir Physical Property Differences
6.2. Formation Mechanism of Different Types of Reservoirs
6.2.1. Devitrification of Volcanic Ash
6.2.2. Dissolution
6.2.3. Tectonism
6.3. Process of the Formation and Evolution of Different Types of Reservoirs
6.4. Reservoir Development Pattern
7. Conclusions
- (1)
- The reservoirs of pyroclastic rocks are compact, and the primary pores are not developed. The reservoir space is mainly composed of secondary pores and fractures such as devitrification pores, dissolution pores, and clay mineral intergranular pores. Tuff has a high content of volcanic ash and glass chips, and a large number of devitrification pores constitute the main reservoir space. Under the influence of dissolution and alteration, dissolution pores and clay mineral intergranular pores also develop. Fractures created by tectonic processes can mainfest these pores. The sedimentary tuff has the least favorable physical properties and high clay mineral content. The reservoir space is mainly micropores between clay minerals, and the pore connectivity is poor, so it is difficult to form favorable reservoirs in this rock type. The content of soluble components such as feldspar, debris, and turbidite in tuffaceous sandstone is high, and a certain scale of dissolution pores can be formed. However, due to the low content of volcanic ash, devitrification pores are hardly developed, and the physical properties of tuffaceous sandstone are less favorable than those of tuff.
- (2)
- Devitrification and dissolution are the main mechanisms of micropore formation in pyroclastic reservoirs. The underwater eruptive accumulation environment is conducive to continuous devitrification. The organic acid dissolution caused by two oil–gas charging events in the middle petrogenesis stage is an important cause of the formation of reservoir pores. Tectonic activity is intense and fractures develop. As both reservoir spaces and fluid migration channels, fractures promote the development of reservoirs.
- (3)
- The coarse-grained tuff reservoir developed in the proximal facies of the tuff cone volcanic edifice formed by underwater eruption is the highest-quality pyroclastic reservoir in the study area. A large number of devitrification pores are present due to the high content of volcanic ash. In the later stage of diagenesis, dissolution pores were generated under the transformation of organic acids, and deep hydrothermal fluids, and fractures were generated by tectonic activities to communicate reservoir space. The superior lithology superimposed dissolution and tectonic action are favorable target areas for exploration and development.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- White, J.; Smellie, J.L.; Clague, D.A. Explosive Subaqueous Volcanism; American Geophysical Union: Washington, DC, USA, 2003. [Google Scholar]
- Arculus, R. Submarine volcanism: Deeply explosive. Nat. Geosci. 2011, 4, 737–738. [Google Scholar] [CrossRef]
- Embley, R.W.; Chadwick, W.W., Jr.; Baker, E.T.; Butterfield, D.A.; Resing, J.A.; Ronde, C.; Tunnicliffe, V.; Lupton, J.E.; Juniper, S.K.; Rubin, K.H. Long-term eruptive activity at a submarine arc volcano. Nature 2006, 441, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Sohn, R.A.; Willis, C.; Humphris, S.; Shank, T.M.; Singh, H.; Edmonds, H.N.; Kunz, C.; Hedman, U.; Helmke, E.; Jakuba, M. Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 2008, 453, 1236–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chadwick, W.W.; Cashman, K.V.; Embley, R.W.; Matsumoto, H.; Dziak, R.P.; Ronde, C.; Lau, T.K.; Deardorff, N.D.; Merle, S.G. Direct video and hydrophone observations of submarine explosive eruptions at NW Rota-1 volcano, Mariana arc. J. Geophys. Res. Solid Earth 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Cas, R.A.F. Submarine volcanism; eruption styles, products, and relevance to understanding the host-rock successions to volcanic-hosted massive sulfide deposits. Econ. Geol. Bull. Soc. Econ. Geol. 1992, 87, 511–541. [Google Scholar] [CrossRef]
- Wohletz, K.H.; Sheridan, M.F. Hydrovolcanic explosions. II. Evolution of basaltic tuff rings and tuff cones. Am. J. 1983, 283, 385–413. [Google Scholar] [CrossRef]
- Mattox, T.N.; Mangan, M.T. Littoral hydrovolcanic explosions: A case study of lava-seawater interaction at Kilauea Volcano. J. Volcanol. Geotherm. Res. 1997, 75, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Saint-Ange, F.; Bachèlery, P.; Babonneau, N.; Michon, L.; Jorry, S.J. Volcaniclastic sedimentation on the submarine slopes of a basaltic hotspot volcano: Piton de la Fournaise volcano (La Réunion Island, Indian Ocean). Mar. Geol. 2013, 337, 35–52. [Google Scholar] [CrossRef] [Green Version]
- Head, J.W.; Wilson, L. Deep submarine pyroclastic eruptions: Theory and predicted landforms and deposits. J. Volcanol. Geotherm. Res. 2003, 121, 155–193. [Google Scholar] [CrossRef] [Green Version]
- Allen, S.R.; Hayward, B.W.; Mathews, E. A facies model for a submarine volcaniclastic apron: The Miocene Manukau Subgroup, New Zealand. Geol. Soc. Am. Bull. 2007, 119, 725–742. [Google Scholar] [CrossRef]
