Perspectives on the Applications of Radiative Cooling in Buildings and Electric Cars
Abstract
:1. Introduction
2. Passive Heat Removal from Surfaces and Enclosures
2.1. Reducing the Cooling Load of Buildings
2.2. Reducing the Cooling Load of Electric Vehicles
2.2.1. Shell/Body
2.2.2. Windows
2.2.3. Fabrics for Interior of the Vehicle
Shell/Body | Windows | Seat’s Fabric |
---|---|---|
(i) Transparent radiative cooler that can be combined with paint. Daytime cooling ∼10.1 °C–14.4 °C [41]. | (i) IR transparent metamaterial for windows, ∼7 °C cooling [42]. | (i) Coating on cotton fabrics with high durability, for daytime cooling with reflectivity of 90% and emissivity of 92%, corresponding to ∼5.4 °C cooling. [43]. |
(ii) Janus Emitter; selective emission, broadband absorption. ∼6 °C subambient cooling from a surface, ∼4 °C subambient space cooling (from an enclosure) [34]. | (ii) A transparent dual-layer film for daytime radiative cooling. ∼6 °C subambient cooling of an interior space [44] | (ii) A cover (fabric) for parked vehicles keeps cabin air temperature within comfortable range [40]. |
(iii) Engineered photonic-based metamaterial as an enhanced color-preserving radiative cooling (ECRC) system. Lowering the exterior surface temperature by ∼21 °C, enclosure temperature up to ∼5.8 °C, saving of cooling power up to 63% [24]. | (iii) A scalable thermochromic smart window with tunable emissivity of long-wave infrared with potential use for windows [45] | (iii) Wrapping films with potential use as fabric/covers ∼5.6 °C subambient cooling [46]. |
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EV | Electric vehicle |
EC | Evaporative cooler |
AC | Air conditioning |
VS | Visible spectra |
IR | Infrared spectra |
RC | Radiative cool |
References
- Air Quality—Multiple Benefits of Energy Efficiency—Analysis. International Energy Agency (IEA). 2016. Available online: https://www.iea.org/reports/multiple-benefits-of-energy-efficiency/air-quality (accessed on 10 May 2023).
- McDuffie, E.; Martin, R.V.; Spadaro, J.V.; Burnett, R.; Smith, S.J.; O’Rourke, P.; Hammer, M.S.; van Donkelaar, A.; Bindle, L.; Shah, V.; et al. Source Sector and Fuel Contributions to Ambient PM 2.5 and Attributable Mortality Across Multiple Spatial Scales. Nat. Commun. 2021, 12, 3594. [Google Scholar] [CrossRef] [PubMed]
- Perera, F. Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. Int. J. Environ. Res. Public Health 2017, 15, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US Environmental Protection Agency (EPA). 12 March 2013. The Sources and Solutions: Fossil Fuels. Overviews and Factsheets. (Last Updated on 2023). Available online: https://www.epa.gov/nutrientpollution/sources-and-solutions-fossil-fuels (accessed on 10 May 2023).
- The Law of Energy Reform, Legislated and Implemented on 2011. Available online: https://rc.majlis.ir/fa/law/show/789793 (accessed on 10 May 2023).
- Share of Steam Power Plants in Electricity Generation in Iran, IRNA. Available online: https://en.irna.ir/news/84718089/Iran-s-thermal-power-generation-grows-by-8 (accessed on 10 May 2023).
- Renewable Energy-Directive, Targets and Rules. European Commision. Available online: https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules_en (accessed on 10 May 2023).
- Clean Energy Council. Clean Energy Australia Report. Available online: https://www.cleanenergycouncil.org.au/resources/resources-hub/clean-energy-australia-report (accessed on 10 May 2023).
- Iran: Power Production Share by Source 2020. Statista. Available online: https://www.statista.com/statistics/1236239/iran-distribution-of-electricity-production-by-source/ (accessed on 20 June 2023).
- Energy. Towards an Energy Union. A Summary of Full Version Contained in the 3rd Energy Union Report (November 2017) Malta. Available online: https://energy.ec.europa.eu/index_en (accessed on 6 May 2023).
- Malta—Countries & Regions. IEA. Available online: https://www.iea.org/countries/malta (accessed on 10 May 2023).
- Lu, X.; Xu, P.; Wang, H.; Yang, T.; Hou, J. Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art. Renew. Sustain. Energy Rev. 2016, 65, 1079–1097. [Google Scholar] [CrossRef]
- Electric Vehicles—Malta|Statista Market Forecast. Retrieved 23 March 2023. Available online: https://www.statista.com/outlook/mmo/electric-vehicles/malta (accessed on 5 July 2023).
