A Review on Catalytic Co-Pyrolysis of Biomass and Plastics Waste as a Thermochemical Conversion to Produce Valuable Products
Abstract
:1. Introduction
2. Methodology
3. Influence of Feedstock Characteristics on CCP of Biomass and Plastic
Feedstock Composition | Wastes | Herbaceous | Woody |
---|---|---|---|
Proximate | |||
Volatiles (%) | 76.7 (5.5) 21 | 79.1 (5.8) 284 | 84.0 (2.1) 193 |
Ash (%) | 6.6 (6.7) 21 | 5.5 (3.2) 284 | 1.3 (0.9) 193 |
Fixed carbon (%) | 14.8 (5.0) 21 | 15.4 (4.0) 284 | 14.7 (1.6) 193 |
Ultimate | |||
Hydrogen (%) | 5.9 (0.4) 21 | 5.8 (0.3) 276 | 6.0 (0.1) 192 |
Carbon (%) | 46.0 (4.0) 21 | 47.4 (1.9) 276 | 50.7 (4.71) 192 |
Nitrogen (%) | 1.3 (1.6) 21 | 0.75 (0.49) 276 | 0.32 (0.01) 192 |
Oxygen (%) | 38.3 (4.2) 7 | 41.0 (2.4) 107 | 41.9 (1.4) 134 |
Sulfur (%) | 0.15 (0.16) 7 | 0.10 (0.32) 107 | 0.03 (0.01) 135 |
Structural | |||
Cellulose (%) | 28.4 (13.2) 27 | 32.1 (4.5) 2425 | 51.2 (8.7) 241 |
Hemicellulose (%) | 16.4 (5.5) 27 | 18.6 (3.4) 2425 | 21.0 (8.7) 241 |
Lignin (%) | 12.5 (2.7) 15 | 16.3 (3.3) 2425 | 26.1 (5.3) 241 |
4. Influence of Plastic Composition on Catalytic Co-Pyrolysis
5. Process and Mode of Catalytic Pyrolysis for Bio-Oil Production
6. Co-Pyrolysis and Catalytic Co-Pyrolysis (CCP) of Biomass–Plastic Mixtures
7. Synergistic Effects and Mechanism of CCP
8. Role of Catalyst in CCP
8.1. Activated Carbon (AC)
8.2. Biochar-Based Catalyst
8.3. Zeolite Catalysts
9. Role of Metal Oxides in Catalytic Co-Pyrolysis
10. Future Directions and Outlook
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, K.; Wu, K.; Li, F.; Jia, L.; Wang, S.; Zhang, H. Investigation on the co-pyrolysis of bamboo sawdust and low-density polyethylene via online photoionization mass spectrometry and machine learning methods. Fuel Process. Technol. 2023, 240, 107579. [Google Scholar] [CrossRef]
- Shahbeik, H.; Shafizadeh, A.; Nadian, M.H.; Jeddi, D.; Mirjalili, S.; Yang, Y.; Lam, S.S.; Pan, J.; Tabatabaei, M.; Agh-bashlo, M. Using evolutionary machine learning to characterize and optimize co-pyrolysis of biomass feedstocks and polymeric wastes. J. Clean. Prod. 2023, 387, 135881. [Google Scholar] [CrossRef]
- Tursi, A. A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Res. J. 2019, 6, 962–979. [Google Scholar] [CrossRef]
- Perera, S.M.H.D.; Wickramasinghe, C.; Samarasiri, B.K.T.; Narayana, M. Modeling of thermochemical conversion of waste biomass—A comprehensive review. Biofuel Res. J. 2021, 8, 1481–1528. [Google Scholar] [CrossRef]
- Mardiana, S.; Azhari, N.J.; Ilmi, T.; Kadja, G.T.M. Hierarchical zeolite for biomass conversion to biofuel: A review. Fuel 2022, 309, 122119. [Google Scholar] [CrossRef]
- Rahimi, A.; García, J. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046. [Google Scholar] [CrossRef]
- Dorado, C.; Mullen, C.A.; Boateng, A.A. HZSM5 Catalyzed Co-Pyrolysis of Biomass and Plastics. ACS Sustain. Chem. Eng. 2014, 2, 301–311. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Zhou, G.; Feng, Y.; Wang, Y.; Yu, G. Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites. Appl. Catal. A Gen. 2014, 481, 173–182. [Google Scholar] [CrossRef]
- Jin, X.; Lee, J.H.; Choi, J.W. Catalytic co-pyrolysis of woody biomass with waste plastics: Effects of HZSM-5 and pyrolysis temperature on producing high-value pyrolytic products and reducing wax formation. Energy 2022, 239, 121739. [Google Scholar] [CrossRef]
- Abnisa, F.; Mohd, W.; Wan, A. A Review on Co-pyrolysis of Biomass: An Optional Technique to Obtain a High-Grade Pyrolysis Oil. Energy Convers. Manag. 2014, 87, 71–85. [Google Scholar] [CrossRef]
- Lettieri, P.; Baeyens, J. The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Prog. Energy Combust. Sci. 2010, 36, 103–129. [Google Scholar] [CrossRef]
- Wong, S.L.; Ngadi, N.; Abdullah, T.A.T.; Inuwa, I.M. Current state and future prospects of plastic waste as source of fuel: A review. Renew. Sustain. Energy Rev. 2015, 50, 1167–1180. [Google Scholar] [CrossRef]
