Facile Preparation of SnO2/CuO Nanocomposites as Electrocatalysts for Energy-Efficient Hybrid Water Electrolysis in the Presence of Ethanol
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Physical and Chemical Characterization
3.2. Electrochemical Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pei, A.; Li, G.; Zhu, L.; Huang, Z.; Ye, J.; Chang, Y.-C.; Osman, S.M.; Pao, C.-W.; Gao, Q.; Chen, B.H.; et al. Nickel Hydroxide-Supported Ru Single Atoms and Pd Nanoclusters for Enhanced Electrocatalytic Hydrogen Evolution and Ethanol Oxidation. Adv. Funct. Mater. 2022, 32, 2208587. [Google Scholar] [CrossRef]
- Liu, X.; Tian, Q.; Li, Y.; Zhou, Z.; Wang, J.; Liu, S.; Wang, C. Electron transfer dynamics and electrocatalytic oxygen evolution activities of the Co3O4 nanoparticles attached to indium tin oxide by self-assembled monolayers. Front. Chem. 2022, 10, 919192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, B.; Sun, K.; Lang, J.; Li, J. Apparent activity and specific activity of lanthanides (La, Ce, Nd) decorated Co-MOF derivatives for electrocatalytic water splitting. Nanotechnology 2023, 34, 185701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, K.; Fan, L.; Liu, H.; Zhu, H.; Yan, S. High-valence metal doped Co2FeAl alloy as efficient noble-metal-free electrocatalyst for alkaline hydrogen evolution reaction. J. Alloys Compd. 2023, 933, 167613. [Google Scholar] [CrossRef]
- Liu, X.; Han, Y.; Guo, Y.; Zhao, X.; Pan, D.; Li, K.; Wen, Z. Electrochemical Hydrogen Generation by Oxygen Evolution Reaction-Alternative Anodic Oxidation Reactions. Adv. Energy Sustain. Res. 2022, 3, 2200005. [Google Scholar] [CrossRef]
- Zhang, C.; Qi, Q.; Mei, Y.; Hu, J.; Sun, M.; Zhang, Y.; Huang, B.; Zhang, L.; Yang, S. Rationally Reconstructed Metal–Organic Frameworks as Robust Oxygen Evolution Electrocatalysts. Adv. Mater. 2023, 35, 2208904. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Ye, Y.; Wang, Y.; Yu, R.; Moskovits, M.; Stucky, G.D. Honeycomb-like MXene/NiFePx–NC with "continuous" single-crystal enabling high activity and robust durability in electrocatalytic oxygen evolution reactions. J. Adv. Ceram. 2023, 12, 553–564. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, X.; Song, Y.; Liu, Y.; Wu, D.; Li, J.; Liu, W.; Fu, L.; Shen, Y.; Tian, X. CuInS2-based photocatalysts for photocatalytic hydrogen evolution via water splitting. Int. J. Hydrogen Energy 2023, 48, 3791–3806. [Google Scholar] [CrossRef]
- Tan, F.; Zhou, Y.; Zhang, H.; Sun, P.; Li, H.; Liu, X.; Wågberg, T.; Hu, G. Improving the hydrogen evolution reaction activity of molybdenum-based heterojunction nanocluster capsules via electronic modulation by erbium–nitrogen–phosphorus ternary doping. Chem. Eng. J. 2023, 454, 140079. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Xing, C.; Li, L.; Mu, S.; Han, X.; He, R.; Liang, Z.; Martinez, P.; Yi, Y.; et al. Electrochemical reforming of ethanol with acetate Co-Production on nickel cobalt selenide nanoparticles. Chem. Eng. J. 2022, 440, 135817. [Google Scholar] [CrossRef]