- Jose, S.S.; Chidambaram, R.K. Electric Vehicle Air Conditioning System and Its Optimization for Extended Range—A Review. World Electr. Veh. J. 2022, 13, 204. [Google Scholar] [CrossRef]
- Granqvist, C.; Hjortsberg, A.; Eriksson, T. Radiative cooling to low temperatures with selectivity IR-emitting surfaces. Thin Solid Films. 1982, 90, 187–190. [Google Scholar] [CrossRef]
- Bijarniya, J.; Sarkar, J.; Maiti, P. Review on passive daytime radiative cooling: Fundamentals, recent researches, challenges and opportunities. Renew. Sustain. Energy Rev. 2020, 133, 110263. [Google Scholar] [CrossRef]
- Lim, X. The Super-Cool Materials That Send Heat to Space. Nature 2019, 577, 18–20. [Google Scholar] [CrossRef] [Green Version]
- Mandal, J.; Yang, Y.; Yu, N.; Raman, A. Paints as a scalable and effective radiative cooling technology for buildings. Joule 2020, 4, 1350–1356. [Google Scholar] [CrossRef]
- Li, T.; Zhai, Y.; He, S.; Gan, W.; Wei, Z.; Heidarinejad, M.; Dalgo, D.; Mi, R.; Zhao, X.; Song, J.; et al. A Radiative Cooling Structural Material. Science 2019, 364, 760–763. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Chen, J.; Song, A.Y.; Catrysse, P.B.; Hsu, P.; Cai, L.; Liu, B.; Zhu, Y.; Zhou, G.; Wu, D.S.; et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 2018, 1, 105–112. [Google Scholar] [CrossRef]
- Raman, A.; Anoma, M.; Zhu, L.; Rephaeli, E.; Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544. [Google Scholar] [CrossRef]
- Huang, Z.; Ruan, X. Nanoparticle embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Transf. 2017, 104, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.; Ma, Y.; David, S.N.; Zhao, D.; Lou, R.; Tan, G.; Yang, R.; Yin, X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 2017, 355, 1062–1066. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Luo, H.; Yang, C.; Qin, B.; Ghosh, P.; Kaur, S.; Shen, W.; Qiu, M.; Belov, P.; Li, Q. Color-Preserving Passive Radiative Cooling for an Actively Temperature-Regulated Enclosure. Light Sci. Appl. 2022, 11, 122. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Hu, M.; Ao, X.; Xuan, Q.; Pei, G. Spectrally selective approaches for passive cooling of solar cells: A review. Appl. Energy 2020, 262, 114548. [Google Scholar] [CrossRef]
- Miller, W.; Crompton, G.; Bell, J. Analysis of Cool Roof Coatings for Residential Demand Side Management in Tropical Australia. Energies 2015, 8, 5303–5318. [Google Scholar] [CrossRef] [Green Version]
- Statistics on Energy Consumption for the City Household Customers in Iran. 2011. Available online: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.amar.org.ir/Portals/0/Files/fulltext/1390/n_energy_90.pdf (accessed on 10 May 2023).
- Mousavi, N.S.; Susan. Radiative Cooling for Energy Efficiency in Buildings of Tehran. In Proceedings of the 13th Mediterranean Conference on Power Generation, Transmission; Distribution and Energy Conversion Institution of Engineering and Technology: Hybrid Conference, Valletta, Malta, 7–9 November 2022; pp. 508–513. [Google Scholar] [CrossRef]
- Rain Guard Water Sealers SP-2001 Cool Coat White Thermal Barrier. Available online: https://www.amazon.com/Rainguard-International-SP-2005-Acrylic-Thermal/dp/B0733K2YZ4?ref_=ast_sto_dp&th=1&psc=1 (accessed on 25 November 2022).
