Experimental Investigation of Stochastically Forced Rijke-Type Supercritical Thermoacoustic Systems
Abstract
:1. Introduction
2. Experimental Configuration of the Rijke-Type Thermoacoustic System Driven by Colored Noise
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zare, S.; Tavakolpour-Saleh, A.; Aghahosseini, A.; Mirshekari, R. Thermoacoustic Stirling engines: A review. Int. J. Green Energy 2023, 20, 89–111. [Google Scholar] [CrossRef]
- Chen, G.; Tang, L.; Mace, B.R. Bistability and triggering in a thermoacoustic engine: A numerical study. Int. J. Heat Mass Transf. 2020, 157, 119951. [Google Scholar] [CrossRef]
- Ma, B.; Li, J.; Zhang, Z.; Xi, Y.; Zhao, D.; Wang, N. Experimental and theoretical studies on thermoacoustic limit cycle oscillation in a simplified solid rocket motor using flat flame burner. Acta Astronaut. 2021, 189, 26–42. [Google Scholar] [CrossRef]
- Kanda, T.; Mishina, Y.; Hayasako, S.; Muramatsu, S.; Yamada, K.; Kato, R. Experimental study on high-frequency combustion instability of liquid-propellant rocket engines using off-design combustion model. Acta Astronaut. 2023, 202, 595–608. [Google Scholar] [CrossRef]
- Giuliani, F.; Gajan, P.; Diers, O.; Ledoux, M. Influence of pulsed entries on a spray generated by an air-blast injection device: An experimental analysis on combustion instability processes in aeroengines. Proc. Combust. Inst. 2002, 29, 91–98. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, X.; Wang, X.; Sun, X. Modeling analysis of combustion instability in an annular combustor equipped with circumferentially segmented perforated liner. J. Sound Vib. 2023, 549, 117573. [Google Scholar] [CrossRef]
- Hu, L.; Zhou, H. Control of Thermoacoustic Oscillations and NOx Emissions by Bias Jets in the Form of Corner Tangential Slots. Combust. Sci. Technol. 2023, 1–22. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, P.; Wang, Z.; Xu, G.; Jin, B. Numerical investigation of mode competition and cooperation on the combustion instability in a non-premixed combustor. Acta Astronaut. 2022, 198, 271–285. [Google Scholar] [CrossRef]
- Kim, K.T.; Hochgreb, S. Measurements of triggering and transient growth in a model lean-premixed gas turbine combustor. Combust. Flame 2012, 159, 1215–1227. [Google Scholar] [CrossRef]
- Chandh, A.; Adhikari, S.; Wu, D.; McKinney, R.; Emerson, B.; Zhang, Q.; Joshi, D.; Sen, B.; Davis, D. Experimental Investigation of Combustion Dynamics in a High-Pressure Liquid-Fueled Swirl Combustor. J. Eng. Gas Turbines Power 2023, 145, 061018. [Google Scholar] [CrossRef]
- Lemcherfi, A.I.; Gejji, R.; Fuller, T.L.; Anderson, W.E.; Slabaugh, C.D. Investigation of combustion instabilities in a full flow staged combustion model rocket combustor. In Proceedings of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, USA, 19–22 August 2019; p. 3948. [Google Scholar]
- Li, X.; Pang, K.; Li, X. The Submerged Nozzle Damping Characteristics in Solid Rocket Motor. Aerospace 2023, 10, 191. [Google Scholar] [CrossRef]
- Silva, C.F. Intrinsic thermoacoustic instabilities. Prog. Energy Combust. Sci. 2023, 95, 101065. [Google Scholar] [CrossRef]
- Chen, X.; Hemchandra, S.; Fathy, H.; O’Connor, J. Linear control of thermoacoustic oscillations with flame dynamics modeled by a level-set method. Combust. Flame 2022, 237, 111686. [Google Scholar] [CrossRef]
- Guan, Y.; He, W.; Murugesan, M.; Li, Q.; Liu, P.; Li, L.K. Control of self-excited thermoacoustic oscillations using transient forcing, hysteresis and mode switching. Combust. Flame 2019, 202, 262–275. [Google Scholar] [CrossRef]