- Helo, C.; Clague, D.A.; Dingwell, D.B.; Stix, J. High and highly variable cooling rates during pyroclastic eruptions on Axial Seamount, Juan de Fuca Ridge. J. Volcanol. Geotherm. Res. 2013, 253, 54–64. [Google Scholar] [CrossRef]
- Steffen, K.; Schindlbeck, J.C.; Scudder, R.P.; Murray, R.W.; Pickering, K.T.; Armin, F.; Shasa, L.; Ken, H.; Sanny, S.; Hajime, N. Large volume submarine ignimbrites in the Shikoku Basin: An example for explosive volcanism in the Western Pacific during the Late Miocene. Geochem. Geophys. Geosyst. 2014, 15, 1837–1851. [Google Scholar]
- White, J. Subaqueous eruption-fed density currents and their deposits. Precambrian Res. 2000, 101, 87–109. [Google Scholar] [CrossRef]
- Mueller, W.U. A subaqueous eruption model for shallow-water, small volume eruptions: Evidence from two Precambrian examples. Wash. DC Am. Geophys. Union Geophys. Monogr. 2003, 140, 189–203. [Google Scholar]
- Kokelaar, P.; Busby, C. Subaqueous explosive eruption and welding of pyroclastic deposits. Science 1992, 257, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Grynberg, M.E.; Papava, D. Petrophysical characteristics of the middle eocene laumontite tuff reservoir, samgori field, republic of georgia. J. Pet. Geol. 1993, 16, 313–322. [Google Scholar] [CrossRef]
- Thomas Kalan, H.P.; Sitorus, M.E. Jatibarang Field, Geologic Study of Volcanic Reservoir for Horizontal Well Proposal; Indonesian Petroleum Association: Jakarta, Indonesia, 1994. [Google Scholar]
- Tomaru, H.; Lu, Z.L.; Fehn, U. Origin of hydrocarbons in the Green Tuff region of Japan: I-129 results from oil field brines and hot springs in the Akita and Niigata Basins. Chem. Geol. 2009, 264, 221–231. [Google Scholar] [CrossRef]
- Bischoff, A.P.; Nicol, A.; Beggs, M. Stratigraphy of architectural elements in a buried volcanic system and implications for hydrocarbon exploration. Interpretation 2017, 5, SK141–SK159. [Google Scholar] [CrossRef]
- Zhang, Y.; Shu, P.; Wang, P.J.; Zheng, C.Q.; Shan, X.L. Differences between volcanic rocks from onshore and underwater eruptions and their effects on reservoirs: A case study of Yingcheng Formation, Songliao Basin. J. Jilin Univ. Earth Sci. Ed. 2007, 37, 125–1265. [Google Scholar]
- Shan, X.L.; Yi, J.; Li, J.Z.; Luo, H.H.; Zhang, Y.Y. Geochemistry of perlite of the Yingcheng Formation in Santai region, Songliao basin and its tectonic implications. Acta Petrol. Sin. 2010, 26, 93–98. [Google Scholar]
- Cheng, R.H.; Shen, Y.J.; Wang, T.F.; Yu, Z.F. Pyroclastics deposition and its facies model of crater: An example from Yingcheng formation in Songliao basin, Cretaceous, NE China. J. Cent. South Univ. 2014, 45, 2006–2013. [Google Scholar]
- Li, S.C.; Ma, Q.; Bai, G.J.; Li, X.N.; Yan, L.G.; Huang, Z.L. Characteristics of Dense Tuff Reservoir of Haerjiawu Formation in Malang Sag in Santanghu Basin. Xinjiang Pet. Geol. 2015, 36, 430–435. [Google Scholar]
- Wang, S.P.; Lin, T.; Sun, P.; Liang, H.; Wang, D.L.; Gou, H.G. Influences of diagenetic effects on volcanic rock reservoirs under two different sedimentary environments. Pet. Geol. Exp. 2012, 34, 145–152. [Google Scholar]
- Ma, J.; Liu, G.H.; Huang, Z.L.; Ou, G.X.; Li, T.J.; Guo, X.B. Tight tuff reservoir characteristics and its controlling factors: A comparative study of the Permian Tiaohu Formation and Carboniferous Haerjiawu Formation in the Santanghu Basin, NW China. J. Pet. Sci. Eng. 2020, 187, 106808. [Google Scholar] [CrossRef]
- Xian, B.Z.; Niu, H.P.; Zhu, X.M.; Dong, G.D.; Zhu, S.F.; An, S.Q. Early Permian Volcanic Lithology, Lithofacies and Their Relations to Reservoir in Northwestern Margin of the Junggar Basin. Geol. J. China Univ. 2013, 19, 46–55. [Google Scholar]
- Yang, K.K.; Bian, W.H.; Wang, Y.Q.; Li, Z.; Liu, X.K.; Wang, P.J. Discovery and geological significance of hyaloclastite of Batamayineishan Formation in Eastern Junggar Basin. J. Cent. South Univ. 2018, 42, 14–22. [Google Scholar]
- Xie, J.R.; Li, Y.; Yang, Y.M.; Zhang, B.J.; Liu, R.; He, Q.L.; Wang, W.; Wang, Y.F. Main controlling factors and natural gas exploration potential of Permian scale volcanoclastic reservoirs in the western Sichuan Basin. Nat. Gas Ind. 2021, 41, 48–57. [Google Scholar]
- Xiong, S.Y.; Shi, Z.Y.; Wang, W.; Zhang, H.; Liu, R.; Su, W.; Li, Y.; Yao, Q.Y.; Zhang, J.Y.; Jiang, Q.C. Permian volcanic reservoir types and main controlling factors in Southwest Sichuan. Nat. Gas Geosci. 2022, 33, 899–916. [Google Scholar]
- Maitre, R.W. The Chemical Variability of some Common Igneous Rocks. J. Petrol. 1976, 17, 589–598. [Google Scholar] [CrossRef]
- Fudali, R.F.; Dyar, D.M.; Griscom, D.L.; Henry, D. The oxidation state of iron in tektite glass. Geochim. Cosmochim. Acta 1987, 51, 2749–2756. [Google Scholar] [CrossRef]
- Shan, X.L.; Li, J.Y.; Chen, S.M.; Ran, Q.C.; Chen, G.B.; Liu, C. Subaquatic volcanic eruptions in continental facies and their influence on high quality source rocks shown by the volcanic rocks of a faulted depression in Northeast China. Sci. China: Earth Sci. 2014, 44, 2637–2644. [Google Scholar] [CrossRef]
- Tang, H.F.; Yang, D.; Shao, M.L.; Wang, P.J.; Sun, W.T.; Huang, Y.L. Constraint of volcano-stratigraphic emplacement environment on the reservoir distribution: A case analysis of rhyolitic volcanic strata in the 2nd member of Jurassic Huoshiling Formation in Wangfu fault depression, Songliao Basin, East China. Pet. Explor. Dev. 2016, 43, 573–579. [Google Scholar] [CrossRef]