- Wang, N.; Lv, Y.; Zhao, D.; Zhao, W.; Xu, J.; Yang, R. Performance Evaluation of Radiative Cooling for Commercial-Scale Warehouse. Mater. Today Energy 2022, 24, 100927. [Google Scholar] [CrossRef]
- Fakharan, Z.; Dabirian, A.; Mousavi, N.S.S. Innovative and Technological Eco-Friendly Approaches for Reducing Energy Consumption in Buildings; A Review and Analysis. Danesh Shahr Magazine. 2023. (In Persian) [Google Scholar] [CrossRef]
- Leroy, A. High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 2019, 5, eaat9480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simion, M.; Socaciu, L.; Unguresan, P. Factors which Influence the Thermal Comfort Inside of Vehicles. Energy Procedia 2016, 85, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Heo, S.-Y.; Lee, G.J.; Kim, D.H.; Kim, Y.J.; Ishii, S.; Kim, M.S.; Seok, T.J.; Lee, B.J.; Lee, H.; Song, Y.M. A Janus emitter for passive heat release from enclosures. Sci. Adv. 2020, 6, eabb1906. [Google Scholar] [CrossRef] [PubMed]
- Penning, A.K.; Weibel, J.A. Assessing the Influence of Glass Properties on Cabin Solar Heating and Range of an Electric Vehicle Using a Comprehensive System Model. Appl. Energy 2023, 339, 120973. [Google Scholar] [CrossRef]
- Ozeki, Y.; Harita, Y.; Hirano, A.; Nishihama, J. Evaluation on the Solar Reduction Glass in an Electric Vehicle by Experimental Measurements in a Climate Chamber; SAE Technical Paper 2014-01–0703; SAE Technical Paper: Warrendale, PA, USA, 2014. [Google Scholar] [CrossRef]
- Shin, S.; Chen, R. Cool Textile. Joule 2021, 5, 2258–2260. [Google Scholar] [CrossRef]
- Peng, Y.; Cui, Y. Advanced Textiles for Personal Thermal Management and Energy. Joule 2020, 4, 724–742. [Google Scholar] [CrossRef]
- Xie, X.; Liu, Y.; Zhu, Y.; Xu, Z.; Liu, Y.; Ge, D.; Yang, L. Enhanced IR Radiative Cooling of Silver Coated PA Textile. Polymers 2021, 14, 147. [Google Scholar] [CrossRef]
- Lv, Y.; Huang, A.; Yang, J.; Xu, J.; Yang, R. Improving cabin thermal environment of parked vehicles under direct sunlight using a daytime radiative cooling cover. Appl. Therm. Eng. 2021, 190, 116776. [Google Scholar] [CrossRef]
- Kim, M.; Lee, D.; Son, S.; Yang, Y.; Lee, H.; Rho, J. Visibly Transparent Radiative Cooler under Direct Sunlight. Adv. Opt. Mater. 2021, 9, 2002226. [Google Scholar] [CrossRef]
- Jin, Y.; Jeong, Y.; Yu, K. Infrared-Reflective Transparent Hyperbolic Metamaterials for Use in Radiative Cooling Windows. Adv Funct Mater. 2023, 33, 2207940. [Google Scholar] [CrossRef]
- Zhong, S.; Yi, L.; Zhang, J.; Xu, T.; Xu, L.; Zhang, X.; Zuo, T.; Cai, Y. Self-Cleaning and Spectrally Selective Coating on Cotton Fabric for Passive Daytime Radiative Cooling. Chem. Eng. J. 2021, 407, 127104. [Google Scholar] [CrossRef]
- Lei, M.-Q.; Hu, Y.-F.; Song, Y.-N.; Li, Y.; Deng, Y.; Liu, K.; Xie, L.; Tang, J.-H.; Han, D.-L.; Lei, J.; et al. Transparent radiative cooling films containing poly(Methylmethacrylate), silica, and silver. Opt. Mater. 2021, 122, 111651. [Google Scholar] [CrossRef]
- Wang, S.; Tengyao, J.; Yun, M.; Ronggui, Y.; Gang, T.; Yi, L. Scalable Thermochromic Smart Windows with Passive Radiative Cooling Regulation. Science 2021, 374, 1501–1504. [Google Scholar] [CrossRef]
- Park, C.; Park, C.; Park, S.; Lee, J.; Choi, J.; Kim, Y.S.; Yoo, Y. Passive Daytime Radiative Cooling by Thermoplastic Polyurethane Wrapping Films with Controlled Hierarchical Porous Structures. ChemSusChem 2022, 15, e202201842. [Google Scholar] [CrossRef] [PubMed]
Roof | Electricity Consumption (kWh/m2) | Electricity Saving | Improved Share in Total Cooling Load | |||||
---|---|---|---|---|---|---|---|---|
Cool Roof | Radiative Cool Roof | Cool Roof | Radiative Cool Roof | |||||
% 14.5 | kWh/m2 3.8 | % 22.4 | kWh/m2 5.9 | |||||
Share in Total Cooling Load | 12% | 16.54 | 31,811.13 | 12.74 | 28,871.86 | 10.64 | 9.25% | 10% |
Annual Cooling Electricity Consumption (kWh) | 37,206 | |||||||
Roof Area (m2) | 270 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousavi, N.S.S.; Azzopardi, B. Perspectives on the Applications of Radiative Cooling in Buildings and Electric Cars. Energies 2023, 16, 5256. https://doi.org/10.3390/en16145256
Mousavi NSS, Azzopardi B. Perspectives on the Applications of Radiative Cooling in Buildings and Electric Cars. Energies. 2023; 16(14):5256. https://doi.org/10.3390/en16145256
Chicago/Turabian StyleMousavi, N. S. Susan, and Brian Azzopardi. 2023. "Perspectives on the Applications of Radiative Cooling in Buildings and Electric Cars" Energies 16, no. 14: 5256. https://doi.org/10.3390/en16145256
APA StyleMousavi, N. S. S., & Azzopardi, B. (2023). Perspectives on the Applications of Radiative Cooling in Buildings and Electric Cars. Energies, 16(14), 5256. https://doi.org/10.3390/en16145256