- Ryu, H.W.; Kim, D.H.; Jae, J.; Lam, S.S.; Park, E.D.; Park, Y.K. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like HCs. Bioresour. Technol. 2020, 310, 123473. [Google Scholar] [CrossRef]
- Gouws, S.M.; Carrier, M.; Bunt, J.R.; Neomagus, H.W.J.P. Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation. Renew. Sustain. Energy Rev. 2021, 135, 110189. [Google Scholar] [CrossRef]
- Zou, R.; Wang, C.; Qian, M.; Huo, E.; Kong, X.; Wang, Y.; Dai, L.; Wang, L.; Zhang, X.; Mateo, W.C.; et al. Catalytic co-pyrolysis of solid wastes (low-density polyethylene and lignocellulosic biomass) over microwave assisted biochar for bio-oil upgrading and hydrogen production. J. Clean. Prod. 2022, 374, 133971. [Google Scholar] [CrossRef]
- Jin, W.; Shen, D.; Liu, Q.; Xiao, R. Evaluation of the co-pyrolysis of lignin with plastic polymers by TG-FTIR and Py-GC/MS. Polym. Degrad. Stab. 2016, 133, 65–74. [Google Scholar] [CrossRef]
- Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev. 2012, 41, 8075–8098. [Google Scholar] [CrossRef]
- Wang, G.; Dai, Y.; Yang, H.; Xiong, Q.; Wang, K.; Zhou, J.; Li, Y.; Wang, S. A Review of Recent Advances in Biomass Pyrolysis. Energy Fuels 2020, 34, 15557–15578. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, H.; Chen, S.; Wu, J. Catalytic co-pyrolysis of lignocellulosic biomass with polymers: A critical review. Green Chem. 2016, 18, 4145–4169. [Google Scholar] [CrossRef]
- Yuan, H.; Fan, H.; Shan, R.; He, M.; Gu, J.; Chen, Y. Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios. Energy Convers. Manag. 2018, 157, 517–526. [Google Scholar] [CrossRef]
- Gunasee, S.D.; Danon, B.; Görgens, J.F.; Mohee, R. Co-pyrolysis of LDPE and cellulose: Synergies during devolatilization and condensation. J. Anal. Appl. Pyrol. 2017, 126, 307–314. [Google Scholar] [CrossRef]
- Williams, C.L.; Emerson, R.M.; Tumuluru, J.S. Biomass Compositional Analysis for Conversion to Renewable Fuels and Chemicals. In Biomass Volume Estimation and Valorization for Energy; InTech: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Suriapparao, D.V.; Tejasvi, R. A Review on Role of Process Parameters on Pyrolysis of Biomass and Plastics: Present Scope and Future Opportunities in Conventional and Microwave-Assisted Pyrolysis Technologies. Process Saf. Environ. Prot. 2022, 162, 435–462. [Google Scholar] [CrossRef]
- Kumar, P. Role of Plastics on Human Health. Indian J. Pediatr. 2018, 85, 384–389. [Google Scholar] [CrossRef]
- Kumar, A.; Pali, H.S.; Kumar, M. A comprehensive review on the production of alternative fuel through medical plastic waste. Sustain. Energy Technol. Assess. 2023, 55, 102924. [Google Scholar] [CrossRef]
- Hassan, H.; Lim, J.K.; Hameed, B.H. Catalytic Co-Pyrolysis of Sugarcane Bagasse and Waste High-Density Polyethylene over Faujasite-Type Zeolite. Bioresour. Technol. 2019, 284, 406–414. [Google Scholar] [CrossRef]
- Miandad, R.; Barakat, M.A.; Aburiazaiza, A.S.; Rehan, M.; Ismail, I.M.I.; Nizami, A.S. Effect of Plastic Waste Types on Pyrolysis Liquid Oil. Int. Biodeterior. Biodegrad. 2017, 119, 239–252. [Google Scholar] [CrossRef]
- Wu, C.; Nahil, M.A.; Miskolczi, N.; Huang, J.; Williams, P.T. Processing Real-World Waste Plastics by Pyrolysis-Reforming for Hydrogen and High-Value Carbon Nanotubes. Environ. Sci. Technol. 2014, 48, 819–826. [Google Scholar] [CrossRef]
- Jie, X.; Li, W.; Slocombe, D.; Gao, Y.; Banerjee, I.; Gonzalez-Cortes, S.; Yao, B.; AlMegren, H.; Alshihri, S.; Dilworth, J.; et al. Microwave-Initiated Catalytic Deconstruction of Plastic Waste into Hydrogen and High-Value Carbons. Nat. Catal. 2020, 3, 902–912. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, Z.; Yao, Q.; Zhang, Y.; Fu, Y. Catalytic Fast Pyrolysis of Corn Cob in Ammonia with Ga/HZSM-5 Catalyst for Selective Production of Acetonitrile. Bioresour. Technol. 2019, 290, 121800. [Google Scholar] [CrossRef]