- Wang, Z.; Liao, X.; Zhou, M.; Huang, F.; Owusu, K.A.; Li, J.; Lin, Z.; Sun, Q.; Hong, X.; Sun, C.; et al. Interfacial and Vacancies Engineering of Copper Nickel Sulfide for Enhanced Oxygen Reduction and Alcohols Oxidation Activity. Energy Environ. Mater. 2022. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, R.; Anandhababu, G.; Xie, J.; Lv, J.; Zhao, X.; Wang, X.; Wu, M.; Li, Q.; Wang, Y. Cobalt/Iron(Oxides) Heterostructures for Efficient Oxygen Evolution and Benzyl Alcohol Oxidation Reactions. ACS Energy Lett. 2018, 3, 1854–1860. [Google Scholar] [CrossRef]
- Xiao, G.; Lu, R.; Liu, J.; Liao, X.; Wang, Z.; Zhao, Y. Coordination environments tune the activity of oxygen catalysis on single atom catalysts: A computational study. Nano Res. 2022, 15, 3073–3081. [Google Scholar] [CrossRef]
- Shi, H.; Sun, X.-Y.; Liu, Y.; Zeng, S.-P.; Zhang, Q.-H.; Gu, L.; Wang, T.-H.; Han, G.-F.; Wen, Z.; Fang, Q.-R.; et al. Multicomponent Intermetallic Nanoparticles on Hierarchical Metal Network as Versatile Electrocatalysts for Highly Efficient Water Splitting. Adv. Funct. Mater. 2023, 2214412. [Google Scholar] [CrossRef]
- Shen, J.; Li, Q.; Cai, Z.; Sun, X.; Liu, J. Metal–Organic Framework-Based Self-Supporting Nanoparticle Arrays for Catalytic Water Splitting. ACS Appl. Nano Mater. 2023, 6, 1965–1974. [Google Scholar] [CrossRef]
- Sha, M.S.; N.Musthafa, F.; Alejli, A.; Alahmad, J.K.; Bhattacharyya, B.; Kumar, B.; Abdullah, A.M.; Sadasivuni, K.K. An Advanced Quaternary Composite for Efficient Water Splitting. Catal. Lett. 2023. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, S.; Wang, B.; Pei, S. Hydrothermal synthesis of SnO2-CuO composite nanoparticles as a fast-response ethanol gas sensor. J. Alloys Compd. 2021, 886, 161299. [Google Scholar] [CrossRef]
- Choi, W.; Choi, J.H.; Park, H. Electrocatalytic activity of metal-doped SnO2 for the decomposition of aqueous contaminants: Ta-SnO2 vs. Sb-SnO2. Chem. Eng. J. 2021, 409, 128175. [Google Scholar] [CrossRef]
- Jain, S.K.; Fazil, M.; Pandit, N.A.; Ali, S.A.; Naaz, F.; Khan, H.; Mehtab, A.; Ahmed, J.; Ahmad, T. Modified, Solvothermally Derived Cr-doped SnO2 Nanostructures for Enhanced Photocatalytic and Electrochemical Water-Splitting Applications. ACS Omega 2022, 7, 14138–14147. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Yi, Z.; Cheng, Y.; Wu, Y.; Wang, L. Simple preparation of Cu6Sn5/Sn composites as anode materials for lithium-ion batteries. RSC Adv. 2016, 6, 15279–15285. [Google Scholar] [CrossRef]
- Ayesh, A.I.; Alyafei, A.A.; Anjum, R.S.; Mohamed, R.M.; Abuharb, M.B.; Salah, B.; El-Muraikhi, M. Production of sensitive gas sensors using CuO/SnO2 nanoparticles. Appl. Phys. A 2019, 125, 550. [Google Scholar] [CrossRef] [Green Version]