- He, Y.X.; Xian, B.Z.; Shen, J.N. Discrimination of Volcanic Eruption Environment Using Oxidation Index:A Case Study of Lower Permian Volcanic Rocks in Northwestern Margin of Junggar Basin. Geol. J. China Univ. 2017, 23, 737–749. [Google Scholar]
- Liu, D.C.; Chen, Y.J.; Wu, H.M.; Ma, Q.; Zhang, H. Characteristics and element geochemical discrimination of onshore and underwater eruptive volcanic rocks: A case study of the Upper Carboniferous volcanic rocks in Malang Sag, Santanghu Basin, Xinjiang. J. Northeast Pet. Univ. 2021, 45, 41–51+79. [Google Scholar]
- Wu, H.M.; Chen, Y.J.; Meng, P.F.; Ma, Q.; Song, X.Y.; He, X.H.; Yu, J.Y.; He, B.B. Oxidation coefficient discrimination method of volcanic eruption environment on land and underwater. Acta Sedimentol. Sin. 2022, 40, 599–615. [Google Scholar]
- Sun, M.D.; Xu, Y.G.; Chen, H.L. Subaqueous volcanism in the Paleo-Pacific Ocean based on Jurassic basaltic tuff and pillow basalt in the Raohe Complex, NE China. Sci. China Earth Sci. 2018, 48, 1016–1032. [Google Scholar] [CrossRef]
- Huang, Y.L.; Shan, J.F.; Liu, H.B.; Zhang, B.; Feng, Y.H.; Lang, H.L. Facies architecture of Paleogene subaqueous trachytes and its implica tions for hydrocarbon reservoirs in Liaohe Basin. J. China Univ. Pet. 2019, 43, 1–11. [Google Scholar]
- Tang, H.F.; Wang, H.F.; Kennedy, B.; Zhang, X.Y.; Rossetti, M.; Bischoff, A.P.; Nicol, A. Characteristics and controlling factors of volcanic reservoirs of subaqueous pyroclastic rocks: An analysis of the Miocene Kora volcano in the Taranaki basin. Earth Sci. Front. 2021, 28, 375–387. [Google Scholar]
- Wang, P.J.; Mattern, F.; Didenko, N.A.; Zhu, D.F.; Singer, B.; Sun, X.M. Tectonics and cycle system of the Cretaceous Songliao Basin: An inverted active continental margin basin. Earth Sci. Rev. 2016, 159, 82–102. [Google Scholar] [CrossRef] [Green Version]
- Shu, L.S.; Mu, Y.F.; Wang, B.C. The oil-gas-bearing strata and the structural features in the Songliao Basin, NE China. J. Stratigr. 2003, 27, 340–347. [Google Scholar]
- Zhang, W.; Li, H.G.; Li, M.J. Structural characteristics and gas accumulation in the deep of the Changling Fault Depression, the South Songliao Basin. Oil Gas Geol. 2008, 29, 120–127. [Google Scholar]
- Ge, R.F.; Zhang, Q.; Xu, S.Y.; Wang, L.S.; Xie, G.A.; Chen, J.; Wang, X.Y. Structure evolution and its kinetic setting of changling fault depression in Songliao basin. J. Geol. 2009, 33, 346–358. [Google Scholar]
- Liu, Y.J.; Zhang, X.Z.; Jin, W.; Chi, X.G.; Wang, C.W.; Ma, Z.H.; Han, G.Q.; Wen, Q.B.; Zhao, Y.L.; Wang, W.D.; et al. Late Paleozoic tectonic evolution in Northeast China. Geol. China 2010, 37, 943–951. [Google Scholar]
- Chang, W.B.; Shan, X.L.; Yi, J.; Du, T.T.; Qu, Y. Spatial and temporal distributions of the late Mesozoic volcanic successions and their controlling effects on the Changling fault depression of the Songliao Basin, NE China. Can. J. Earth Sci. 2017, 54, 1194–1213. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Shan, X.; Yi, J.; Shi, Y.; Ventura, G. Volcanism at the end of continental rifting: The Cretaceous syn-rift to post-rift transition in the Songliao Basin (NE China). Gondwana Res. 2022, 111, 174–188. [Google Scholar] [CrossRef]
- Li, R.L.; Zhu, J.F.; Liu, Y.H.; Li, Z.B.; Fan, X.P.; Leng, Q.L.; Zhang, T.T. Volcanic rock reservoir characteristics and hydrocarbon accumulation factors of rift unit in southern area, Songliao Basin. Earth Sci. Front. 2022. [Google Scholar] [CrossRef]
- Qu, X.J.; Wang, P.J.; Gao, Y.F.; Wan, X.Q. Chronostratigraphy of Huoshiling Formation in the Songliao Basin, NE China: An overview. Earth Sci. Front. 2014, 21, 234–250. [Google Scholar]
- Zhang, J.F.; Xu, X.Y.; Bai, J.; Chen, S.; Liu, W.B.; Li, Y.H. Accumulation and exploration of continental shale gas resources of Cretaceous Shahezi Formation in Lishu fault depression, Songliao Basin, NE China. Pet. Explor. Dev. 2022, 49, 440–452. [Google Scholar] [CrossRef]
- GB/T 29172-2012; Standard Practices for Core Analysis. Standardization Administration of China: Beijing, China, 2012.
- GB/T 29171-2012; Standard Rock Capillary Pressure Measurement. Standardization Administration of China: Beijing, China, 2012.
- Washburn, E.W. The dynamics of capillary flow. Phys. Rev. 1921, 17, 273. [Google Scholar] [CrossRef] [Green Version]
- GB/T 19587-2017; Standard Determination of the Specific Surface Area of Solids by Gas Adsorption Using the BET Method. Standardization Administration of China: Beijing, China, 2017.
- GB/T 21650.3-2011; Standard Pore Size Distribution and Porosity of Solid Materials by Mercury Porosimetry and Gas Adsorption—Part 3:Analysis of Micropores by Gas Adsorption. Standardization Administration of China: Beijing, China, 2012.
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multi-molecular layers. J. Am. Chem. Soc. 1983, 60, 309–319. [Google Scholar] [CrossRef]
- SY/T 5163-2010; Analysis Method for Clay Minerals and Ordinary Non-Clay Minerals in Sedimentary Rocks by the X-ray Diffraction. Standardization Administration of China: Beijing, China, 2012.