- Zhang, X.; Nie, J.; Xiao, R.; Jin, B.; Dong, C.; Xiao, G. Catalytic Co-Pyrolysis of Biomass and Different Plastics (Polyethylene, Polypropylene, and Polystyrene) to Improve HC Yield in a Fluidized-Bed Reactor. Energy Fuels 2014, 28, 1940–1947. [Google Scholar] [CrossRef]
- Wang, Y.; Akbarzadeh, A.; Chong, L.; Du, J.; Tahir, N.; Awasthi, M.K. Catalytic Pyrolysis of Lignocellulosic Biomass for Bio-Oil Production: A Review. Chemosphere 2022, 297, 134181. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wan, Z.; Han, Y.; Jiao, Y.; Li, Z.; Fu, P.; Li, N.; Zhang, A.; Yi, W. A Review on Lignin Waste Valorization by Catalytic Pyrolysis: Catalyst, Reaction System, and Industrial Symbiosis Mode. J. Environ. Chem. Eng. 2023, 11, 109113. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Y.; Fu, Y. Advances in Upgrading Lignin Pyrolysis Vapors by Ex Situ Catalytic Fast Pyrolysis. Energy Technol. 2017, 5, 30–51. [Google Scholar] [CrossRef]
- Qiu, M.; Liu, L.; Ling, Q.; Cai, Y.; Yu, S.; Wang, S.; Fu, D.; Hu, B.; Wang, X. Biochar for the Removal of Contaminants from Soil and Water: A Review. Biochar 2022, 4, 19. [Google Scholar] [CrossRef]
- Zulkafli, A.H.; Hassan, H.; Ahmad, M.A.; Mohd Din, A.T.; Wasli, S.M. Co-pyrolysis of Biomass and Waste Plastics for Production of Chemicals and Liquid Fuel: A Review on the Role of Plastics and Catalyst Types. Arab. J. Chem. 2023, 16, 104389. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Shetti, N.P.; Reddy, K.R.; Aminabhavi, T.M. Biofuels, Biodiesel and Biohydrogen Production Using Bioprocesses: A Review. Environ. Chem. Lett. 2020, 18, 1049–1072. [Google Scholar] [CrossRef]
- Stefanidis, S.D.; Karakoulia, S.A.; Kalogiannis, K.G.; Iliopoulou, E.F.; Delimitis, A.; Yiannoulakis, H.; Zampetakis, T.; Lappas, A.A.; Triantafyllidis, K.S. Natural Magnesium Oxide (MgO) Catalysts: A Cost-Effective Sustainable Alternative to Acid Zeolites for the in Situ Upgrading of Biomass Fast Pyrolysis Oil. Appl. Catal. B Environ. 2016, 196, 155–173. [Google Scholar] [CrossRef]
- Hassan, N.S.; Jalil, A.A.; Hitam, C.N.C.; Vo, D.V.N.; Nabgan, W. Biofuels and Renewable Chemicals Production by Catalytic Pyrolysis of Cellulose: A Review. Environ. Chem. Lett. 2020, 18, 1625–1648. [Google Scholar] [CrossRef]
- Liu, R.; Sarker, M.; Rahman, M.M.; Li, C.; Chai, M.; Nishu; Cotillon, R.; Scott, N.R. Multi-Scale Complexities of Solid Acid Catalysts in the Catalytic Fast Pyrolysis of Biomass for Bio-Oil Production—A Review. Prog. Energy Combust. Sci. 2020, 80, 100852. [Google Scholar] [CrossRef]
- Sharifzadeh, M.; Sadeqzadeh, M.; Guo, M.; Borhani, T.N.; Murthy Konda, N.V.S.N.; Garcia, M.C.; Wang, L.; Hallett, J.; Shah, N. The Multi-Scale Challenges of Biomass Fast Pyrolysis and Bio-Oil Upgrading: Review of the State of Art and Future Research Directions. Prog. Energy Combust. Sci. 2019, 71, 1–80. [Google Scholar] [CrossRef]
- Duan, Y.; Pandey, A.; Zhang, Z.; Awasthi, M.K.; Bhatia, S.K.; Taherzadeh, M.J. Organic Solid Waste Biorefinery: Sustainable Strategy for Emerging Circular Bioeconomy in China. Ind. Crops Prod. 2020, 153, 112568. [Google Scholar] [CrossRef]
- Nishu; Liu, R.; Rahman, M.M.; Sarker, M.; Chai, M.; Li, C.; Cai, J. A Review on the Catalytic Pyrolysis of Biomass for the Bio-Oil Production with ZSM-5: Focus on Structure. Fuel Process. Technol. 2020, 199, 106301. [Google Scholar] [CrossRef]
- Jain, A.; Sarsaiya, S.; Kumar Awasthi, M.; Singh, R.; Rajput, R.; Mishra, U.C.; Chen, J.; Shi, J. Bioenergy and Bio-Products from Bio-Waste and Its Associated Modern Circular Economy: Current Research Trends, Challenges, and Future Outlooks. Fuel 2022, 307, 121859. [Google Scholar] [CrossRef]
- Ong, H.C.; Chen, W.H.; Farooq, A.; Gan, Y.Y.; Lee, K.T.; Ashokkumar, V. Catalytic Thermochemical Conversion of Biomass for Biofuel Production: A Comprehensive Review. Renew. Sustain. Energy Rev. 2019, 113, 109266. [Google Scholar] [CrossRef]