- Sheng, S.; Song, Y.; Sha, L.; Ye, K.; Zhu, K.; Gao, Y.; Yan, J.; Wang, G.; Cao, D. Simultaneous hydrogen evolution and ethanol oxidation in alkaline medium via a self-supported bifunctional electrocatalyst of Ni-Fe phosphide/Ni foam. Appl. Surf. Sci. 2021, 561, 150080. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, J.-W.; Yin, Y.-R.; Wu, D.; Luo, J.-L.; Fu, X.-Z. Carbon nanofibers@NiSe core/sheath nanostructures as efficient electrocatalysts for integrating highly selective methanol conversion and less-energy intensive hydrogen production. J. Mater. Chem. A 2019, 7, 25878–25886. [Google Scholar] [CrossRef]
- Li, M.; Deng, X.; Liang, Y.; Xiang, K.; Wu, D.; Zhao, B.; Yang, H.; Luo, J.-L.; Fu, X.-Z. CoxP@NiCo-LDH heteronanosheet arrays as efficient bifunctional electrocatalysts for co-generation of value-added formate and hydrogen with less-energy consumption. J. Energy Chem. 2020, 50, 314–323. [Google Scholar] [CrossRef]
- Garlyyev, B.; Xue, S.; Fichtner, J.; Bandarenka, A.S.; Andronescu, C. Prospects of Value-Added Chemicals and Hydrogen via Electrolysis. ChemSusChem 2020, 13, 2513–2521. [Google Scholar] [CrossRef]
- Liu, W.-J.; Xu, Z.; Zhao, D.; Pan, X.-Q.; Li, H.-C.; Hu, X.; Fan, Z.-Y.; Wang, W.-K.; Zhao, G.-H.; Jin, S.; et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun. 2020, 11, 265. [Google Scholar] [CrossRef] [Green Version]
- Mahanta, J.; Basak, M.; Parmar, P.R.; Saha, D.R.; Mandal, T.K.; Bandyopadhyay, D. Enhanced Hydrogen Production during Electro-Oxidation of Ethanol using Plasmonic Gold Nanoparticles. Energy Technol. 2022, 10, 2200134. [Google Scholar] [CrossRef]
- Wang, Q.; Li, T.; Yan, S.; Zhang, W.; Lv, G.; Xu, H.; Li, H.; Wang, Y.; Liu, J. Boosting Hydrogen Production by Selective Anodic Electrooxidation of Ethanol over Trimetallic PdSbBi Nanoparticles: Composition Matters. Inorg. Chem. 2022, 61, 16211–16219. [Google Scholar] [CrossRef]
- Chen, Y.X.; Lavacchi, A.; Miller, H.A.; Bevilacqua, M.; Filippi, J.; Innocenti, M.; Marchionni, A.; Oberhauser, W.; Wang, L.; Vizza, F. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat. Commun. 2014, 5, 4036. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.; Yan, X.; Liang, J.; Dou, S.X. Metal-Based Electrocatalysts for Methanol Electro-Oxidation: Progress, Opportunities, and Challenges. Small 2021, 17, 1904126. [Google Scholar] [CrossRef]
- Bai, J.; Liu, D.; Yang, J.; Chen, Y. Nanocatalysts for Electrocatalytic Oxidation of Ethanol. ChemSusChem 2019, 12, 2117–2132. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Kumar, D.; Singh, B.; Indra, A. Replacing Anodic Oxygen Evolution Reaction with Organic Oxidation: The Importance of Metal (Oxy)Hydroxide Formation as the Active Oxidation Catalyst. Synlett 2022, 34, 552–560. [Google Scholar] [CrossRef]
- Radinger, H.; Connor, P.; Stark, R.; Jaegermann, W.; Kaiser, B. Manganese Oxide as an Inorganic Catalyst for the Oxygen Evolution Reaction Studied by X-Ray Photoelectron and Operando Raman Spectroscopy. ChemCatChem 2021, 13, 1175–1185. [Google Scholar] [CrossRef]
