Hydraulic Fracture Propagation and Proppant Transport Mechanism in Interlayered Reservoir
Abstract
:1. Introduction
2. Simulation Method
2.1. Mechanical Model
2.2. Flow Model
2.3. Hydro-Mechanical Coupling
- Aperture or the deformation of the solid model determines the fracture permeability.
- Fluid pressure has an impact on both the deformation and the strength of the solid model. Calculations of the effective stress are performed.
- The fluid pressures are impacted by the deformation of the solid model. In particular, the code can predict changes in fluid pressure under undrained conditions.
2.4. Proppant Transport and Placement
3. Model Setting
4. Results
4.1. Effect of Young’s Modulus
4.2. Effect of Stress Anisotropy
4.3. Effect of Injection Rate
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, J.; Wu, K.; Zuo, L.; Xiao, L.; Sun, S.; Ehlig–Economides, C. Investigation of Rupture and Slip Mechanisms of Hydraulic Fractures in Multiple-Layered Formations. SPE J. 2019, 24, 2292–2307. [Google Scholar] [CrossRef]
- Xie, J.; Tang, J.; Yong, R.; Fan, Y.; Zuo, L.; Chen, X.; Li, Y. A 3-D hydraulic fracture propagation model applied for shale gas reservoirs with multiple bedding planes. Eng. Fract. Mech. 2020, 228, 106872. [Google Scholar] [CrossRef]
- Li, Y.; Long, M.; Tang, J.; Chen, M.; Fu, X. A hydraulic fracture height mathematical model considering the influence of plastic region at fracture tip. Pet. Explor. Dev. 2020, 47, 184–195. [Google Scholar] [CrossRef]
- Li, Y.; Long, M.; Zuo, L.; Li, W.; Zhao, W. Brittleness evaluation of coal based on statistical damage and energy evolution theory. J. Pet. Sci. Eng. 2018, 172, 753–763. [Google Scholar] [CrossRef]
- Cong, Z.; Li, Y.; Pan, Y.; Liu, B.; Shi, Y.; Wei, J.; Li, W. Study on CO2 foam fracturing model and fracture propagation simulation. Energy 2021, 238, 121778. [Google Scholar] [CrossRef]
- Khristianovich, S.A.; Zheltov, V.P. Formation of vertical fractures by means of highly viscous liquid. In Proceedings of the 4th World Petroleum Congress, Rome, Italy, 6–15 June 2015; pp. 579–586. [Google Scholar]
- Perkins, T.; Kern, L. Widths of Hydraulic Fractures. J. Pet. Technol. 1961, 13, 937–949. [Google Scholar] [CrossRef]
- Geertsma, J.; De Klerk, F. A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures. J. Pet. Technol. 1969, 21, 1571–1581. [Google Scholar] [CrossRef]
- Nordgren, R.P. Propagation of a Vertical Hydraulic Fracture. Soc. Pet. Eng. J. 1972, 12, 306–314. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Pan, Y.; Wang, X.; Yan, M.; Shi, X.; Zhou, X.; Li, H. Experiments and analysis on the influence of multiple closed cemented natural fractures on hydraulic fracture propagation in a tight sandstone reservoir. Eng. Geol. 2021, 281, 105981. [Google Scholar] [CrossRef]
- Li, Y.; Jia, D.; Rui, Z.; Peng, J.; Fu, C.; Zhang, J. Evaluation method of rock brittleness based on statistical constitutive relations for rock damage. J. Pet. Sci. Eng. 2017, 153, 123–132. [Google Scholar] [CrossRef]
- Gravanis, E.; Sarris, E. A working model for estimating CO2-induced uplift of cap rocks under different flow regimes in CO2 sequestration. Géoméch. Energy Environ. 2023, 33, 100433. [Google Scholar] [CrossRef]
- Isah, A.; Hiba, M.; Al-Azani, K.; Aljawad, M.S.; Mahmoud, M. A comprehensive review of proppant transport in fractured reservoirs: Experimental, numerical, and field aspects. J. Nat. Gas Sci. Eng. 2021, 88, 103832. [Google Scholar] [CrossRef]
- Fetisov, V.; Ilyushin, Y.V.; Vasiliev, G.G.; Leonovich, I.A.; Müller, J.; Riazi, M.; Mohammadi, A.H. Development of the automated temperature control system of the main gas pipeline. Sci. Rep. 2023, 13, 3092. [Google Scholar] [CrossRef]
- Bosikov, I.I.; Klyuev, R.V.; Mayer, V. Comprehensive assessment of hydraulic fracturing technology efficiency for well construction during hydrocarbon production. J. Min. Inst. 2022, 258, 1018–1025. [Google Scholar] [CrossRef]
- Bosikov, I.I.; Martyushev, N.V.; Klyuev, R.V.; Savchenko, I.A.; Kukartsev, V.V.; Kukartsev, V.A.; Tynchenko, Y.A. Modeling and Complex Analysis of the Topology Parameters of Ventilation Networks When Ensuring Fire Safety While Developing Coal and Gas Deposits. Fire 2023, 6, 95. [Google Scholar] [CrossRef]
