Vibration-Based Energy Harvesters: New Ways to Scavenge Energy
Conflicts of Interest
References
- Pillatsch, P.; Yeatman, E.M.; Holmes, A.S.; Wright, P.K. Wireless power transfer system for a human motion energy harvester. Sens. Actuators A Phys. 2016, 244, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Azizi, S.; Ghodsi, A.; Jafari, H.; Ghazavi, M.R. A conceptual study on the dynamics of a piezoelectric MEMS (Micro Electro Mechanical System) energy harvester. Energy 2016, 96, 495–506. [Google Scholar] [CrossRef]
- Zhao, J.; You, Z. A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors 2014, 14, 12497–12510. [Google Scholar] [CrossRef] [PubMed]
- Shin, A.; Radhakrishna, U.; Yang, Y.; Zhang, Q.; Gu, L.; Riehl, P.; Chandrakasan, A.P.; Lang, J.H. A MEMS magnetic-based vibration energy harvester. J. Phys. Conf. Ser. 2018, 1052, 012082. [Google Scholar] [CrossRef]
- Harne, R.L.; Wang, K.W. A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 2013, 22, 023001. [Google Scholar] [CrossRef]
- Zhu, D.; Tudor, M.J.; Beeby, S.P. Strategies for increasing the operating frequency range of vibration energy harvesters: A review. Meas. Sci. Technol. 2010, 21, 022001. [Google Scholar] [CrossRef] [Green Version]
- Firoozy, P.; Khadem, S.E.; Pourkiaee, S.M. Power enhancement of broadband piezoelectric energy harvesting using a proofmass and nonlinearities in curvature and inertia. Int. J. Mech. Sci. 2017, 133, 227–239. [Google Scholar] [CrossRef]
- Zhou, S.; Cao, J.; Inman, D.J.; Lin, J.; Li, D. Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. J. Sound Vib. 2016, 373, 223–235. [Google Scholar] [CrossRef]
- Pillatsch, P.; Yeatman, E.M.; Holmes, A.S. A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications. Sen. Actuators A Phys. 2014, 206, 178–185. [Google Scholar] [CrossRef]
- Ni, T.; Zuo, L.; Kareem, A. Assessment of energy potential and vibration mitigation of regenerative tuned mass dampers on wind excited tall buildings. In Volume 1: 23rd Biennial Conference on Mechanical Vibration and Noise, Parts A and B; ASME: New York, NY, USA, 2011; pp. 333–342. [Google Scholar] [CrossRef]
- Dai, X. An vibration energy harvester with broadband and frequency-doubling characteristics based on rotary pendulums. Sens. Actuators A Phys. 2016, 241, 161–168. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouakad, H.M. Vibration-Based Energy Harvesters: New Ways to Scavenge Energy. Energies 2023, 16, 5019. https://doi.org/10.3390/en16135019
Ouakad HM. Vibration-Based Energy Harvesters: New Ways to Scavenge Energy. Energies. 2023; 16(13):5019. https://doi.org/10.3390/en16135019
Chicago/Turabian StyleOuakad, Hassen M. 2023. "Vibration-Based Energy Harvesters: New Ways to Scavenge Energy" Energies 16, no. 13: 5019. https://doi.org/10.3390/en16135019
APA StyleOuakad, H. M. (2023). Vibration-Based Energy Harvesters: New Ways to Scavenge Energy. Energies, 16(13), 5019. https://doi.org/10.3390/en16135019