- Li, Z.; Ning, S.; Xu, J.; Zhu, J.; Yuan, Z.; Wu, Y.; Chen, J.; Xie, F.; Jin, Y.; Wang, N.; et al. In situ electrochemical activation of Co(OH)2@Ni(OH)2 heterostructures for efficient ethanol electrooxidation reforming and innovative zinc–ethanol–air batteries. Energy Environ. Sci. 2022, 15, 5300–5312. [Google Scholar] [CrossRef]
- Xiang, K.; Wu, D.; Deng, X.; Li, M.; Chen, S.; Hao, P.; Guo, X.; Luo, J.-L.; Fu, X.-Z. Boosting H2 Generation Coupled with Selective Oxidation of Methanol into Value-Added Chemical over Cobalt Hydroxide@Hydroxysulfide Nanosheets Electrocatalysts. Adv. Funct. Mater. 2020, 30, 1909610. [Google Scholar] [CrossRef]
- Patil, S.A.; Bui, H.T.; Hussain, S.; Rabani, I.; Seo, Y.; Jung, J.; Shrestha, N.K.; Kim, H.; Im, H. Self-standing SnS nanosheet array: A bifunctional binder-free thin film catalyst for electrochemical hydrogen generation and wastewater treatment. Dalton Trans. 2021, 50, 12723–12729. [Google Scholar] [CrossRef]
- Deng, X.; Kang, X.; Li, M.; Xiang, K.; Wang, C.; Guo, Z.; Zhang, J.; Fu, X.-Z.; Luo, J.-L. Coupling efficient biomass upgrading with H2 production via bifunctional CuxS@NiCo-LDH core–shell nanoarray electrocatalysts. J. Mater. Chem. A 2020, 8, 1138–1146. [Google Scholar] [CrossRef]
- Chen, G.-F.; Luo, Y.; Ding, L.-X.; Wang, H. Low-Voltage Electrolytic Hydrogen Production Derived from Efficient Water and Ethanol Oxidation on Fluorine-Modified FeOOH Anode. ACS Catal. 2018, 8, 526–530. [Google Scholar] [CrossRef]
- Zapata-Cruz, J.R.; Armendáriz-Mireles, E.N.; Rocha-Rangel, E.; Suarez-Velazquez, G.; González-Quijano, D.; Pech-Rodríguez, W.J. Implementation of Taguchi method to investigate the effect of electrophoretic deposition parameters of SnO2 on dye sensitised solar cell performance. Mater. Technol. 2019, 34, 549–557. [Google Scholar] [CrossRef]
- Al Baroot, A.; Alheshibri, M.; Drmosh, Q.A.; Akhtar, S.; Kotb, E.; Elsayed, K.A. A novel approach for fabrication ZnO/CuO nanocomposite via laser ablation in liquid and its antibacterial activity. Arab. J. Chem. 2022, 15, 103606. [Google Scholar] [CrossRef]
- Osuntokun, J.; Onwudiwe, D.C.; Ebenso, E.E. Biosynthesis and Photocatalytic Properties of SnO2 Nanoparticles Prepared Using Aqueous Extract of Cauliflower. J. Cluster Sci. 2017, 28, 1883–1896. [Google Scholar] [CrossRef]
- Weinrich, H.; Rutjens, B.; Basak, S.; Schmid, B.; Camara, O.; Kretzschmar, A.; Kungl, H.; Tempel, H.; Eichel, R.-A. CO2 Electroreduction to Formate—Comparative Study Regarding the Electrocatalytic Performance of SnO2 Nanoparticles. Catalysts 2023, 13, 903. [Google Scholar] [CrossRef]
- Pavitra, V.; Udayabhanu; Harini, R.; Viswanatha, R.; Praveen, B.M.; Nagaraju, G. Sonochemical synthesis of SnO2–CuO nanocomposite: Diverse applications on Li-ion battery, electrochemical sensing and photocatalytic activity. J. Mater. Sci. Mater. Electron. 2020, 31, 8737–8749. [Google Scholar] [CrossRef]