- Kim, J.H.; Jung, S.; Lin, K.Y.A.; Rinklebe, J.; Kwon, E.E. Comparative Study on Carbon Dioxide-Cofed Catalytic Pyrolysis of Grass and Woody Biomass. Bioresour. Technol. 2021, 323, 124633. [Google Scholar] [CrossRef]
- Rocha, M.V.; Vinuesa, A.J.; Pierella, L.B.; Renzini, M.S. Enhancement of Bio-Oil Obtained from Co-Pyrolysis of Lignocellulose Biomass and LDPE by Using a Natural Zeolite. Therm. Sci. Eng. Prog. 2020, 19, 100654. [Google Scholar] [CrossRef]
- Weldekidan, H.; Mohanty, A.K.; Misra, M. Upcycling of Plastic Wastes and Biomass for Sustainable Graphitic Carbon Production: A Critical Review. ACS Environ. Au 2022, 2, 510–522. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.; Zhang, J.; Liu, Q.; Qian, G. Influence of Catalysts on Bio-Oil Yield and Quality: A Review. Environ. Sci. Pollut. Res. 2022, 29, 30986–31011. [Google Scholar] [CrossRef]
- Xue, Y.; Kelkar, A.; Bai, X. Catalytic Co-Pyrolysis of Biomass and Polyethylene in a Tandem Micropyrolyzer. Fuel 2016, 166, 227–236. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Li, J.; Su, L.; Zuo, J.; Komarneni, S.; Wang, Y. Improving the Aromatic Production in Catalytic Fast Pyrolysis of Cellulose by Co-Feeding Low-Density Polyethylene. Appl. Catal. A 2013, 455, 114–121. [Google Scholar] [CrossRef]
- Lopez, G.; Artetxe, M.; Amutio, M.; Bilbao, J.; Olazar, M. Thermochemical Routes for the Valorization of Waste Polyolefinic Plastics to Produce Fuels and Chemicals: A Review. Renew. Sustain. Energy Rev. 2017, 73, 346–368. [Google Scholar] [CrossRef]
- Zanella, E.; Zassa, M.D.; Navarini, L.; Canu, P. Low-Temperature Co-Pyrolysis of Polypropylene and Coffee Wastes to Fuels. Energy Fuels 2013, 27, 1357–1364. [Google Scholar] [CrossRef]
- Uzoejinwa, B.B.; He, X.; Wang, S.; El-Fatah Abomohra, A.; Hu, Y.; Wang, Q. Co-Pyrolysis of Biomass and Waste Plastics as a Thermochemical Conversion Technology for High-Grade Biofuel Production: Recent Progress and Future Directions Elsewhere Worldwide. Energy Convers. Manag. 2018, 163, 468–492. [Google Scholar] [CrossRef]
- Song, Y.; Tahmasebi, A.; Yu, J. Co-Pyrolysis of Pine Sawdust and Lignite in a Thermogravimetric Analyzer and a Fixed-Bed Reactor. Bioresour. Technol. 2014, 174, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Önal, E.; Uzun, B.; Pütün, E. Bio-Oil Production via Co-Pyrolysis of Almond Shell as Biomass and High-Density Polyethylene. Energy Convers. Manag. 2014, 78, 704–710. [Google Scholar] [CrossRef]
- Demirbas, A. Pyrolysis Mechanisms of Biomass Materials. Energy Sources Part A Recovery Util. Environ. Eff. 2009, 31, 1535–1544. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, H.; Wang, L.; Zhu, L.; Wei, Y.; Liu, Y.; Yadavalli, G.; Yan, D. Renewable gasoline-range aromatics and hydrogen-enriched fuel gas from biomass via catalytic microwave-induced pyrolysis. Green Chem. 2015, 17, 4029–4036. [Google Scholar] [CrossRef]
- Hu, X.; Gholizadeh, M. Biomass Pyrolysis: A Review of the Process Development and Challenges from Initial Researches up to the Commercialisation Stage. J. Energy Chem. 2019, 39, 109–143. [Google Scholar] [CrossRef] [Green Version]
- Somerville, M.; Deev, A. The Effect of Heating Rate, Particle Size, and Gas Flow on the Yield of Charcoal during the Pyrolysis of Radiata Pine Wood. Renew. Energy 2020, 151, 419–425. [Google Scholar] [CrossRef]
- Imran, A.; Bramer, E.A.; Seshan, K.; Brem, G. Catalytic Flash Pyrolysis of Biomass Using Different Types of Zeolite and Online Vapor Fractionation. Energies 2016, 9, 187. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Wang, J.; Chen, H.; Li, W.; Pan, P.; Wu, L.; Xu, G.; Chen, H. Performance Analysis of an Integrated Biomass-to-Energy System Based on Gasification and Pyrolysis. Energy Convers. Manag. 2023, 287, 117085. [Google Scholar] [CrossRef]
- Kalogiannis, K.G.; Stefanidis, S.D.; Karakoulia, S.A.; Triantafyllidis, K.S.; Yiannoulakis, H.; Michailof, C.; Lappas, A.A. First Pilot Scale Study of Basic vs. Acidic Catalysts in Biomass Pyrolysis: Deoxygenation Mechanisms and Catalyst Deactivation. Appl. Catal. B Environ. 2018, 238, 346–357. [Google Scholar] [CrossRef]