- Cong, Z.; Li, Y.; Liu, Y.; Xiao, Y. A new method for calculating the direction of fracture propagation by stress numerical search based on the displacement discontinuity method. Comput. Geotech. 2021, 140, 104482. [Google Scholar] [CrossRef]
- Wu, K.; Olson, J.E. Simultaneous Multifracture Treatments: Fully Coupled Fluid Flow and Fracture Mechanics for Horizontal Wells. SPE J. 2015, 20, 337–346. [Google Scholar] [CrossRef]
- Zhu, W.; Shi, H.; Huang, B.; Zhong, K.; Huang, Y. Geology and geochemistry of large gas fields in the deepwater areas, continental margin basins of northern South China Sea. Mar. Pet. Geol. 2021, 126, 104901. [Google Scholar] [CrossRef]
- Xue, D.; Zhou, J.; Liu, Y.; Gao, L. On the excavation-induced stress drop in damaged coal considering a coupled yield and failure criterion. Int. J. Coal Sci. Technol. 2020, 7, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Tang, C.; Liu, Y.; Tang, Y. Zonal disintegration test of deep tunnel under plane strain conditions. Int. J. Coal Sci. Technol. 2020, 7, 337–349. [Google Scholar] [CrossRef]
- Hou, E.; Wen, Q.; Ye, Z.; Chen, W.; Wei, J. Height prediction of water-flowing fracture zone with a genetic-algorithm support-vector-machine method. Int. J. Coal Sci. Technol. 2020, 7, 740–751. [Google Scholar] [CrossRef]
- Xue, J.; Wang, H.; Zhou, W.; Ren, B.; Duan, C.; Deng, D. Experimental research on overlying strata movement and fracture evolution in pillarless stress-relief mining. Int. J. Coal Sci. Technol. 2015, 2, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Jin, F.; Liu, X.; Zhang, Z.; Cong, Z.; Li, Z.; Tang, J. Numerical study of fracture dynamics in different shale fabric facies by integrating machine learning and 3-D lattice method: A case from Cangdong Sag, Bohai Bay basin, China. J. Pet. Sci. Eng. 2022, 218, 110861. [Google Scholar] [CrossRef]
- Zhu, W.; Cui, Y.; Shao, L.; Qiao, P.; Yu, P.; Pei, J.; Liu, X.; Zhang, H. Reinterpretation of the northern South China Sea pre-Cenozoic basement and geodynamic implications of the South China continent: Constraints from combined geological and geophysical records. Acta Oceanol. Sin. 2021, 40, 13–28. [Google Scholar] [CrossRef]
- Simonson, E.; Abou-Sayed, A.; Clifton, R. Containment of Massive Hydraulic Fractures. Soc. Pet. Eng. J. 1978, 18, 27–32. [Google Scholar] [CrossRef]
- Ahmed, U. Fracture Height Prediction. J. Pet. Technol. 1988, 40, 813–815. [Google Scholar] [CrossRef]
- Newberry, B.; Nelson, R.; Ahmed, U. Prediction of vertical hydraulic fracture migration using compressional and shear wave slowness. In SPE/DOE Low Permeability Gas Reservoirs Symposium; OnePetro: Richardson, TX, USA, 1985. [Google Scholar]
- Economides, M.J. Petroleum Production Systems; Pearson Education: London, UK, 2013. [Google Scholar]
- Li, Y.; Zhou, L.; Li, D.; Zhang, S.; Tian, F.; Xie, Z.; Liu, B. Shale Brittleness Index Based on the Energy Evolution Theory and Evaluation with Logging Data: A Case Study of the Guandong Block. ACS Omega 2020, 5, 13164–13175. [Google Scholar] [CrossRef]
- Warpinski, N.R.; Mayerhofer, M.J.; Vincent, M.C.; Cipolla, C.L.; Lolon, E. Stimulating Unconventional Reservoirs: Maximizing Network Growth While Optimizing Fracture Conductivity. J. Can. Pet. Technol. 2009, 48, 39–51. [Google Scholar] [CrossRef]
- Tong, S.Y.; Singh, R.; Mohanty, K.K. Proppant transport in fractures with foam-based fracturing fluids. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 9–11 October 2017. SPE-187376-MS. [Google Scholar] [CrossRef]
- Katanov, Y.; Vaganov, Y.; Cheymetov, M. Neural simulation-based analysis of the well wall stability while productive seam penetrating. Min. Miner. Depos. 2021, 15, 91–98. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, Y. Research into technology for precision directional drilling of gas-drainage boreholes. Min. Miner. Depos. 2022, 16, 27–32. [Google Scholar] [CrossRef]