- Zhang, R.K.; Fan, G. Quantitative analytic method and experiments of X-ray diffration phase of clay minerals. Uranium Geol. Name 2003, 19, 180–185. [Google Scholar]
- Wang, Y.Q.; Wang, J.D.; Wang, Q.J.; Sui, F.G.; Shi, H.G.; Xu, Y.D. Diagenesis of vo caniclastic rocks and its control over reservoir performance:A case study of the Carbonilerous system in Chepaizi area, Junggar basin. J. China Univ. Min. Technol. 2019, 48, 405–414. [Google Scholar]
- Oelkers, E.H.; Gislason, S.R. The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25 °C and pH = 3 and 11. Geochim. Cosmochim. Acta 2001, 65, 3671–3681. [Google Scholar] [CrossRef]
- Gislason, S.R.; Wolff-Boenisch, D.; Oelkers, E.H.; Putnis, C.V. The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74 °C. Geochim. Cosmochim. Acta J. Geochem. Soc. Meteorit. Soc. 2004, 68, 4843–4858. [Google Scholar]
- Aradóttir, E.S.P.; Sigfússon, B.; Sonnenthal, E.L.; Bjrnsson, G.; Jónsson, H. Dynamics of basaltic glass dissolution—Capturing microscopic effects in continuum scale models. Geochim. Cosmochim. Acta 2013, 121, 311–327. [Google Scholar] [CrossRef] [Green Version]
- Declercq, J.; Diedrich, T.; Perrot, M.; Gislason, S.R.; Oelkers, E.H. Experimental determination of rhyolitic glass dissolution rates at 40–200 °C and 2 < pH < 10.1. Geochim. Cosmochim. Acta 2013, 100, 251–263. [Google Scholar]
- Minde, M.W.; Wang, W.X.; Madland, M.V.; Zimmermann, U.; Korsnes, R.I.; Bertolino, S.R.A.; Andersen, P.Ø. Temperature effects on rock engineering properties and rock-fluid chemistry in opal-CT-bearing chalk. J. Pet. Sci. Eng. 2018, 169, 454–470. [Google Scholar] [CrossRef]
- Andersen, P.S.; Berawala, D.S. Modeling of Creep-Compacting Outcrop Chalks Injected with Ca-Mg-Na-Cl Brines at Reservoir Conditions. SPE J. 2019, 24, 2889–2910. [Google Scholar] [CrossRef]
- Mchenry, L.J. Element mobility during zeolitic and argillic alteration of volcanic ash in a closed-basin lacustrine environment: Case study Olduvai Gorge, Tanzania. Chem. Geol. 2009, 265, 540–552. [Google Scholar] [CrossRef]
- Kirov, G.; Samajova, E.; Nedialkov, R.; Stanimirova, T. Alteration processes and products of acid pyroclastic rocks in Bulgaria and Slovakia. Clay Miner. 2011, 46, 279–294. [Google Scholar] [CrossRef]
- Zhao, H.L.; Huang, W.; Wang, C.; Di, Y.J.; Qi, J.S.; Xiao, Y.; Liu, J. Micropores from devitrification in volcanic rocks and their contribution to reservoirs. Oil Gas Geol. 2009, 30, 47–52+58. [Google Scholar]
- Xiang, F.; Xiao, Q.; Yu, X.T.; Huang, H.X.; Zhu, X. Reservoir characteristics of the Upper Permian marine tuffaceous deposits in Yuanba area, Sichuan Basin. Oil Gas Geol. 2022, 43, 889–901. [Google Scholar]
- Liu, X.N.; Jiang, Z.X.; Yuan, X.D.; Chen, C.; Wang, C. Influence of the Cretaceous fine-grained volcanic materials on shale oil/gas, Luanping Basin. Oil Gas Geol. 2022, 43, 390–406. [Google Scholar]
- Zhao, Y.T.; Shan, X.L.; Wang, P.J.; Sun, J.; Liu, Q.D.; Ren, L.J. Devitrification of the Volcanic Rocks of the Cretaceous Yingcheng Formation in the Songliao Basin and Its Reservoir Significance: An Example from a Basin Boundary Section. J. Jilin Univ. 2007, 37, 1152–1158. [Google Scholar]
- Wilkin, R.T.; Brantley, S.L.; Barnes, H.L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim. Cosmochim. Acta 1996, 60, 3897–3912. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Barnes, H.L. Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta 1997, 61, 323–339. [Google Scholar] [CrossRef]
- Wignall, P.B.; Newton, R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. Am. J. Sci. 1998, 298, 537–552. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Arthur, M.A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: Evidence for Late Pleistocene to Holocene excursions of the o2-h2s redox transition. Geochim. Cosmochim. Acta 2001, 65, 1399–1416. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.L. Seepage characteristic and fracture development of protected seam caused by mining protecting strata. J. Min. Strat. Control Eng. 2021, 3, 62–70. [Google Scholar]
- Li, H.; Tang, H.M.; Qin, Q.R.; Zhou, J.L.; Qin, Z.J.; Fan, C.H.; Su, P.D.; Wang, Q.; Zhong, C. Characteristics, formation periods and genetic mechanisms of tectonic fractures in the tight gas sandstones reservoir: A case study of Xujiahe Formation in YB area, Sichuan Basin, China. J. Pet. Sci. Eng. 2019, 178, 723–735. [Google Scholar]
- Li, H.; Wang, Q.; Qin, Q.R.; Ge, X.Y. Characteristics of natural fractures in an ultradeep marine carbonate gas reservoir and their impact on the reservoir: A case study of the Maokou Formation of the JLS Structure in the Sichuan Basin, China. Energy Fuels 2021, 35, 13098–13108. [Google Scholar] [CrossRef]
- Li, H.; Qin, Q.R.; Zhang, B.J.; Ge, X.Y.; Hu, X.; Fan, C.H.; Tang, H.M. Tectonic fracture formation and distribution in ultradeep marine carbonate gas reservoirs: A case study of the Maokou Formation in the Jiulongshan Gas Field, Sichuan Basin, southwest China. Energy Fuels 2020, 34, 14132–14146. [Google Scholar] [CrossRef]
- Li, Q.W.; Liu, Z.B.; Chen, F.-R.; Zhang, K.; Tang, L. Behavior and controlling factors of methane adsorption in Jurassic continental shale, northeastern Sichuan Basin. Energy Geosci. 2023, 4, 83–92. [Google Scholar] [CrossRef]
- SY/T 6285-2011; Standard Evaluating Methods of Oil and Gas Reservoirs. Standardization Administration of China: Beijing, China, 2012.
