Flow Loss Analysis and Structural Optimization of Multiway Valves for Integrated Thermal Management Systems in Electric Vehicles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Model and Mesh Generation
2.2. Numerical Simulation and Boundary Conditions
2.3. Grid Independence Verification
3. Results and Discussion
3.1. Heat Transfer Loss
3.2. Pressure Loss
3.3. Working Conditions
3.3.1. Mass Flow Rate
3.3.2. Inlet Temperature
3.3.3. Valve Materials
3.4. Structure Optimization
3.4.1. Pipe Corners
3.4.2. Control Shaft
3.4.3. Shell Corners
3.5. Analysis of Shape Optimization at Different Locations
4. Conclusions
- The heat transfer loss in the multiway valve of the integrated thermal management system in an electric vehicle is deemed negligible, with the primary cause of flow loss within the valve being attributed to pressure loss. Additionally, the pressure loss demonstrates a positive correlation with the mass flow rate of the coolant while exhibiting a negative correlation with the inlet temperature.
- Structural optimization along the direction of change in flow direction at the pipe corners, control shaft, and shell corners can be adopted to effectively improve the multiway valve performance. However, structural optimization along the other directions at the control shaft does not reduce pressure loss. Structural optimization at shell corners causes maximum percentage reductions in flow resistance coefficient of 18.16%, 31.06%, 26.23%, and 15.68% in the four flow channels.
- Simultaneous optimization of the curvatures of the inner walls of the shell corners and control shaft yields the minimum flow resistance coefficient for multiway valves. The optimal model exhibits percentage reductions of 27.56%, 34.05%, 27.90%, and 26.79% in flow resistance coefficient for the different flow channels.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Variables | |
k | Turbulence energy, m2/s2. |
Gk | Generation of turbulence kinetic energy due to mean velocity gradients, kg/(m·s2). |
Gb | Generation of turbulence kinetic energy due to buoyancy, kg/(m·s2). |
YM | Contribution of the fluctuating dilatation in compressible turbulence to the overall dissipation rate, kg/(m·s2). |
Approximate relative error. | |
Extrapolated relative error. | |
Fine-grid convergence index. | |
z | A representative cell. |
rij | zi/zj. |
N | Total number of cells. |
Vi | Volume of the ith cell. |
ϕ | Pressure drop in the flow channel, Pa. |
The vlaue of pressure drop in the grid independence verification. | |
p | Apparent order. |
Mass flow rate, kg/s. | |
T | Temperature, K. |
A | Cross-sectional area of flow channel, m2. |
Re | Reynolds number. |
h | Convective heat transfer coefficient, W/(m2·K). |
Q | Heat transfer, W. |
c | Specific heat capacity, J/(kg·K). |
v | Velocity, m/s. |
u | The component of velocity in the x-direction, m/s. |
v | The component of velocity in the y-direction, m/s. |
w | The component of velocity in the z-direction, m/s. |
t | The logarithmic mean temperature difference, K. |
Temperature difference between inlet and outlet, K. | |
Pressure drop between inlet and outlet, Pa. | |
Entropy production rate by distinct dissipation, W/(m3·K). | |
Entropy production rate by turbulent dissipation, W/(m3·K). | |
Entropy production rate, W/(m3·K). | |
Greek symbols | |
αk | Generation of kinetic energy due to mean velocity gradients, kg/(m·s2). |
αε | Generation of kinetic energy due to buoyancy, kg/(m·s2). |