- Gopalakrishnan, E.A.; Sharma, Y.; John, T.; Dutta, P.S.; Sujith, R.I. Early warning signals for critical transitions in a thermoacoustic system. Sci. Rep. 2016, 6, 35310. [Google Scholar] [CrossRef] [Green Version]
- Dowling, A.P.; Stow, S.R. Acoustic Analysis of Gas Turbine Combustors. J. Propuls. Power 2003, 19, 751–764. [Google Scholar] [CrossRef]
- Matveev, K.I. Thermoacoustic Instabilities in the Rijke Tube: Experiments and Modeling. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 2003. [Google Scholar]
- Balasubramanian, K.; Sujith, R.I. Thermoacoustic instability in a Rijke tube: Non-normality and nonlinearity. Phys. Fluids 2008, 20, 44103. [Google Scholar] [CrossRef]
- Subramanian, P.; Mariappan, S.; Sujith, R.I.; Wahi, P. Bifurcation analysis of thermoacoustic instability in a horizontal Rijke tube. Int. J. Spray Combust. Dyn. 2010, 2, 325–355. [Google Scholar] [CrossRef] [Green Version]
- Juniper, M.P. Triggering in thermoacoustics. Int. J. Spray Combust. Dyn. 2012, 4, 217–238. [Google Scholar] [CrossRef]
- Hantschk, C.C.; Vortmeyer, D. Numerical simulation of self-excited thermoacoustic instabilities in a Rijke tube. J. Sound Vib. 1999, 277, 511–522. [Google Scholar] [CrossRef]
- Zhao, D. Transient growth of flow disturbances in triggering a Rijke tube combustion instability. Combust. Flame 2012, 159, 2126–2137. [Google Scholar] [CrossRef]
- Mohan, B.; Mariappan, S. Nonlinear stability analysis of intrinsic thermoacoustic modes in a one-dimensional longitudinal combustor. Combust. Flame 2020, 215, 309–323. [Google Scholar] [CrossRef]
- Poinsot, T. Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 2017, 36, 1–28. [Google Scholar] [CrossRef]
- Li, X.; Xu, B.; Li, X.; Pang, K.; Li, X.; Zhang, H. Effects of multiplicative and additive colored noises on the stability of a simplified thermoacoustic combustor. Combust. Flame 2023, 249, 112413. [Google Scholar] [CrossRef]
- Noiray, N.; Schuermans, B. Deterministic quantities characterizing noise driven Hopf bifurcations in gas turbine combustors. Int. J. Non Linear Mech. 2013, 50, 152–163. [Google Scholar] [CrossRef]
- Xi, Y.; Li, X.; Wang, Y.; Xu, B.; Wang, N.; Zhao, D. Experimental study of transition to instability in a Rijke tube with axially distributed heat source. Int. J. Heat Mass Transf. 2022, 183, 122157. [Google Scholar] [CrossRef]
- Kabiraj, L.; Vishnoi, N.; Saurabh, A. A review on noise-induced dynamics of thermoacoustic systems. In Dynamics and Control of Energy Systems; Springer: Singapore, 2019; pp. 265–281. [Google Scholar]
- North Atlantic Treaty Organization. Neuilly sur Seine, France Conference details. In Proceedings of the Propulsion and Energetics Punel 78th B Specialists’ Meeting, Bonn, Germany, 23–25 October 1991. [Google Scholar]
- Clavin, P.; Kim, J.; Williams, F. Turbulence-induced noise effects on high-frequency combustion instabilities. Combust. Sci. Technol. 1994, 96, 61–84. [Google Scholar] [CrossRef]
- Lieuwen, T.C.; Banaszuk, A. Background noise effects on combustor stability. J. Propuls. Power 2005, 21, 25–31. [Google Scholar] [CrossRef]
- Gopalakrishnan, E.A.; Tony, J.; Sreelekha, E.; Sujith, R.I. Stochastic bifurcations in a prototypical thermoacoustic system. Phys. Rev. E 2016, 94, 22203. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, P.; Sujith, R.I.; Wahi, P. Subcritical bifurcation and bistability in thermoacoustic systems. J. Fluid Mech. 2013, 715, 210–238. [Google Scholar] [CrossRef]
- Bhavi, R.S.; Pavithran, I.; Roy, A.; Sujith, R. Abrupt transitions in turbulent thermoacoustic systems. J. Sound Vib. 2023, 547, 117478. [Google Scholar] [CrossRef]