- Zhang, Z.; Pang, J.; Yang, Y.T.; Cao, Y.H.; Qi, M.H.; Zhang, Y.Y.; Zhang, L.; Ma, S. Carbon and oxygen isotope characteristics and genesis of carbonate cements in sandstone of the 4th Member of the Xujiahe Formation in the central western Sichuan depression, Sichuan basin, China. Acta Geol. Sin. 2022, 96, 2094–2106. [Google Scholar]
- Zhu, S.F.; Zhu, X.M.; Wu, D.; Liu, Y.H.; Li, P.P.; Jiang, S.X.; Liu, X.C. Alteration of volcanics and its controlling factors in the Lower Permian reservoirs at northwestern margin of Junggar Basin. Oil Gas Geol. 2014, 35, 77–85. [Google Scholar]
- Yang, X.P.; Qiu, Y.N. Formation Process and Distribution of Laumontite in Yanchang Formation (Upper Triassic) of Ordos Basin. Acta Sedimentol. Sin. 2002, 20, 628–632. [Google Scholar]
- Huang, S.J.; Huang, K.K.; Feng, W.L.; Tong, H.P.; Liu, L.H.; Zhang, X.H. Mass exchanges among feldspar, kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis—A case study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, Western Sichuan Depression. Geochimica 2009, 38, 498–506. [Google Scholar]
- Guo, H.L.; Wang, D.R. Isotopic composition and genesis analysis of carbonate cements in sandstone reservoirs in Tarim oil and gas area. Pet. Explor. Dev. 1999, 26, 51–52. [Google Scholar]
- Wang, X.; Ding, W.; Long, C.; Wang, R.; He, J.; Li, A.; Yang, G.; Liu, J.; Xiao, Z.; Fu, F. The developmental characteristics of natural fractures and their significance for reservoirs in the Cambrian Niutitang marine shale of the Sangzhi block, southern China. J. Pet. Sci. Eng. 2018, 165, 831–841. [Google Scholar] [CrossRef]
- Cai, Z.J. Analysis of the developmental characteristics and major regulating factors of fractures in marine-continental transitional shale-gas reservoirs: A case study of the Carboniferous-Permian strata in the southeastern Ordos Basin, central China. Mar. Pet. Geol. 2013, 45, 121–133. [Google Scholar]
- Guo, P.; Yao, L.; Ren, D. Simulation of three-dimensional tectonic stress fields and quantitative prediction of tectonic fracture within the Damintun Depression, Liaohe Basin, northeast China. J. Struct. Geol. 2016, 86, 211–223. [Google Scholar] [CrossRef]
- Goulty, N.R.; Sargent, C.; Andras, P.; Aplin, A.C. Compaction of diagenetically altered mudstones—Part 1: Mechanical and chemical contributions. Mar. Pet. Geol. 2016, 77, 703–713. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.H.; Zhai, G.Y.; Huang, Z.L.; Zou, C.N.; Xia, X.H.; Shi, D.S.; Zhou, Z.; Zhou, C.; Chen, R.; Yu, S.F. The effect of tuffaceous material on characteristics of different lithofacies: A case study on Lucaogou Formation fine-grained sedimentary rocks in Santanghu Basin. J. Pet. Sci. Eng. 2019, 179, 355–377. [Google Scholar] [CrossRef]
- Shi, Y.M. Volcano edificies and Gas Pool Formation in Changling Faulted Depression, Songliao Basin, China. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2012. [Google Scholar]
- Luo, J.L.; Shao, H.M.; Yang, Y.F.; Li, S.; Luo, C.Y. Temporal and spatial evolution of burial-hydrocarbon filing-diagenetic process of deep volcanic reservoir in Songliao Basin. Earth Sci. Front. 2013, 20, 175–187. [Google Scholar]
- Cheng, R.H.; Shen, Y.J.; Yan, J.B.; Li, Q.F.; Li, X.H.; Wang, Y.W.; Li, F.; Xu, Z.J. Diagenesis of volcaniclastic rocks in Hailaer Basin. Acta Petrol. Sin. 2010, 26, 47–54. [Google Scholar]
- Li, J.S.; Fu, L.; Zhang, J.L.; Chen, J.; Niu, B.; Zhang, S.C. Diagenesis and secondary pore evolution of Middle and Upper Permian clastic rocks in WuXia area, Junggar Basin. Lithologic Reservoirs. Lithol. Reserv. 2019, 31, 54–66. [Google Scholar]
- Liu, R.E.; Sun, F.J.; Bai, C.H.; Ma, C.H.; Huang, Y.M. An approach to the generating mechanism of secondary pores and pore evolution model of He 8 gas layer in Suligemiao gas field. Pet. Explor. Dev. 2002, 29, 47–49. [Google Scholar]
- Wang, P.J.; Chen, S.M.; Liu, W.Z.; Shan, X.L.; Cheng, R.H.; Zang, Y.; Wu, H.B.; Qi, J.S. Relationship between volcanic fscies and volcanic reservoirs in Songliao Basin. Oil Gas Geol. 2003, 24, 18–23. [Google Scholar]