μeff | Turbulence viscosity. |
C1ε | Constant, 1.42. |
C2ε | Constant, 1.68. |
ρ | Density, kg/m3. |
ξ | Flow resistance coefficient. |
μ | Dynamic viscosity, Pa·s. |
ε | Turbulence dissipation rate, m2/s3. |
γ | Kinematic viscosity, m2/s. |
Acronyms | |
EV | Electric vehicle. |
AC | Air conditioning. |
TMS | Thermal management system. |
BTMS | Battery thermal management system. |
ITMS | Integrated thermal management system. |
ABS | Acrylonitrile butadiene styrene plastic. |
TC4 | A titanium alloy. |
CFRP | Carbon fiber-reinforced polymer. |
References
- He, L.; Jing, H.; Zhang, Y.; Li, P.; Gu, Z. Review of thermal management system for battery electric vehicle. J. Energy Storage 2023, 59, 106443. [Google Scholar] [CrossRef]
- Ma, J.; Sun, Y.; Zhang, S. Experimental investigation on energy consumption of power battery integrated thermal management system. Energy 2023, 270, 126860. [Google Scholar] [CrossRef]
- Ma, J.; Sun, Y.; Zhang, S.; Li, J.; Li, S. Experimental study on the performance of vehicle integrated thermal management system for pure electric vehicles. Energy Convers. Manag. 2022, 253, 115183. [Google Scholar] [CrossRef]
- Li, H.; Braun, J.E. Decoupling features for diagnosis of reversing and check valve faults in heat pumps. Int. J. Refrig. 2009, 32, 316–326. [Google Scholar] [CrossRef]
- Zhao, Y.; Dan, D.; Zheng, S.; Wei, M.; Xie, Y. A two-stage eco-cooling control strategy for electric vehicle thermal management system considering multi-source information fusion. Energy 2023, 267, 126606. [Google Scholar] [CrossRef]
- Luo, J.; Zou, D.; Wang, Y.; Wang, S.; Huang, L. Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review. Chem. Eng. J. 2022, 430, 132741. [Google Scholar] [CrossRef]
- Dan, D.; Zhao, Y.; Wei, M.; Wang, X. Review of Thermal Management Technology for Electric Vehicles. Energies 2023, 16, 4693. [Google Scholar] [CrossRef]
- Li, W.-Q.; Zhao, L.; Yue, Y.; Wu, J.-Y.; Jin, Z.-J.; Qian, J.-Y. Thermo-mechanical stress analysis of feed-water valves in nuclear power plants. Nucl. Eng. Technol. 2022, 54, 849–859. [Google Scholar] [CrossRef]
- Okhotnikov, I.; Abuowda, K.; Noroozi, S.; Godfrey, P. Numerical and experimental investigation of the metering characteristic and pressure losses of the rotary tubular spool valve. Flow Meas. Instrum. 2020, 71, 101679. [Google Scholar] [CrossRef]
- Schröter, J.; Graf, T.; Frank, D.; Bauer, C.; Kallo, J.; Willich, C. Influence of pressure losses on compressor performance in a pressurized fuel cell air supply system for airplane applications. Int. J. Hydrogen Energy 2021, 46, 21151–21159. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, X.; Zeng, Q.; Gao, K.; Jiang, S. Bidirectional heat transfer characteristics of cavity cold plate battery thermal management system: An experimental study. Appl. Therm. Eng. 2023, 225, 120242. [Google Scholar] [CrossRef]
- Oshman, C.; Rea, J.; Hardin, C.; Olsen, M.L.; Alleman, J.; Glatzmaier, G.; Siegel, N.; Parilla, P.; Ginley, D.; Toberer, E.S. Reliability and heat transfer performance of a miniature high-temperature thermosyphon-based thermal valve. Int. J. Heat Mass Transf. 2018, 125, 1079–1086. [Google Scholar] [CrossRef]
- Hu, B.; Zhu, H.; Ding, K.; Zhang, Y.; Yin, B. Numerical investigation of conjugate heat transfer of an underwater gate valve assembly. Appl. Ocean Res. 2016, 56, 1–11. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, H. Numerical study on flow and heat transfer characteristics of a novel Tesla valve with improved evaluation method. Int. J. Heat Mass Transf. 2022, 187, 122540. [Google Scholar] [CrossRef]