- Nga, N.K.; Thuy Chau, N.T.; Viet, P.H. Preparation and characterization of a chitosan/MgO composite for the effective removal of reactive blue 19 dye from aqueous solution. J. Sci. Adv. Mater. Devices 2020, 5, 65–72. [Google Scholar] [CrossRef]
- Khaleel, W.A.; Sadeq, S.A.; Alani, I.A.M.; Ahmed, M.H.M. Magnesium oxide (MgO) thin film as saturable absorber for passively mode locked erbium-doped fiber laser. Opt. Laser Technol. 2019, 115, 331–336. [Google Scholar] [CrossRef]
- Asaithambi, S.; Sakthivel, P.; Karuppaiah, M.; Hayakawa, Y.; Loganathan, A.; Ravi, G. Improved photocatalytic performance of nanostructured SnO2 via addition of alkaline earth metals (Ba2+, Ca2+ and Mg2+) under visible light irradiation. Appl. Phys. A 2020, 126, 265. [Google Scholar] [CrossRef]
- Prakash, O.; Kumar, S.; Singh, P.; Deckert, V.; Chatterjee, S.; Ghosh, A.K.; Singh, R.K. Surface-enhanced Raman scattering characteristics of CuO : Mn/Ag heterojunction probed by methyl orange: Effect of Mn2+ doping. J. Raman Spectrosc. 2016, 47, 813–818. [Google Scholar] [CrossRef]
- Kaur, J.; Shah, J.; Kotnala, R.K.; Verma, K.C. Raman spectra, photoluminescence and ferromagnetism of pure, Co and Fe doped SnO2 nanoparticles. Ceram. Int. 2012, 38, 5563–5570. [Google Scholar] [CrossRef]
- Chuai, M.; Chen, X.; Zhang, K.; Zhang, J.; Zhang, M. CuO–SnO2 reverse cubic heterojunctions as high-performance supercapacitor electrodes. J. Mater. Chem. A 2019, 7, 1160–1167. [Google Scholar] [CrossRef]
- Li, J.; Zuo, Y.; Liu, J.; Wang, X.; Yu, X.; Du, R.; Zhang, T.; Infante-Carrió, M.F.; Tang, P.; Arbiol, J.; et al. Superior methanol electrooxidation performance of (110)-faceted nickel polyhedral nanocrystals. J. Mater. Chem. A 2019, 7, 22036–22043. [Google Scholar] [CrossRef]
- Miao, J.; Zhao, X.; Hu, H.-Y.; Huang, H.; Ding, Y.; Liu, Z.-H.; Chen, Y. Trimetallic RhNiFe Phosphide Nanosheets for Electrochemical Reforming of Ethanol. ACS Appl. Nano Mater. 2022, 5, 4948–4957. [Google Scholar] [CrossRef]
- Devi, S.; Devi, S.; Sunaina; Wadhwa, R.; Yadav, K.K.; Jha, M. Understanding the origin of ethanol oxidation from ultrafine nickel manganese oxide nanosheets derived from spent alkaline batteries. J. Clean. Prod. 2022, 376, 134147. [Google Scholar] [CrossRef]
- Ghouri, Z.K.; Elsaid, K.; Abdel-Wahab, A.; Abdala, A.; Farhad, M.Z. Electrooxidation behavior of ethanol toward carbon microbead-encapsulated ZnO particles derived from coffee waste. J. Mater. Sci. Mater. Electron. 2020, 31, 6530–6537. [Google Scholar] [CrossRef] [Green Version]
- López-Fernández, E.; Gómez-Sacedón, C.; Gil-Rostra, J.; Espinós, J.P.; González-Elipe, A.R.; Yubero, F.; de Lucas Consuegra, A. Nanostructured nickel based electrocatalysts for hybrid ethanol-water anion exchange membrane electrolysis. J. Environ. Chem. Eng. 2022, 10, 107994. [Google Scholar] [CrossRef]