- Wang, P.J.; Hou, Q.J.; Liu, W.Z.; Huang, Y.L.; Jia, J.T.; Tang, H.F. Characteristics of volcanic facies and genesis of natural gases in deep Songliao Basin, NE China. Glob. Geol. 2007, 26, 319–325. [Google Scholar]
- Jadwiga, J.; Edyta, P.; Maria, B.; Bartosz, P. Variability of the Rotliegend sandstones in the Polish part of the Southern Permian Basin-permeability and porosity relationships. Ann. Soc. Geol. Pol. 2009, 79, 13–26. [Google Scholar]
Lithology | Well | Depth (m) | Content from XRD (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clay | Laumontite | Anhydrite | Analcite | Quartz | K-Feldspar | Plagioclase | Calcite | Dolomite | Siderite | Pyrite | |||
Tuff | C2 | 4416.50 | 2.3 | 44.3 | 1.9 | 50.7 | 0.4 | 0.4 | |||||
C2 | 4417.70 | 3.3 | 43.1 | 1.7 | 50.5 | 1.4 | |||||||
C2 | 4418.00 | 4.3 | 47.3 | 47.4 | 1 | ||||||||
C2 | 4418.30 | 3.1 | 48.4 | 2.3 | 45.3 | 0.9 | |||||||
C2 | 4419.30 | 29.8 | 28.8 | 4.1 | 31.2 | 1.8 | 1.8 | 2.5 | |||||
C2 | 4419.50 | 10 | 59.9 | 1.3 | 24 | 4.8 | |||||||
C2 | 4423.05 | 95.2 | 1.9 | 2.9 | |||||||||
C2 | 4568.60 | 13.9 | 0.6 | 41.8 | 3.3 | 36 | 4 | 0.4 | |||||
C2-1 | 4668.10 | 11.6 | 39.5 | 7.2 | 39.8 | 0.3 | 1.6 | ||||||
C2-1 | 4668.45 | 12.5 | 35.1 | 10.8 | 39.2 | 0.3 | 2.1 | ||||||
C3 | 4527.13 | 13.8 | 0.8 | 36.8 | 3.5 | 40.6 | 2.6 | 1.5 | 0.4 | ||||
C3 | 4527.82 | 12.4 | 13.8 | 6.5 | 49.4 | 16.6 | 0.8 | 0.5 | |||||
C3 | 4529.00 | 5.1 | 1.2 | 42.8 | 4.8 | 41.7 | 2.4 | 1.5 | 0.5 | ||||
C3 | 4625.80 | 26.6 | 0.8 | 17.8 | 10.8 | 35.6 | 0.3 | 5.9 | 1.2 | 1.0 | |||
C3 | 4624.80 | 5.7 | 37.1 | 7.9 | 26.1 | 21.0 | 2.2 | ||||||
C3 | 4626.50 | 7.7 | 50.7 | 7.4 | 30.7 | 3.5 | |||||||
C3 | 4916.00 | 10.8 | 12.7 | 20.1 | 7.2 | 42.3 | 3.5 | 2.1 | 0.8 | 0.5 | |||
C3 | 4918.60 | 11.7 | 1.1 | 16.2 | 6.2 | 55.4 | 7.5 | 1.5 | 0.4 | ||||
C3 | 4915.35 | 7.8 | 25 | 0.8 | 19.9 | 3.6 | 41.6 | 1.3 | |||||
YS3 | 4161.64 | 11.3 | 6.4 | 1 | 0.3 | 27.2 | 6.1 | 45.1 | 2.2 | 0.4 | |||
YS3 | 4162.97 | 16.6 | 12.3 | 0.6 | 49.6 | 6 | 9.4 | 1.5 | 3.6 | 0.4 | |||
YS3 | 4325.00 | 6.2 | 29.4 | 35.6 | 5.2 | 20.2 | 1.3 | 2.1 | |||||
YS3 | 4327.58 | 6 | 1.1 | 0.3 | 39.1 | 5.9 | 40.5 | 5.5 | 1.6 | ||||
C301 | 3971.07 | 25 | 0.4 | 55.7 | 4.4 | 12.5 | 2 | ||||||
C301 | 3971.37 | 20.3 | 19.2 | 4.4 | 55 | 0.7 | 0.4 | ||||||
C301 | 3973.77 | 21.6 | 1 | 51.8 | 2.7 | 19.5 | 0.3 | 2 | 1.1 | ||||
C301 | 3974.17 | 16.1 | 61.5 | 4.9 | 15.5 | 2 | |||||||
C301 | 3979.67 | 19.9 | 54.8 | 5.0 | 17.5 | 2.8 | |||||||
C301 | 4038.35 | 29.7 | 39.5 | 7.8 | 22.6 | 0.4 | |||||||
C301 | 4039.28 | 23.4 | 61.6 | 3.2 | 10.8 | 1 | |||||||
C301 | 4042.72 | 20.6 | 61.6 | 3.2 | 12.3 | 2.3 | |||||||
C301 | 4045.06 | 16.9 | 46.7 | 10.6 | 25.4 | 0.4 | |||||||
C301 | 4047.58 | 7.2 | 14.2 | 20.9 | 7.7 | 49.2 | 0.2 | 0.6 | |||||
C301 | 4083.45 | 10.5 | 0.8 | 51.5 | 5.1 | 28.6 | 0.3 | 3.2 | |||||
C301 | 4084.18 | 13.8 | 0.4 | 51.7 | 6.5 | 27.6 | |||||||
C301 | 4431.60 | 14.3 | 36.1 | 8.8 | 40.8 | ||||||||
Sedimentary tuff | C2 | 4413.35 | 65.2 | 6.4 | 2.6 | 25.4 | 0.4 | ||||||
C2 | 4568.22 | 52.5 | 0.7 | 24.9 | 3.7 | 16.8 | 0.3 | 0.7 | 0.4 | ||||
C2 | 4568.92 | 41 | 9.3 | 3.7 | 5.6 | 38.6 | 1 | 0.8 | |||||
C2 | 4779.16 | 26.1 | 50.4 | 7.0 | 16.5 | ||||||||
C2-1 | 4543.40 | 24.5 | 0.6 | 48.2 | 7.0 | 16.2 | 2.3 | 1.2 | |||||
C2-1 | 4546.68 | 32.5 | 26.7 | 5.0 | 27.5 | 6.9 | 0.6 | 0.8 | |||||
C2-3 | 4220.70 | 54.9 | 6.4 | 6.4 | 18.1 | 14.2 | |||||||
C2-3 | 4224.10 | 53.6 | 7.1 | 6.5 | 17.2 | 15.6 | |||||||
C2-3 | 4272.10 | 68.3 | 13.1 | 5.8 | 9.1 | 2.8 | 0.9 | ||||||
C2-3 | 4273.40 | 38.1 | 0.8 | 33.4 | 1.6 | 25.6 | 0.2 | 0.3 | |||||
C2-3 | 4274.52 | 25.2 | 49.9 | 11.4 | 8.8 | 4.7 | |||||||
C3 | 4528.62 | 12 | 1 | 33.3 | 7.9 | 44.6 | 0.3 | 0.3 | 0.6 | ||||
YS3 | 4024.81 | 19.9 | 55.6 | 5.7 | 17.4 | 0.9 | 0.5 | ||||||
C301 | 3964.05 | 47.4 | 21.6 | 8.1 | 22.3 | 0.6 | |||||||
C301 | 3964.77 | 36.2 | 48.7 | 3.7 | 8.9 | 0.4 | 2.1 | ||||||
C301 | 3964.97 | 25.5 | 60.3 | 6.2 | 5.7 | 2.3 | |||||||