- Jeon, M.J.; Jeon, J.K.; Suh, D.J.; Park, S.H.; Sa, Y.J.; Joo, S.H.; Park, Y.K. Catalytic Pyrolysis of Biomass Components over Mesoporous Catalysts Using Py-GC/MS. Catal. Today 2013, 204, 170–178. [Google Scholar] [CrossRef]
- Brems, A.; Baeyens, J.; Vandecasteele, C.; Dewil, R. Polymeric Cracking of Waste Polyethylene Terephthalate to Chemicals and Energy. J. Air Waste Manag. Assoc. 2011, 61, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Liang, J.; Morgan, H.M.; Liu, Y.; Mao, H.; Bu, Q. Thermal Behavior and Kinetic Study for Co-Pyrolysis of Lignocellulosic Biomass with Polyethylene over Cobalt Modified ZSM-5 Catalyst by Thermogravimetric Analysis. Bioresour. Technol. 2018, 247, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.L.; Yang, Z.F.; Shang, J.H.; Huang, W.Y.; Wang, B.; Wei, X.; Khan, A.; Yuan, Z.W.; Liu, Y.P.; Wang, Y.F.; et al. Effects of Indole Alkaloids from Leaf of Alstonia Scholaris on Post-Infectious Cough in Mice. J. Ethnopharmacol. 2018, 218, 69–75. [Google Scholar] [CrossRef]
- Zhu, L.; Lei, H.; Wang, L.; Yadavalli, G.; Zhang, X.; Wei, Y.; Liu, Y.; Yan, D.; Chen, S.; Ahring, B. Biochar of Corn Stover: Microwave-Assisted Pyrolysis Condition Induced Changes in Surface Functional Groups and Characteristics. J. Anal. Appl. Pyrolysis 2015, 115, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Eibner, S.; Margeriat, A.; Laurenti, D.; Geantet, C.; Julbe, A.; Blin, J. Catalytic Deoxygenation of Model Compounds from Flash Pyrolysis of Lignocellulosic Biomass over Activated Charcoal-Based Catalysts. Appl. Catal. B Environ. 2017, 219, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ruan, R. From Glucose-Based Carbohydrates to Phenol-Rich Bio-Oils Integrated with Syngas Production via Catalytic Pyrolysis over an Activated Carbon Catalyst. Green Chem. 2018, 20, 3346–3358. [Google Scholar] [CrossRef]
- Duan, D.; Zhang, Y.; Wang, C.; Wang, Y. A Novel Production of Phase-Divided Jet-Fuel-Range HCs and Phenol-Enriched Chemicals from Catalytic Co-Pyrolysis of Lignocellulosic Biomass with Low-Density Polyethylene over Carbon Catalysts. Sustain. Energy Fuels 2020, 4, 3687–3700. [Google Scholar] [CrossRef]
- Lin, X.; Lei, H.; Wang, C.; Qian, M.; Mateo, W.; Chen, X. The Effects of Pore Structures and Functional Groups on the Catalytic Performance of Activated Carbon Catalysts for the Co-Pyrolysis of Biomass and Plastic into Aromatics and Hydrogen-Rich Syngas. Renew. Energy 2023, 202, 855–864. [Google Scholar] [CrossRef]
- Gin, A.W.; Hassan, H.; Ahmad, M.A.; Hameed, B.H.; Din, A.T.M. Recent Progress on Catalytic Co-Pyrolysis of Plastic Waste and Lignocellulosic Biomass to Liquid Fuel: The Influence of Technical and Reaction Kinetic Parameters. Arab. J. Chem. 2021, 14, 103035. [Google Scholar] [CrossRef]
- Thúy, N.; Chi, L.; Anto, S.; Shan, T.; Kumar, S.S.; Shanmugam, S.; Samuel, M.S.; Mathimani, T.; Brindhadevi, K.; Pugazhendhi, A. A Review on Biochar Production Techniques and Biochar-Based Catalyst for Biofuel Production from Algae. Fuel 2021, 287, 119411. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Wu, M. Advances in Metal/Biochar Catalysts for Biomass Hydro-Upgrading: A Review. J. Clean. Prod. 2021, 303, 126825. [Google Scholar] [CrossRef]
- Ren, S.; Lei, H.; Wang, L.; Bu, Q.; Chen, S.; Wu, J. HC and Hydrogen-Rich Syngas Production by Biomass Catalytic Pyrolysis and Bio-Oil Upgrading over Biochar Catalysts. RSC Adv. 2014, 4, 10731–10737. [Google Scholar] [CrossRef]
- Benis, K.Z.; Minaei, S.; Soltan, J.; Mcphedran, K.N. Adsorption of Lincomycin on Microwave Activated Biochar: Batch and Dynamic Adsorption. Chem. Eng. Res. Des. 2022, 187, 140–150. [Google Scholar] [CrossRef]