- Lieuwen, T.C. Statistical characteristics of pressure oscillations in a premixed combustor. J. Sound Vib. 2003, 260, 3–17. [Google Scholar] [CrossRef]
- Juniper, M.P. Triggering in the horizontal Rijke tube: Non-normality, transient growth and bypass transition. J. Fluid Mech. 2011, 667, 272–308. [Google Scholar] [CrossRef] [Green Version]
- Jegadeesan, V.; Sujith, R.I. Experimental investigation of noise induced triggering in thermoacoustic systems. Proc. Combust. Inst. 2013, 34, 3175–3183. [Google Scholar] [CrossRef]
- Li, X.; Zhao, D.; Shi, B. Coherence resonance and stochastic bifurcation behaviors of simplified standing-wave thermoacoustic systems. J. Acoust. Soc. Am. 2019, 145, 692–702. [Google Scholar] [CrossRef]
- Nair, V.; Thampi, G.; Sujith, R. Intermittency route to thermoacoustic instability in turbulent combustors. J. Fluid Mech. 2014, 756, 470–487. [Google Scholar] [CrossRef]
- Xinyan Li, D.Z. Coherence Resonance in a Premixed Combustor Driven by a Turbulence-induced Colored Noise. In Proceedings of the 24th International Congress on Sound and Vibration, London, UK, 23–27 July 2017. [Google Scholar]
- Zhang, Y.; Jin, Y.; Xu, P.; Xiao, S. Stochastic bifurcations in a nonlinear tri-stable energy harvester under colored noise. Nonlinear Dyn. 2018, 99, 879–897. [Google Scholar] [CrossRef]
- Rajaram, R.; Lieuwen, T. Acoustic radiation from turbulent premixed flames. J. Fluid Mech. 2009, 637, 357–385. [Google Scholar] [CrossRef]
- Waugh, I.; Geuß, M.; Juniper, M. Triggering, bypass transition and the effect of noise on a linearly stable thermoacoustic system. Proc. Combust. Inst. 2011, 33, 2945–2952. [Google Scholar] [CrossRef]
- Bonciolini, G.; Boujo, E.; Noiray, N. Output-only parameter identification of a colored-noise-driven Van-der-Pol oscillator: Thermoacoustic instabilities as an example. Phys. Rev. E 2017, 95, 062217. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, Y.; Wang, N.; Zhao, D. Stochastic properties of thermoacoustic oscillations in an annular gas turbine combustion chamber driven by colored noise. J. Sound Vib. 2020, 480, 115423. [Google Scholar] [CrossRef]
- Ma, J.; Xiao, T.; Hou, Z.; Xin, H. Coherence resonance induced by colored noise near Hopf bifurcation. Chaos 2008, 18, 043116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gang, H.; Ditzinger, T.; Ning, C.; Haken, H. Stochastic resonance without external periodic force. Phys. Rev. Lett. 1993, 71, 807. [Google Scholar] [CrossRef] [PubMed]
DOE | For the Rijke-Type System | For the Stochastic Force |
---|---|---|
Fixed parameters | L = 1 m, = 35 mm, , U = 0.41 m/s | None |
Variable | ∼ | ∼30, ∼ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, Y.; Li, X.; Chen, G.; Sun, Y. Experimental Investigation of Stochastically Forced Rijke-Type Supercritical Thermoacoustic Systems. Energies 2023, 16, 5300. https://doi.org/10.3390/en16145300
Zhang H, Wang Y, Li X, Chen G, Sun Y. Experimental Investigation of Stochastically Forced Rijke-Type Supercritical Thermoacoustic Systems. Energies. 2023; 16(14):5300. https://doi.org/10.3390/en16145300
Chicago/Turabian StyleZhang, Hao, Yuanhao Wang, Xinyan Li, Geng Chen, and Yuze Sun. 2023. "Experimental Investigation of Stochastically Forced Rijke-Type Supercritical Thermoacoustic Systems" Energies 16, no. 14: 5300. https://doi.org/10.3390/en16145300
APA StyleZhang, H., Wang, Y., Li, X., Chen, G., & Sun, Y. (2023). Experimental Investigation of Stochastically Forced Rijke-Type Supercritical Thermoacoustic Systems. Energies, 16(14), 5300. https://doi.org/10.3390/en16145300