C301 | 3965.31 | 60.5 | 0.4 | 25.6 | 3.9 | 7.1 | 2.5 | ||||||
C301 | 3966.4 | 59.6 | 27.4 | 3.4 | 6.5 | 1 | 2.1 | ||||||
C301 | 3967.07 | 40.7 | 43.0 | 3.7 | 8.7 | 1.4 | 2.5 | ||||||
C301 | 3967.33 | 52.3 | 1.4 | 0.4 | 27.9 | 4.7 | 10.6 | 2.7 | |||||
C301 | 3967.5 | 35.4 | 45.9 | 9.0 | 7.4 | 2.3 | |||||||
C301 | 3972.17 | 29.9 | 42.6 | 7.8 | 17.9 | 1.8 | |||||||
C301 | 3972.84 | 14.9 | 39.1 | 6.2 | 38.5 | 1.3 | |||||||
C301 | 3973.52 | 18.1 | 43.9 | 5.7 | 27.7 | 4.6 | |||||||
C301 | 3974.52 | 23.5 | 0.4 | 34.5 | 12.6 | 24.7 | 4.3 | ||||||
C301 | 3975.1 | 12.9 | 51.9 | 14.7 | 19.6 | 0.9 | |||||||
C301 | 3975.5 | 26.3 | 1.9 | 50.1 | 6.6 | 11.6 | 3.5 | ||||||
C301 | 3976.33 | 14.2 | 0.7 | 0.4 | 44.7 | 10.7 | 26.9 | 1.8 | 0.6 | ||||
C301 | 3976.83 | 13.7 | 61 | 11.7 | 12.6 | 0.3 | 0.7 | ||||||
C301 | 3978.07 | 24.3 | 48.6 | 4.3 | 19.7 | 3.1 | |||||||
C301 | 4036.55 | 30.4 | 42 | 5.3 | 18.9 | 3.4 | |||||||
C301 | 4039.78 | 18.5 | 57.6 | 13.1 | 7.6 | 0.3 | 2.9 | ||||||
C301 | 4041.58 | 22.3 | 54.7 | 5.3 | 13.9 | 0.5 | 2.8 | 0.5 | |||||
C301 | 4157.7 | 22 | 0.4 | 63.1 | 7.5 | 3.7 | 3.3 | ||||||
C301 | 4159.27 | 18.2 | 1.1 | 57.2 | 13.8 | 8.2 | 1.5 | ||||||
C301 | 4429.6 | 41.1 | 1.5 | 26.2 | 3.0 | 24.1 | 0.8 | 2.6 | 0.7 | ||||
Tuffaceous sanfstone | C301 | 4043.12 | 18.6 | 1.2 | 59.2 | 5.3 | 12 | 3.2 | 0.5 | ||||
C301 | 4047.85 | 5.5 | 5.6 | 33.4 | 1.0 | 47.4 | 0.6 | 6.5 | |||||
C301 | 4086.54 | 4.0 | 0.9 | 26.5 | 1.5 | 53.9 | 12.9 | 0.3 | |||||
C301 | 4086.7 | 4.8 | 1.0 | 1.5 | 22.9 | 3.6 | 63.4 | 2.1 | 0.7 |
Lithology | Well | Depth (m) | Relative Content of Clay (%) | Mixed-Layer Ratio (S%) | |||
---|---|---|---|---|---|---|---|
K | C | I | I/S | I/S | |||
Tuff | C2 | 4417.70 | 20.2 | 57.8 | 14.4 | 7.6 | 10 |
C2 | 4418.00 | 12 | 49.7 | 31.7 | 6.6 | 10 | |
C2 | 4418.30 | 19.5 | 43.4 | 27.2 | 9.9 | 10 | |
C2 | 4419.30 | 12.6 | 40.4 | 33.8 | 13.2 | 10 | |
C2 | 4419.50 | 4.5 | 9.1 | 64.8 | 21.6 | 10 | |
C2 | 4423.05 | 1.3 | 2.1 | 72.2 | 24.4 | 10 | |
C2-1 | 4668.45 | 3.3 | 10.4 | 68.2 | 18.1 | 10 | |
C3 | 4527.13 | 17.4 | 45.8 | 31.5 | 5.3 | 10 | |
C3 | 4527.82 | 27.3 | 33.6 | 25.2 | 13.9 | 10 | |
C3 | 4529.00 | 16.8 | 41.8 | 33.2 | 8.2 | 10 | |
C3 | 4625.80 | 3.2 | 16.5 | 70.7 | 9.6 | 10 | |
C3 | 4624.80 | 5.4 | 11.3 | 65.5 | 17.8 | 10 | |
C3 | 4626.50 | 6.7 | 22.4 | 50.5 | 20.4 | 10 | |
C3 | 4918.60 | 21.8 | 57.1 | 14 | 7.1 | 10 | |
C3 | 4915.35 | 18.3 | 45.2 | 24.3 | 12.2 | 10 | |
YS3 | 4161.64 | 17.3 | 48.9 | 24.1 | 9.7 | 10 | |
YS3 | 4162.97 | 13.8 | 33.5 | 37 | 15.7 | 10 | |
YS3 | 4325.00 | 12.6 | 74.5 | 8.6 | 4.3 | 10 | |
YS3 | 4327.58 | 5.2 | 53 | 26.7 | 15.1 | 10 | |
C301 | 3971.07 | 12.2 | 13.7 | 49.2 | 24.9 | 10 | |
C301 | 3971.37 | 9.9 | 48.4 | 26.9 | 14.8 | 10 | |
C301 | 3973.77 | 14.6 | 25.5 | 42.4 | 17.5 | 10 | |
C301 | 3974.17 | 17.2 | 16.2 | 51.5 | 15.1 | 10 | |
C301 | 3979.67 | 6.8 | 20.9 | 52.9 | 19.4 | 10 | |
C301 | 4038.35 | 13.8 | 61.5 | 17.8 | 6.9 | 10 | |
C301 | 4039.28 | 5.4 | 27 | 52.8 | 14.8 | 10 | |
C301 | 4042.72 | 10 | 25.6 | 42.9 | 21.5 | 10 | |
C301 | 4045.06 | 17.2 | 34.5 | 27.8 | 20.5 | 10 | |
C301 | 4047.58 | 11.1 | 28.4 | 42.2 | 18.3 | 10 | |
C301 | 4083.45 | 17 | 31.6 | 33.4 | 18 | 10 | |
C301 | 4084.18 | 17.5 | 41.2 | 28.4 | 12.9 | 10 | |
C301 | 4431.60 | 18 | 54.7 | 19.7 | 7.6 | 10 | |
Sedimentary tuff | C2 | 4413.35 | 2.8 | 10.6 | 69.2 | 17.4 | 10 |
C2 | 4568.22 | 3.1 | 10.9 | 63.8 | 22.2 | 10 | |
C2 | 4568.92 | 0.3 | 0.5 | 61.4 | 37.8 | 15 | |
C2 | 4779.16 | 6.2 | 15.4 | 60.7 | 17.7 | 10 | |
C2-1 | 4543.40 | 12.4 | 43.4 | 33 | 11.2 | 10 | |
C2-1 | 4546.68 | 12 | 31.7 | 39.6 | 16.7 | 10 | |
C2-3 | 4220.70 | 12.5 | 32.8 | 39.8 | 14.9 | 10 | |
C2-3 | 4224.10 | 11.9 | 31.2 | 34.8 | 22.1 | 10 | |
C2-3 | 4272.10 | 2 | 5.4 | 68.3 | 24.3 | 10 | |
C2-3 | 4273.40 | 20.7 | 63.8 | 10.2 | 5.3 | 10 | |
C2-3 | 4274.52 | 2.3 | 5.7 | 71.8 | 20.2 | 10 | |
C3 | 4528.62 | 16.1 | 56.4 | 19.4 | 8.1 | 10 | |
YS3 | 4024.81 | 12.3 | 29.2 | 31.6 | 26.9 | 15 | |
C301 | 3964.05 | 4 | 28.6 | 35.7 | 31.7 | 15 | |