- Monika, K.; Chakraborty, C.; Roy, S.; Sujith, R.; Datta, S.P. A numerical analysis on multi-stage Tesla valve based cold plate for cooling of pouch type Li-ion batteries. Int. J. Heat Mass Transf. 2021, 177, 121560. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, J.; Liu, F.; Liu, Y.; Wang, F.; Yang, N.; Lu, D.; Jia, Y. Performance optimisation of Tesla valve-type channel for cooling lithium-ion batteries. Appl. Therm. Eng. 2022, 212, 118583. [Google Scholar] [CrossRef]
- Rahmatmand, A.; Vratonjic, M.; Sullivan, P.E. Energy and thermal comfort performance evaluation of thermostatic and electronic mixing valves used to provide domestic hot water of buildings. Energy Build. 2020, 212, 109830. [Google Scholar] [CrossRef]
- E, J.; Xu, S.; Deng, Y.; Zhu, H.; Zuo, W.; Wang, H.; Chen, J.; Peng, Q.; Zhang, Z. Investigation on thermal performance and pressure loss of the fluid cold-plate used in thermal management system of the battery pack. Appl. Therm. Eng. 2018, 145, 552–568. [Google Scholar] [CrossRef]
- Hemamalini, R.R.; Partheeban, P.; Chandrababu, J.S.; Sundaram, S. The effect on pressure drop across horizontal pipe and control valve for air/palm oil two-phase flow. Int. J. Heat Mass Transf. 2005, 48, 2911–2921. [Google Scholar] [CrossRef]
- Edvardsen, S.; Dorao, C.A.; Nydal, O.J. Experimental and numerical study of single-phase pressure drop in downhole shut-in valve. J. Nat. Gas Sci. Eng. 2015, 22, 214–226. [Google Scholar] [CrossRef]
- Tripathi, R.; Malgan, P.; Magdum, P. Pressure drop analysis for hydraulic valves. Mater. Today Proc. 2021, 45, 105–114. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, P.; Sun, Q.; Feng, D.; Tu, Y. Modeling and experiment of pressure drop on valve section of hydraulic oscillator. J. Pet. Sci. Eng. 2022, 208, 109294. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Y.; Xie, L.-T.; Zhang, C.-Z.; Xu, C. Heat transfer enhancement of supercritical CO2 in solar tower receiver by the field synergy principle. Appl. Therm. Eng. 2022, 212, 118479. [Google Scholar] [CrossRef]
- Ye, J.; Cui, J.; Hua, Z.; Xie, J.; Peng, W.; Wang, W. Study on the high-pressure hydrogen gas flow characteristics of the needle valve with different spool shapes. Int. J. Hydrogen Energy 2022, 48, 11370–11381. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, B.; Wang, Z.; Mu, X.; Sun, D. Multiphase throttling characteristic analysis and structure optimization design of throttling valve in managed pressure drilling. Energy 2023, 262, 125619. [Google Scholar] [CrossRef]
- Min, C.; Li, H.; Gao, X.; Wang, K.; Xie, L. Numerical investigation of convective heat transfer enhancement by a combination of vortex generator and in-tube inserts. Int. Commun. Heat Mass Transf. 2021, 127, 105490. [Google Scholar] [CrossRef]
- Zong, C.; Shi, M.; Li, Q.; Liu, F.; Zhou, W.; Song, X. Design optimization of a nuclear main steam safety valve based on an E-AHF ensemble surrogate model. Nucl. Eng. Technol. 2022, 54, 4181–4194. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Li, B.; Sun, S.; Peng, J.; Liu, W.; He, J.; Li, W. Hydrodynamic characteristics and optimization design of a bio-inspired anti-erosion structure for a regulating valve core. Flow Meas. Instrum. 2022, 85, 102173. [Google Scholar] [CrossRef]