- Selvam, M.S.; Paramasivan, B. Microwave Assisted Carbonization and Activation of Biochar for Energy-Environment Nexus: A Review. Chemosphere 2022, 286, 131631. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Ghorbannezhad, P.; Park, S.; Onwudili, J.A. Co-Pyrolysis of Biomass and Plastic Waste over Zeolite- and Sodium-Based Catalysts for Enhanced Yields of HC Products. Waste Manag. 2020, 102, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Mullen, C.A.; Dorado, C.; Boateng, A.A. Catalytic Co-Pyrolysis of Switchgrass and Polyethylene over HZSM-5: Catalyst Deactivation and Coke Formation. J. Anal. Appl. Pyrolysis 2018, 129, 195–203. [Google Scholar] [CrossRef]
- Park, Y.; Lee, B.; Won, H.; Watanabe, A.; Jae, J.; Fai, Y.; Kim, Y. Co-Feeding Effect of Waste Plastic Films on the Catalytic Pyrolysis of Quercus variabilis over Microporous HZSM-5 and HY Catalysts. Chem. Eng. J. 2019, 378, 122151. [Google Scholar] [CrossRef]
- Jae, J.; Tompsett, G.A.; Foster, A.J.; Hammond, K.D.; Auerbach, S.M.; Lobo, R.F.; Huber, G.W. Investigation into the Shape Selectivity of Zeolite Catalysts for Biomass Conversion. J. Catal. 2011, 279, 257–268. [Google Scholar] [CrossRef]
- Kim, B.; Kim, Y.; Lee, H.W.; Jae, J.; Kim, D.H.; Jung, S.; Watanabe, C.; Park, Y. Catalytic Copyrolysis of Cellulose and Thermoplastics over HZSM-5 and HY. ACS Sustain. Chem. Eng. 2016, 4, 1354–1363. [Google Scholar] [CrossRef]
- To, A.T.; Resasco, D.E. Hydride Transfer between a Phenolic Surface Pool and Reactant Paraffins in the Catalytic Cracking of m-Cresol/Hexanes Mixtures over an HY Zeolite. J. Catal. 2015, 329, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Won, H.; Kim, Y.; Lee, B.; Kim, S.; Jae, J.; Jung, S.; Kim, T.; Park, Y. Catalytic Copyrolysis of Torrefied Cork Oak and High-Density Polyethylene over a Mesoporous HY Catalyst. Catal. Today 2018, 307, 301–307. [Google Scholar] [CrossRef]
- Hong, Y.; Lee, Y.; Sirous, P.; Sik, B.; Jeon, J.; Jae, J.; Jung, S.; Chai, S.; Park, Y. In-Situ Catalytic Copyrolysis of Cellulose and Polypropylene over Desilicated ZSM-5. Catal. Today 2017, 293–294, 151–158. [Google Scholar] [CrossRef]
- Sirous, P.; Oh, D.; Hong, Y.; Kim, Y.; Jae, J. In-Situ Catalytic Co-Pyrolysis of Yellow Poplar and High-Density Polyethylene over Mesoporous Catalysts. Energy Convers. Manag. 2017, 151, 116–122. [Google Scholar] [CrossRef]
- Environ, E.; Carlson, T.R.; Cheng, Y.; Jae, J.; Huber, G.W. Production of Green Aromatics and Olefins by Catalytic Fast Pyrolysis of Wood Sawdust. Energy Environ. Sci. 2011, 4, 145–161. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Huber, G.W. Production of Targeted Aromatics by Using Diels–Alder Classes of Reactions with Furans and Olefins over ZSM-5. Green Chem. 2012, 14, 3114–3125. [Google Scholar] [CrossRef]
- Xue, Y.; Zhou, S.; Bai, X. Role of Hydrogen Transfer during Catalytic Copyrolysis of Lignin and Tetralin over HZSM-5 and HY Zeolite Catalysts. ACS Sustain. Chem. Eng. 2016, 4, 4237–4250. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, Y.; Liu, S.; Zhou, N.; Chen, P.; Liu, Y.; Wang, Y.; Peng, P.; Cheng, Y.; Addy, M.; et al. Ex-Situ Catalytic Upgrading of Vapors from Microwave-Assisted Pyrolysis of Low-Density Polyethylene with MgO. Energy Convers. Manag. 2017, 149, 432–441. [Google Scholar] [CrossRef]
- Chen, X.; Li, S.; Liu, Z.; Chen, Y.; Yang, H.; Wang, X.; Che, Q.; Chen, W.; Chen, H. Pyrolysis Characteristics of Lignocellulosic Biomass Components in the Presence of CaO. Bioresour. Technol. 2019, 287, 121493. [Google Scholar] [CrossRef]
- Mateo, W.; Lei, H.; Villota, E.; Qian, M.; Zhao, Y.; Huo, E.; Zhang, Q.; Lin, X.; Wang, C.; Huang, Z. Synthesis and Characterization of Sulfonated Activated Carbon as a Catalyst for Bio-Jet Fuel Production from Biomass and Waste Plastics. Bioresour. Technol. 2020, 297, 122411. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.; Gao, N.; Wang, M.; Wu, C. H2 Production from Co-Pyrolysis/Gasification of Waste Plastics and Biomass under Novel Catalyst Ni-CaO-C. Chem. Eng. J. 2020, 382, 122947. [Google Scholar] [CrossRef]