C301 | 3964.77 | 5.3 | 14.9 | 46.4 | 33.4 | 15 | |
C301 | 3964.97 | 8.1 | 31.8 | 36.5 | 23.6 | 15 | |
C301 | 3965.31 | 9.2 | 42.1 | 26 | 22.7 | 15 | |
C301 | 3966.4 | 3.8 | 4.9 | 53.2 | 38.1 | 15 | |
C301 | 3967.07 | 8.3 | 28.4 | 33.1 | 30.2 | 15 | |
C301 | 3967.33 | 5.5 | 7.5 | 51.4 | 35.6 | 15 | |
C301 | 3967.5 | 4 | 13.1 | 67.5 | 15.4 | 10 | |
C301 | 3972.17 | 14.6 | 59.2 | 17.4 | 8.8 | 10 | |
C301 | 3972.84 | 12.1 | 58.7 | 17.2 | 12 | 10 | |
C301 | 3973.52 | 11.7 | 23.9 | 45.6 | 18.8 | 10 | |
C301 | 3974.52 | 7.4 | 27.5 | 46.5 | 18.6 | 10 | |
C301 | 3975.1 | 11.2 | 26.3 | 45.8 | 16.7 | 10 | |
C301 | 3975.5 | 9.1 | 15.6 | 57.5 | 17.8 | 10 | |
C301 | 3976.33 | 4.7 | 22.2 | 55.4 | 17.7 | 10 | |
C301 | 3976.83 | 8.9 | 28.2 | 43.3 | 19.6 | 10 | |
C301 | 3978.07 | 8.5 | 27.2 | 43.9 | 20.4 | 10 | |
C301 | 4036.55 | 20.9 | 43.3 | 24.8 | 11 | 10 | |
C301 | 4039.78 | 14.1 | 47.2 | 20.5 | 18.2 | 10 | |
C301 | 4041.58 | 1.6 | 5 | 76 | 17.4 | 10 | |
C301 | 4157.7 | 15 | 28.9 | 33.9 | 22.2 | 15 | |
C301 | 4159.27 | 9 | 20.1 | 41.3 | 29.6 | 15 | |
C301 | 4429.6 | 11.9 | 25.1 | 31.7 | 31.3 | 15 | |
Tuffaceous sanfstone | C301 | 4043.12 | 11.6 | 33.5 | 36.8 | 18.1 | 10 |
C301 | 4047.85 | 15.2 | 60.3 | 20.4 | 4.1 | 10 | |
C301 | 4086.54 | 11.3 | 68.6 | 14.1 | 6 | 10 | |
C301 | 4086.7 | 9.7 | 62.7 | 18.9 | 8.7 | 10 |
Well | Depth (m) | δ13CPDB (‰) | δ18OPDB (‰) |
---|---|---|---|
C1 | 4466.50 | −9.2 | −22.6 |
4473.90 | −8.7 | −21.4 | |
4474.00 | −8.7 | −22.4 | |
4473.00 | −9.6 | −22.5 | |
C2 | 4717.20 | −9.9 | −20.1 |
4716.00 | −6.0 | −20.9 | |
4716.90 | −6.4 | −20.9 | |
C3 | 4630.90 | −4.9 | −22.3 |
4446.90 | −10.0 | −21.0 | |
4447.00 | −8.6 | −23.4 | |
4443.40 | −12.3 | −19.8 | |
4444.20 | −8.4 | −20.3 | |
4448.80 | −14.2 | −20.2 | |
4532.40 | −7.8 | −24.2 | |
4626.90 | −7.9 | −22.0 | |
4915.10 | −7.4 | −23.3 | |
4445.90 | −9.5 | −20.9 | |
4446.72 | −8.7 | −18.2 | |
4446.80 | −8.3 | −19.0 | |
4449.35 | −8.2 | −16.6 | |
C5 | 4450.13 | −2.3 | −11.9 |
4452.46 | −1.8 | −16.1 | |
4526.00 | −4.5 | −27.6 | |
4526.80 | −5.8 | −23.1 | |
4527.94 | −7.0 | −23.5 | |
YS3 | 4026.30 | −6.5 | −22.1 |
4023.77 | −7.0 | −25.1 | |
4024.41 | −6.7 | −18.2 | |
4026.30 | −9.2 | −19.0 | |
4022.87 | −12.4 | −22.9 | |
4025.66 | −15.5 | −27.6 | |
4027.15 | −13.2 | −24.8 | |
4159.97 | −10.6 | −21.5 | |
4160.64 | −7.7 | −22.4 | |
4162.95 | −7.1 | −23.5 | |
4324.60 | −10.3 | −25.8 | |
4324.90 | −8.7 | −17.7 | |
4329.30 | −9.1 | −17.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Yi, J.; Bian, W.; Shan, X.; Liu, Y.; Hao, G.; Li, A.; Leng, Q.; Lu, J.; Pang, H.; et al. Reservoir Characteristics and Development Model of Subaqueous Pyroclastic Rocks in a Continental Lacustrine Basin: A Case Study of the Chaganhua Subsag in the Changling Fault Depression, Songliao Basin. Energies 2023, 16, 4968. https://doi.org/10.3390/en16134968
Shi Y, Yi J, Bian W, Shan X, Liu Y, Hao G, Li A, Leng Q, Lu J, Pang H, et al. Reservoir Characteristics and Development Model of Subaqueous Pyroclastic Rocks in a Continental Lacustrine Basin: A Case Study of the Chaganhua Subsag in the Changling Fault Depression, Songliao Basin. Energies. 2023; 16(13):4968. https://doi.org/10.3390/en16134968
Chicago/Turabian StyleShi, Yunqian, Jian Yi, Weihua Bian, Xuanlong Shan, Yuhu Liu, Guoli Hao, Ang Li, Qinglei Leng, Junjie Lu, He Pang, and et al. 2023. "Reservoir Characteristics and Development Model of Subaqueous Pyroclastic Rocks in a Continental Lacustrine Basin: A Case Study of the Chaganhua Subsag in the Changling Fault Depression, Songliao Basin" Energies 16, no. 13: 4968. https://doi.org/10.3390/en16134968
APA StyleShi, Y., Yi, J., Bian, W., Shan, X., Liu, Y., Hao, G., Li, A., Leng, Q., Lu, J., Pang, H., & Zhang, R. (2023). Reservoir Characteristics and Development Model of Subaqueous Pyroclastic Rocks in a Continental Lacustrine Basin: A Case Study of the Chaganhua Subsag in the Changling Fault Depression, Songliao Basin. Energies, 16(13), 4968. https://doi.org/10.3390/en16134968