Energy Extraction and Processing Science
- ➢
- The monitoring and control of dust in energy extraction processes;
- ➢
- Macromolecular modeling of different types of energy sources;
- ➢
- CO2 sequestration/hydrogen storage in geological formations;
- ➢
- Environmental protection in resource development;
- ➢
- The application of computer science to solve safety problems in energy extraction;
- ➢
- The characterization of size, shape, surface area, pore structure, and strength of energy particles and agglomerates (including the sources and effects of interparticle forces);
- ➢
- The adsorption of auxiliary agents at energy interfaces or surfaces;
- ➢
- The adsorption process generating competitive behavior;
- ➢
- Mathematical modeling and numerical simulation of coupled processes;
- ➢
- The creation, storage, and transport of unconventional energy sources;
- ➢
- The prevention of and reduction in geological hazards in mines;
- ➢
- The mathematical aspects of rock mechanics and rock engineering;
- ➢
- The production and storage of geological energy.
Author Contributions
Funding
Conflicts of Interest
References
- Kong, S.; Feng, G.; Liu, Y.; Li, K. Potential of dimethyl ether as an additive in CO2 for shale oil recovery. Fuel 2021, 296, 120643. [Google Scholar] [CrossRef]
- Feng, G.; Wang, X.; Kang, Y.; Zhang, Z. Effect of thermal cycling-dependent cracks on physical and mechanical properties of granite for enhanced geothermal system. Int. J. Rock. Mech. Min. 2020, 134, 104476. [Google Scholar] [CrossRef]
- Feng, G.; Wang, X.; Wang, M.; Kang, Y. Experimental investigation of thermal cycling on fracture characteristics of granite in a geothermal-energy reservoir. Eng. Fract. Mech. 2020, 235, 107180. [Google Scholar] [CrossRef]
- Ma, X.; Wang, G.; Hu, D.; Zhou, H. Hydraulic fracturing of granite under real-time high temperature and true triaxial stress. J. Cent. South. Univ. 2023, 30, 243–256. [Google Scholar] [CrossRef]
- Liu, C.; Feng, G.; Xie, H.; Wang, J.; Duan, Z.; Tao, Y.; Lu, G.; Xu, H.; Hu, Y.; Li, C.; et al. Study on the accuracy of fracture criteria in predicting fracture characteristics of granite with different occurrence depths. Energies 2022, 15, 9248. [Google Scholar] [CrossRef]
- Jin, P.; Hu, Y.; Shao, J.; Zhao, G.; Zhu, X.; Li, C. Influence of different thermal cycling treatments on the physical, mechanical and transport properties of granite. Geothermics 2019, 78, 118–128. [Google Scholar] [CrossRef]
- Feng, G.; Kang, Y.; Chen, F.; Liu, Y.; Wang, X. The influence of temperature on mixed-mode (I+II) and mode-II fracture toughness of sandstone. Eng. Fract. Mech. 2018, 189, 51–63. [Google Scholar] [CrossRef]
- Feng, G.; Kang, Y.; Meng, T.; Hu, Y.; Li, X. The influence of temperature on mode I fracture toughness and fracture characteristics of sandstone. Rock. Mech. Rock. Eng. 2017, 50, 2007–2019. [Google Scholar] [CrossRef]
- Hu, J.; Xie, H.; Sun, Q.; Li, C.; Liu, G. Changes in the thermodynamic properties of alkaline granite after cyclic quenching following high temperature action. Int. J. Min. Sci. Technol. 2021, 31, 843–852. [Google Scholar] [CrossRef]
- Hu, J.; Xie, H.; Gao, M.; Li, C.; Sun, Q. Damage mechanism and heat transfer characteristics of limestone after thermal shock cycle treatments based on geothermal development. Int. J. Rock. Mech. Min. 2022, 160, 105269. [Google Scholar] [CrossRef]
- Feng, G.; Kang, Y.; Sun, Z.; Wang, X.; Hu, Y. Effects of Supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale. Energy 2019, 173, 870–882. [Google Scholar] [CrossRef]
- Feng, G.; Kang, Y.; Wang, X.; Hu, Y.; Li, X. Investigation on The Failure Characteristics and Fracture Classification of Shale Under Brazilian Test Conditions. Rock. Mech. Rock. Eng. 2020, 53, 3325–3340. [Google Scholar] [CrossRef]
- Marsden, H.; Basu, S.; Striolo, A.; MacGregor, M. Advances of nanotechnologies for hydraulic fracturing of coal seam gas reservoirs: Potential applications and some limitations in Australia. Int. J. Coal. Sci. Technol. 2022, 9, 27. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, B.; Qin, S.; Zhang, X.; Tian, Y.; Guo, R.; Liu, J. Origin of deep carbonate reservoir in northeastern Sichuan Basin: New insights from in-situ hydrothermal diamond anvil cell experiments. J. Cent. South Univ. 2017, 24, 1450–1464. [Google Scholar] [CrossRef]
- Soluki, Z.; Azizzadeh, M.; Mazdarani, A.; Khoshbakht, F. Effects of tectonic fracture on reservoir quality of Asmari formation in one of south-west Iranian oilfields using formation micro imager image logs. J. Cent. South Univ. 2023, 30, 1279–1295. [Google Scholar] [CrossRef]