- Ruiz-López, E.; Amores, E.; Raquel de la Osa, A.; Dorado, F.; de Lucas-Consuegra, A. Electrochemical reforming of ethanol in a membrane-less reactor configuration. Chem. Eng. J. 2020, 379, 122289. [Google Scholar] [CrossRef]
- Naito, T.; Shinagawa, T.; Nishimoto, T.; Takanabe, K. Recent advances in understanding oxygen evolution reaction mechanisms over iridium oxide. Inorg. Chem. Front. 2021, 8, 2900–2917. [Google Scholar] [CrossRef]
- Pech-Rodríguez, W.J.; Ordóñez, L.C.; Valdez-Ramírez, F.E.; Pérez-Mata, H. A fast and inexpensive strategy to fabricate ZnO–Cu composites as non-precious electrocatalysts for ethanol oxidation reaction in alkaline media. J. Appl. Electrochem. 2023. [Google Scholar] [CrossRef]
- El Attar, A.; Oularbi, L.; Chemchoub, S.; El Rhazi, M. Preparation and characterization of copper oxide particles/polypyrrole (Cu2O/PPy) via electrochemical method: Application in direct ethanol fuel cell. Int. J. Hydrogen Energy 2020, 45, 8887–8898. [Google Scholar] [CrossRef]
Catalyst | Potential E (V vs. RHE) | Rs (Ω cm2) | R1 (Ω cm2) | QCPE1,film (F s(α1−1) cm2) | α1 | R2 (Ω cm2) | QCPE2 (F s(α2−1) cm2) | α2 |
---|---|---|---|---|---|---|---|---|
SnO2 | 1.5 | 2.034 | 71.75 | 0.72 × 10−3 | 0.831 | 891.9 | 0.23 × 10−3 | 0.95 |
SnO2CuO | 1.5 | 2.179 | 2.91 | 48.56 × 10−3 | 0.463 | 203 | 6.88 × 10−3 | 0.90 |
Catalyst | Scan Rate | Current Density | Electrolyte | Reference |
---|---|---|---|---|
CM-ZnO | 50 mV s−1 | 10 mA cm−2 at 1.7 V vs. RHE | 2 mol L−1 C2H5OH + 1 mol L−1 KOH | [53] |
Cu2O/PPY/CPE | 50 mV s−1 | 10 mA cm−2 at 1.7 V vs. RHE | 5 mol L−1 C2H5OH + 0.1 mol L−1 KOH | [58] |
ZnOCu | 20 mV s−1 | 10 mA cm−2 at 1.56V vs. RHE | 0.5 mol L−1 C2H5OH + 0.5 mol L−1 KOH | [57] |
Ni6MnO8 | 50 mV s−1 | 10 mA cm−2 at 1.6V vs. RHE | 1 mol L−1 C2H5OH + 1 mol L−1 KOH | [52] |
SnO2/CuO | 20 mV s−1 | 10 mA cm−2 at 1.62V vs. RHE | 1 mol L−1 C2H5OH + 0.5 mol L−1 NaOH | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pech-Rodríguez, W.J.; García-Lezama, H.M.; Sahin, N.E. Facile Preparation of SnO2/CuO Nanocomposites as Electrocatalysts for Energy-Efficient Hybrid Water Electrolysis in the Presence of Ethanol. Energies 2023, 16, 4986. https://doi.org/10.3390/en16134986
Pech-Rodríguez WJ, García-Lezama HM, Sahin NE. Facile Preparation of SnO2/CuO Nanocomposites as Electrocatalysts for Energy-Efficient Hybrid Water Electrolysis in the Presence of Ethanol. Energies. 2023; 16(13):4986. https://doi.org/10.3390/en16134986
Chicago/Turabian StylePech-Rodríguez, Wilian Jesús, Héctor Manuel García-Lezama, and Nihat Ege Sahin. 2023. "Facile Preparation of SnO2/CuO Nanocomposites as Electrocatalysts for Energy-Efficient Hybrid Water Electrolysis in the Presence of Ethanol" Energies 16, no. 13: 4986. https://doi.org/10.3390/en16134986
APA StylePech-Rodríguez, W. J., García-Lezama, H. M., & Sahin, N. E. (2023). Facile Preparation of SnO2/CuO Nanocomposites as Electrocatalysts for Energy-Efficient Hybrid Water Electrolysis in the Presence of Ethanol. Energies, 16(13), 4986. https://doi.org/10.3390/en16134986