Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process
Abstract
:1. Biogas Production and Fermentation Process
2. Hydrothermal Carbonization of Agricultural Origin Digestates
3. Comparative Analysis of Hydrochar’s Chemical and Physical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karlsson, N.P.E.; Halila, F.; Mattsson, M.; Hoveskog, M. Success Factors for Agricultural Biogas Production in Sweden: A Case Study of Business Model Innovation. J. Clean. Prod. 2017, 142, 2925–2934. [Google Scholar] [CrossRef]
- Biomass. Available online: https://energy.ec.europa.eu/topics/renewable-energy/bioenergy/biomass_en (accessed on 5 February 2023).
- Azzaz, A.A.; Khiari, B.; Jellali, S.; Ghimbeu, C.M.; Jeguirim, M. Hydrochars Production, Characterization and Application for Wastewater Treatment: A Review. Renew. Sust. Energ. Rev. 2020, 127, 109882. [Google Scholar] [CrossRef]
- Avila-Lopez, M.; Robles-Rodriguez, C.; Tiruta-Barna, L.; Ahmadi, A. Toward Thermal Autarky for Large-Scale Biogas Plants: Dynamic Energy Modeling for Energy Efficiency in Anaerobic Digesters with Enhanced Multimembrane Gasholders. Fuel 2022, 339, 126978. [Google Scholar] [CrossRef]
- O’Connor, S.; Ehimen, E.; Pillai, S.C.; Black, A.; Tormey, D.; Bartlett, J. Biogas Production from Small-Scale Anaerobic Digestion Plants on European Farms. Renew. Sust. Energ. Rev. 2021, 139, 110580. [Google Scholar] [CrossRef]
- Omar, B.; El-Gammal, M.; Abou-Shanab, R.; Fotidis, I.A.; Angelidaki, I.; Zhang, Y. Biogas Upgrading and Biochemical Production from Gas Fermentation: Impact of Microbial Community and Gas Composition. Bioresour. Technol. 2019, 286, 121413. [Google Scholar] [CrossRef] [PubMed]
- The Future of Biogas & Biomethane 2022. Available online: https://www.prosperoevents.com/event/the-future-of-biogas-biomethane-2022/ (accessed on 14 February 2023).
- European Biomethane Production Hits Record High in 2021. Available online: https://www.argusmedia.com/en/news/2294127-european-biomethane-production-hits-record-high-in-2021#:~:text=European%20biomethane%20production%20hits%20record%20high%20in%202021,preliminary%20estimates%20by%20the%20European%20Biogas%20Association%20%28EBA%29 (accessed on 14 February 2023).
- 25.10% bioCNG in 2020: New Data Proves Rapid Growth of Biomethane in Transport. Available online: https://www.ngva.eu/medias/2510-biocng-in-2020-new-data-proves-rapid-growth-of-biomethane-in-transport/#_ftn1 (accessed on 14 February 2023).
- Digestate Factsheet: The Value of Organic Fertilisers for Europe’s Economy, Society and Environment. Available online: http://europeanbiogas.eu/wp-content/uploads/2015/07/Digestate-paper-final-08072015.pdf (accessed on 20 January 2023).
- Wang, W.; Lee, D.J. Valorization of Anaerobic Digestion Digestate: A Prospect Review. Bioresour. Technol. 2021, 323, 124626. [Google Scholar] [CrossRef]
- Digestate and Compost as Fertilisers: Risk Assessment and Risk Management Options. Available online: https://ec.europa.eu/environment/chemicals/reach/pdf/40039%20Digestate%20and%20Compost%20RMOA%20-%20Final%20report%20i2_20190208.pdf (accessed on 20 January 2023).
- Digestate as Driver of the Agroecological Transition in Europe. Available online: https://www.europeanbiogas.eu/digestate-as-driver-of-the-agroecological-transition-in-europe/ (accessed on 14 February 2023).