- Zheng, Y.; Tao, L.; Yang, X.; Huang, Y.; Liu, C.; Zheng, Z. Study of the Thermal Behavior, Kinetics, and Product Characterization of Biomass and Low-Density Polyethylene Co-Pyrolysis by Thermogravimetric Analysis and Pyrolysis-GC/MS. J. Anal. Appl. Pyrol. 2018, 133, 185–197. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Zhong, Z.; Wang, K.; Wang, X.; Zhang, B.; Ruan, R.; Li, M.; Ragauskas, A.J. Catalytic Fast Co-Pyrolysis of Bamboo Sawdust and Waste Plastics for Enhanced Aromatic HCs Production Using Synthesized CeO2/γ-Al2O3 and HZSM-5. Energy Convers. Manag. 2019, 196, 759–767. [Google Scholar] [CrossRef]
- Xue, X.; Pan, Z.; Zhang, C.; Wang, D.; Xie, Y.; Zhang, R. Segmented Catalytic Copyrolysis of Biomass and High-Density Polyethylene for Aromatics Production with MgCl2 and HZSM-5. J. Anal. Appl. Pyrol. 2018, 134, 209–217. [Google Scholar] [CrossRef]
- Sanahuja-Parejo, O.; Veses, A.; López, J.M.; Murillo, R.; Callén, M.S.; García, T. Ca-Based Catalysts for the Production of High-Quality Bio-Oils from the Catalytic Copyrolysis of Grape Seeds and Waste Tyres. Catalysts 2019, 9, 992. [Google Scholar] [CrossRef] [Green Version]
- Iftikhar, H.; Zeeshan, M.; Iqbal, S.; Muneer, B.; Razzaq, M. Co-Pyrolysis of Sugarcane Bagasse and Polystyrene with Ex-Situ Catalytic Bed of Metal Oxides/HZSM-5 with Focus on Liquid Yield. Bioresour. Technol. 2019, 289, 121647. [Google Scholar] [CrossRef]
- Deng, T.; Yu, Z.; Zhang, X.; Zhang, Y.; Chen, L.; Ma, X. Catalytic Co-Pyrolysis Behaviors and Kinetics of Camellia Shell and Take-Out Solid Waste Using Pyrolyzer-Gas Chromatography/Mass Spectrometry and Thermogravimetric Analyzer. Bioresour. Technol. 2020, 297, 122419. [Google Scholar] [CrossRef]
- Ansari, K.B.; Hassan, S.Z.; Bhoi, R.; Ahmad, E. Co-Pyrolysis of Biomass and Plastic Wastes: A Review on Reactants Synergy, Catalyst Impact, Process Parameter, HC Fuel Potential, COVID-19. J. Environ. Chem. Eng. 2021, 9, 106436. [Google Scholar] [CrossRef]
- Yang, Y.; Diao, R.; Wang, C.; Zhu, X. Catalytic Effect of Different Metal Oxides on Pyrolysis Behaviors of Heavy Bio-Oil: A Comparative Study. CIESC J. 2021, 72, 5820–5830. [Google Scholar]
- Dada, T.K.; Islam, M.A.; Kumar, R.; Scott, J.; Antunes, E. Catalytic Co-Pyrolysis of Ironbark and Waste Cooking Oil Using Strontium Oxide-Modified Y-Zeolite for High-Quality Bio-Oil Production. Chem. Eng. J. 2022, 450, 138448. [Google Scholar] [CrossRef]
- Wang, D.; Xiao, R.; Zhang, H.; He, G. Comparison of Catalytic Pyrolysis of Biomass with MCM-41 and CaO Catalysts by Using TGA–FTIR Analysis. J. Anal. Appl. Pyrol. 2010, 89, 171–177. [Google Scholar] [CrossRef]
- Fan, L.; Chen, P.; Zhou, N.; Liu, S.; Zhang, Y.; Liu, Y.; Wang, Y.; Omar, M.M.; Peng, P.; Addy, M.; et al. In-Situ and Ex-Situ Catalytic Upgrading of Vapors from Microwave-Assisted Pyrolysis of Lignin. Bioresour. Technol. 2018, 247, 851–858. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Qian, K.; Huang, W. Metal-Support Interactions in Metal/Oxide Catalysts and Oxide-Metal Interactions in Oxide/Metal Inverse Catalysts. ACS Catalysis 2022, 12, 1268–1287. [Google Scholar] [CrossRef]
- Supramono, D.; Nabil, M.A.; Setiadi; Nasikin, M. Effect of Feed Composition of Copyrolysis of Corncobs–Polypropylene Plastic on Mass Interaction between Biomass Particles and Plastics. IOP Conf. Ser. Earth Environ. Sci. 2018, 105, 012049. [Google Scholar] [CrossRef]
- Jakab, E.; Blazso, M.; Faix, O. Thermal Decomposition of Mixtures of Vinyl Polymers and Lignocellulosic Materials. J. Anal. Appl. Pyrol. 2001, 58, 49–62. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, J.; Liu, C.; Lin, X.; Lu, Y.; Li, W.; Zheng, Z. Enhancing the Aromatic Hydrocarbon Yield from the Catalytic Copyrolysis of Xylan and LDPE with a Dual-Catalytic-Stage Combined CaO/HZSM-5 Catalyst. J. Energy Inst. 2020, 93, 1833–1847. [Google Scholar] [CrossRef]