- Li, Z.; Ren, T.; Li, X.; Qiao, M.; Yang, X.; Tan, L.; Nie, B. Multi-scale pore fractal characteristics of differently ranked coal and its impact on gas adsorption. Int. J. Min. Sci. Technol. 2023, 33, 389–401. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Z.; Zhao, J.; Chen, B.; Li, X.; Zhong, J. In-situ observation and modeling approach to evolution of pore-fracture structure in coal. Int. J. Min. Sci. Technol. 2023, 33, 265–274. [Google Scholar] [CrossRef]
- Ajayi, K.M.; Schatzel, S.J. Transport model for shale gas well leakage through the surrounding fractured zones of a longwall mine. Int. J. Min. Sci. Technol. 2020, 30, 635–641. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, S.; Ji, S.; Feng, F.; Khoreshok, A.A.; Zaki, M. Mohammed. Imaging dynamic water invasion behavior in microfractures based on microfluidics. J. Cent. South Univ. 2022, 29, 3986–4001. [Google Scholar] [CrossRef]
- Abaimov, N.; Ryzhkov, A.; Dubinin, A.; Ding, L.; Tuponogov, V.; Alekseenko, S. Investigation into the operation of an autothermal two-section subbituminous coal fluidized bed gasifier. Int. J. Coal. Sci. Technol. 2023, 10, 37. [Google Scholar] [CrossRef]
- Zhang, A.; Xie, H.; Zhang, R.; Gao, M.; Xie, J.; Jia, Z.; Ren, L.; Zhang, Z. Mechanical properties and energy characteristics of coal at different depths under cyclic triaxial loading and unloading. Int. J. Rock. Mech. Min. 2023, 161, 105271. [Google Scholar] [CrossRef]
- Adsul, T.; Ghosh, S.; Ojha, A.; Bhattacharyya, S.; Varma, A.K. Spectral narratives of microstructural restyling and their controls on hydrocarbon generation potential from coal. Int. J. Coal. Sci. Technol. 2023, 10, 33. [Google Scholar] [CrossRef]
- Mishra, A.; Gautam, S.; Sharma, T. Gasification kinetic studies of low volatile weakly caking coal. Int. J. Coal. Sci. Technol. 2023, 10, 25. [Google Scholar] [CrossRef]
- Wang, D.; Jiao, D.; Cheng, Z.; Shi, Q.; Mischo, H. Multi-criteria comparative analysis of the pressure drop on coal gangue fly-ash slurry at different parts along an L-shaped pipeline. Int. J. Coal. Sci. Technol. 2023, 10, 28. [Google Scholar] [CrossRef]
- Krishnamoorthy, G. Modeling ash deposition and shedding during Oxy-combustion of coal/rice husk blends at 70% inlet O2. Int. J. Coal. Sci. Technol. 2023, 10, 27. [Google Scholar] [CrossRef]
- Nesbitt, K.; Aziz, F.; Mahoney, M.; Chalup, S.; Lamichhane, B.P. Classifying coke using CT scans and landmark multidimensional scaling. Int. J. Coal. Sci. Technol. 2023, 10, 7. [Google Scholar] [CrossRef]
- Kuznetsov, P.N.; Fetisova, O.Y.; Kuznetsova, L.I.; Avid, B.; Purevsuren, B. Insight into the key kinetic steps in the pyrolysis of coking and non-coking coals, characterization of the pyrolysis products. Int. J. Coal. Sci. Technol. 2023, 10, 16. [Google Scholar] [CrossRef]
- Kossovich, E.; Epshtein, S.; Krasilova, V.; Hao, J.; Minin, M. Effects of coals microscale structural features on their mechanical properties, propensity to crushing and fine dust formation. Int. J. Coal. Sci. Technol. 2023, 10, 20. [Google Scholar] [CrossRef]
- Feng, G.; Zhu, C.; Wang, X.; Tang, S. Thermal effects on prediction accuracy of dense granite mechanical behaviors using modified maximum tangential stress criterion. J. Rock. Mech. Geotech. 2023, 15, 1734–1748. [Google Scholar] [CrossRef]
- Zhang, A.; Xie, H.; Zhang, R.; Ren, L.; Zhou, J.; Gao, M.; Tan, Q. Dynamic failure behavior of Jinping marble under various preloading conditions corresponding to different depths. Int. J. Rock. Mech. Min. 2021, 148, 104959. [Google Scholar] [CrossRef]
- Huang, W.; Feng, G.; He, H.L.; Chen, J.Z.; Wang, J.Q.; Zhao, Z. Development of an ultra-high-pressure rotary combined dynamic seal and experimental study on its sealing performance in deep energy mining conditions. Petrol. Sci. 2022, 19, 1305–1321. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, S.; Feng, G.; Liu, Y.; Wen, C. Energy Extraction and Processing Science. Energies 2023, 16, 5372. https://doi.org/10.3390/en16145372
Kong S, Feng G, Liu Y, Wen C. Energy Extraction and Processing Science. Energies. 2023; 16(14):5372. https://doi.org/10.3390/en16145372
Chicago/Turabian StyleKong, Shaoqi, Gan Feng, Yueliang Liu, and Chuang Wen. 2023. "Energy Extraction and Processing Science" Energies 16, no. 14: 5372. https://doi.org/10.3390/en16145372
APA StyleKong, S., Feng, G., Liu, Y., & Wen, C. (2023). Energy Extraction and Processing Science. Energies, 16(14), 5372. https://doi.org/10.3390/en16145372