- Ren, T.; Zhu, Z.; Wang, J.; Yan, C. Numerical simulation of flow resistance characteristics in a rod bundle channel under rolling conditions. Ann. Nucl. Energy 2023, 181, 109573. [Google Scholar] [CrossRef]
- Wang, Y.; Semlitsch, B.; Mihaescu, M.; Fuchs, L. Flow Induced Energy Losses in the Exhaust Port of an Internal Combustion Engine. J. Fluids Eng. 2015, 137, 011105. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, R.; Luo, G.; Zhang, B. Investigation of Hydraulic Characteristics of a Volute-type Discharge Passage based on CFD. Procedia Eng. 2012, 28, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, E.; Lee, I.-B.; Song, S.-H.; Kwon, K.-S.; Seo, I.-H.; Hong, S.-W.; Hwang, H.-S.; Bitog, J.P.; Han, H.-T. Computational fluid dynamics simulation of air temperature distribution inside broiler building fitted with duct ventilation system. Biosyst. Eng. 2012, 112, 293–303. [Google Scholar] [CrossRef]
- ANSYS Fluent. ANSYS Fluent 2022R1; ANSYS Inc.: Canonsburg, PA, USA, 2022. [Google Scholar]
- Celik, I.; Ghia, U.; Roache, P.J.; Freitas, C.; Coloman, H.; Raad, P. Procedure of Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. J. Fluids Eng. 2008, 130, 078001. [Google Scholar]
- Marušić-Paloka, E.; Pažanin, I. Effects of boundary roughness and inertia on the fluid flow through a corrugated pipe and the formula for the Darcy–Weisbach friction coefficient. Int. J. Eng. Sci. 2020, 152, 103293. [Google Scholar] [CrossRef]
- Ma, Z.; Ye, T.; Ren, Q.; Pan, L.; Bu, S.; Zhang, L.; Sun, W. Friction and local pressure loss characteristics of a 5 × 5 rod bundle with spacer grids. Ann. Nucl. Energy 2020, 140, 107106. [Google Scholar] [CrossRef]
- Kock, F.; Herwig, H. Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions. Int. J. Heat Mass Transf. 2004, 47, 2205–2215. [Google Scholar] [CrossRef]
Physical Properties | Value |
---|---|
Density | 1050 kg/m3 |
Specific heat capacity | 1591 J/(kg·K) |
Thermal conductivity | 0.25 W/(m·K) |
Value | |
---|---|
N1,N2,N3 | 7.88 billion, 3.50 billion, 1.59 billion |
r21,r32 | 1.310, 1.301 |
ϕ1,ϕ2,ϕ3 | 5479.459, 5460.216, 5423.288 |
p | 10.638 |
5480.609 | |
0.02% | |
0.34% | |
0.026% |
Solid Materials | Density kg/m3 | Specific Heat Capacity J/(kg·K) | Thermal Conductivity W/(m·K) |
---|---|---|---|
ABS | 1050 | 1591 | 0.25 |
TC4 | 4500 | 0.1625 × T + 563.36313 | 0.0075 × T + 4.60138 |
CFRP | 1800 | 800 | 10 |
Gray cast iron | 7350 | 544.3 | 50 |
Group | Curve Radius/mm | ||
---|---|---|---|
Channel 1 | Channel 2 | Channel 4 | |
1 | 4 | 20 | 10 |
2 | 8 | 40 | 20 |
3 | 12 | 60 | 30 |
4 | 16 | 80 | 40 |
5 | 19.87 | 100 | 43.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Zheng, S.; Wei, M. Flow Loss Analysis and Structural Optimization of Multiway Valves for Integrated Thermal Management Systems in Electric Vehicles. Energies 2023, 16, 5040. https://doi.org/10.3390/en16135040
Li M, Zheng S, Wei M. Flow Loss Analysis and Structural Optimization of Multiway Valves for Integrated Thermal Management Systems in Electric Vehicles. Energies. 2023; 16(13):5040. https://doi.org/10.3390/en16135040
Chicago/Turabian StyleLi, Meng, Siyu Zheng, and Mingshan Wei. 2023. "Flow Loss Analysis and Structural Optimization of Multiway Valves for Integrated Thermal Management Systems in Electric Vehicles" Energies 16, no. 13: 5040. https://doi.org/10.3390/en16135040
APA StyleLi, M., Zheng, S., & Wei, M. (2023). Flow Loss Analysis and Structural Optimization of Multiway Valves for Integrated Thermal Management Systems in Electric Vehicles. Energies, 16(13), 5040. https://doi.org/10.3390/en16135040