- Yang, M.; Shao, J.; Yang, H.; Chen, Y.; Bai, X.; Zhang, S.; Chen, H. Catalytic Pyrolysis of Hemicellulose for the Production of Light Olefins and Aromatics over Fe Modified ZSM-5 Catalysts. Cellulose 2019, 26, 8489–8500. [Google Scholar] [CrossRef]
- Liu, S.; Xie, Q.; Zhang, B.; Cheng, Y.; Liu, Y.; Chen, P.; Ruan, R. Fast Microwave-Assisted Catalytic Co-Pyrolysis of Corn Stover and Scum for Bio-Oil Production with CaO and HZSM-5 as the Catalyst. Bioresour. Technol. 2016, 204, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhong, Z.; Chen, P.; Ruan, R. Microwave-Assisted Catalytic Fast Copyrolysis of Ageratina adenophora and Kerogen with CaO and ZSM-5. J. Anal. Appl. Pyrol. 2017, 127, 246–257. [Google Scholar] [CrossRef]
- Alabdrabalnabi, A.; Gautam, R.; Sarathy, S.M. Machine Learning to Predict Biochar and Bio-Oil Yields from Co-Pyrolysis of Biomass and Plastics. Fuel 2022, 328, 125303. [Google Scholar] [CrossRef]
Biomass | Plastic | Catalyst | Reactor and Operating Conditions | Optimized Conditions | Ref. |
---|---|---|---|---|---|
Pine sawdust | LDPE | HZSM-5 | Fixed-bed reactor 450 °C | The addition of LDPE inhibited the coking reaction of biomass effectively, resulting in an increase in the volatile content. | [96] |
Sugarcane bagasse | HDPE | Mesoporous FAU | Fixed-bed reactor, 400–700 °C | Catalyst-to-feedstock ratio of 1:6, HDPE-to-SCB ratio of 40:60, and temperature of 500 °C; maximum bio-oil yield was achieved. | [25] |
Sugarcane bagasse | PET | HZSM-5/Na2CO3/γ-Al2O3 | Tandem μ-reactor coupled with GC 400–800 °C | 700 °C, biomass-to-PET ratio of 4, and HZSM-5-to-Na2CO3/γ-Al2O3 ratio of 5; maximum BTX yield of 18.3% was obtained. | [80] |
Bamboo sawdust | LLDPE | HZSM-5, CeO2/γ-Al2O3 | Pyroprobe pyrolyzer coupled with GC 600 °C | Catalyst/biomass ratio of 4, CeO2/γ-Al2O3-to-HZSM-5 mass ratio of 1:3, 75% LLDPE percentage; maximum contents of aromatic HCs were obtained. | [97] |
Pine sawdust | HDPE | MgCl2, HZSM-5 | Fixed-bed reactor 400–700 °C | Pyrolysis temperature: 600 °C, biomass to-HDPE ratio: 1:2, and feedstock-to-catalyst ratio: 1:1; maximum oil-phase product yield of 20.6% and aromatics’ selectivity (area %) of 95.9% were obtained. | [98] |
Grape seeds | Waste tire | CaO | Auger reactor (pilot scale) | Catalyst calcination temperature: 900 °C, 20 wt% waste tires, feedstock: CaO mass ratio of 2:1; deoxygenated bio-oil (0.5 wt% of oxygen content) was obtained with a heating value of 41.7 MJ/kg. | [99] |
Sugarcane bagasse | PS | HZSM-5, MgO, CaO | Fixed-bed reactor 500 °C | Mass ratio of 1:3 HZSM-5:MgO; maximum (56.8 wt%) MAHs’ yield and lowest (20.8 wt%) PAHs’ content was observed. | [100] |
Camellia shell | Take-out solid waste | HZSM-5, CaO, MgO | Pyroprobe pyrolyzer coupled with GC 700 °C | The mixing ratio of biomass and plastic was 3:7, and the mixture of HZSM-5 and CaO (mixing ratio of 1:1); aliphatic HCs and MAHs were generated, and acids’ formation was inhibited. | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, F.; Ullah, H.; Zada, N.; Shahab, A. A Review on Catalytic Co-Pyrolysis of Biomass and Plastics Waste as a Thermochemical Conversion to Produce Valuable Products. Energies 2023, 16, 5403. https://doi.org/10.3390/en16145403
Mo F, Ullah H, Zada N, Shahab A. A Review on Catalytic Co-Pyrolysis of Biomass and Plastics Waste as a Thermochemical Conversion to Produce Valuable Products. Energies. 2023; 16(14):5403. https://doi.org/10.3390/en16145403
Chicago/Turabian StyleMo, Fujin, Habib Ullah, Noor Zada, and Asfandyar Shahab. 2023. "A Review on Catalytic Co-Pyrolysis of Biomass and Plastics Waste as a Thermochemical Conversion to Produce Valuable Products" Energies 16, no. 14: 5403. https://doi.org/10.3390/en16145403
APA StyleMo, F., Ullah, H., Zada, N., & Shahab, A. (2023). A Review on Catalytic Co-Pyrolysis of Biomass and Plastics Waste as a Thermochemical Conversion to Produce Valuable Products. Energies, 16(14), 5403. https://doi.org/10.3390/en16145403