- Tang, J.; Fan, B.; Xiao, L.; Tian, S.; Zhang, F.; Zhang, L.; Weitz, D. A New Ensemble Machine-Learning Framework for Searching Sweet Spots in Shale Reservoirs. SPE J. 2021, 26, 482–497. [Google Scholar] [CrossRef]
- Keshavarz, A.; Badalyan, A.; Johnson, R.; Bedrikovetsky, P. Productivity enhancement by stimulation of natural fractures around a hydraulic fracture using micro-sized proppant placement. J. Nat. Gas Sci. Eng. 2016, 33, 1010–1024. [Google Scholar] [CrossRef]
- Khanna, A.; Kotousov, A.; Sobey, J.; Weller, P. Conductivity of narrow fractures filled with a proppant monolayer. J. Pet. Sci. Eng. 2012, 100, 9–13. [Google Scholar] [CrossRef]
- Damjanac, B.; Cundall, P. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs. Comput. Geotech. 2016, 71, 283–294. [Google Scholar] [CrossRef]
- Al-Tailji, W.H.; Shah, K.; Davidson, B.M. The application and misapplication of 100-mesh sand in multi-fractured horizontal wells in low-permeability reservoirs. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 9–11 February 2016. SPE-179163-MS 2016. [Google Scholar]
- Williams, R.; Artola, P.; Salinas, J.; Mirakyan, A.; MacKay, B.; Hoefer, A.; Kraemer, C.; Reese, H.; Roybal, Z.; Williamson, B. An early production comparison of northern white sand and regional sand in the Permian basin. In Proceedings of the SPE Annual Technical Conference and Exhibition, Calgary, AB, Canada, 30 September–2 October 2019. SPE-196048-MS 2019. [Google Scholar]
- Patel, P.S.; Robart, C.J.; Ruegamer, M.; Yang, A. Analysis of US hydraulic fracturing fluid system and proppant trends. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 4–6 February 2014. SPE 168645 2014. [Google Scholar]
- Mohaghegh, S.D.; Gaskari, R.; Maysami, M. Shale analytics: Making production and operational decisions based on facts: A case study in Marcellus shale. In Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, TX, USA, 24–26 January 2017. SPE 184822 2017. [Google Scholar]
- Yang, M.; Economides, M.J. Revisting natural proppants for hydraulic fracture production optimization. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 6–8 February 2012. SPE 151934 2012. [Google Scholar]
- Gu, H.; Siebrits, E. Effect of Formation Modulus Contrast on Hydraulic Fracture Height Containment. SPE Prod. Oper. 2008, 23, 170–176. [Google Scholar] [CrossRef]
- Hanson, M.E.; Anderson, G.D.; Shaffer, R.J. Theoretical and Experimental Research on Hydraulic Fracturing. J. Energy Resour. Technol. 1980, 102, 92–98. [Google Scholar] [CrossRef]
- Lei, T.; Yin, X.; Zong, Z. Pore pressure prediction in orthotropic medium based on rock physics modeling of shale gas. J. Nat. Gas Sci. Eng. 2020, 74, 103091. [Google Scholar] [CrossRef]
- Zhang, J.; Xingyao, Y.; Zhang, G.; Yipeng, G.; Xianggang, F. Prediction method of physical parameters based on linearized rock physics inversion. Pet. Explor. Dev. 2020, 47, 59–67. [Google Scholar] [CrossRef]
Parameters | Pay Layer |
---|---|
Tensile strength (MPa) | 3.5 |
Uniaxial compressive strength (MPa) | 79.5 |
Young’s modulus (GPa) | 27.7 |
Poisson’s ratio | 0.221 |
Permeability (10−15 m2) | 1.7 |
Vertical in situ stress (MPa) | 10 |
Minimum horizontal principal stress (MPa) | 5 |
Maximum horizontal principal stress (MPa) | 8 |
Pumping rate of fracturing fluid (m3/s) | 0.06 |
Viscosity of fracturing fluid (Pa·s) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Peng, G.; Cong, Z.; Hu, B. Hydraulic Fracture Propagation and Proppant Transport Mechanism in Interlayered Reservoir. Energies 2023, 16, 5017. https://doi.org/10.3390/en16135017
Wang J, Peng G, Cong Z, Hu B. Hydraulic Fracture Propagation and Proppant Transport Mechanism in Interlayered Reservoir. Energies. 2023; 16(13):5017. https://doi.org/10.3390/en16135017
Chicago/Turabian StyleWang, Jue, Genbo Peng, Ziyuan Cong, and Buqin Hu. 2023. "Hydraulic Fracture Propagation and Proppant Transport Mechanism in Interlayered Reservoir" Energies 16, no. 13: 5017. https://doi.org/10.3390/en16135017
APA StyleWang, J., Peng, G., Cong, Z., & Hu, B. (2023). Hydraulic Fracture Propagation and Proppant Transport Mechanism in Interlayered Reservoir. Energies, 16(13), 5017. https://doi.org/10.3390/en16135017