- Köninger, J.; Lugato, E.; Panagos, P.; Kochupillai, M.; Orgiazzi, A.; Briones, M.J.I. Manure Management and Soil Biodiversity: Towards More Sustainable Food Systems in the EU. Agric. Syst. 2021, 194, 103251. [Google Scholar] [CrossRef]
- Almomani, F. Prediction of Biogas Production from Chemically Treated Co-Digested Agricultural Waste Using Artificial Neural Network. Fuel 2020, 280, 118573. [Google Scholar] [CrossRef]
- Cudjoe, D.; Han, M.S.; Nandiwardhana, A.P. Electricity Generation Using Biogas from Organic Fraction of Municipal Solid Waste Generated in Provinces of China: Techno-Economic and Environmental Impact Analysis. Fuel Process. Technol. 2020, 203, 106381. [Google Scholar] [CrossRef]
- Vijayakumar, P.; Ayyadurai, S.; Arunachalam, K.D.; Mishra, G.; Chen, W.H.; Juan, J.C.; Naqvi, S.R. Current Technologies of Biochemical Conversion of Food Waste into Biogas Production: A Review. Fuel 2022, 323, 124321. [Google Scholar] [CrossRef]
- Shanmugam, S.; Mathimani, T.; Rajendran, K.; Sekar, M.; Rene, E.R.; Chi, N.T.L.; Ngo, H.H.; Pugazhendhi, A. Perspective on the Strategies and Challenges in Hydrogen Production from Food and Food Processing Wastes. Fuel 2023, 338, 127376. [Google Scholar] [CrossRef]
- Olatunji, K.O.; Ahmed, N.A.; Ogunkunle, O. Optimization of Biogas Yield from Lignocellulosic Materials with Different Pretreatment Methods: A Review. Biotechnol. Biofuels 2021, 14, 1–34. [Google Scholar] [CrossRef]
- Patinvoh, R.J.; Osadolor, O.A.; Chandolias, K.; Sárvári Horváth, I.; Taherzadeh, M.J. Innovative Pretreatment Strategies for Biogas Production. Bioresour. Technol. 2017, 224, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Global Biogas Market Forecast 2022 to 2027. Energy Global. 2022. Available online: https://www.energyglobal.com/bioenergy/10032022/global-biogas-market-forecast-2022-to-2027 (accessed on 20 January 2023).
- Biogas Market—Growth, Trends, COVID-19 Impact, and Forecasts (2023–2028). Available online: https://www.mordorintelligence.com/industry-reports/biogas-market#:~:text=As%20of%202021%2C%20according%20to%20the%20European%20Biogas,more%20than%209%2C692%20biogas%20plants%2C%20as%20of%202021 (accessed on 18 January 2023).
- 2021 Country Reports. Available online: https://www.ieabioenergy.com/blog/publications/2021-country-reports/ (accessed on 26 January 2023).
- Náthia-Neves, G.; Berni, M.; Dragone, G.; Mussatto, S.I.; Forster-Carneiro, T. Anaerobic Digestion Process: Technological Aspects and Recent Developments. Int. J. Environ. Sci. Technol. 2018, 15, 2033–2046. [Google Scholar] [CrossRef]
- Biogas Management: Advanced Utilization for Production of Renewable Energy and Added-Value Chemicals. Available online: https://www.frontiersin.org/articles/10.3389/fenvs.2017.00007/full (accessed on 14 February 2023).
- Calbry-Muzyka, A.; Madi, H.; Rüsch-Pfund, F.; Gandiglio, M.; Biollaz, S. Biogas Composition from Agricultural Sources and Organic Fraction of Municipal Solid Waste. Renew. Energ. 2022, 181, 1000–1007. [Google Scholar] [CrossRef]
- Arikan, O.A.; Mulbry, W.; Lansing, S. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure. Waste Manag. 2015, 43, 108–113. [Google Scholar] [CrossRef]
- Nsair, A.; Cinar, S.O.; Alassali, A.; Qdais, H.A.; Kuchta, K. Operational Parameters of Biogas Plants: A Review and Evaluation Study. Energies 2020, 13, 3761. [Google Scholar] [CrossRef]
- Wu, D.; Peng, X.; Li, L.; Yang, P.; Peng, Y.; Liu, H.; Wang, X. Commercial Biogas Plants: Review on Operational Parameters and Guide for Performance Optimization. Fuel 2021, 303, 121282. [Google Scholar] [CrossRef]
- Zohorović, M.; Andrejaš, F.; Selimbasic, V.; Stuhli, V. Defining key parameters to control the anaerobic digestion of organic matter. In Proceedings of the 4th International Symposium on Environmental Management—Towards Circular Economy, Zagreb, Croatia, 7–9 December 2016; pp. 194–199. [Google Scholar]
- Increasing Anaerobic Digester Performance with Codigestion. Available online: https://www.epa.gov/sites/default/files/2014-12/documents/codigestion.pdf (accessed on 19 January 2023).
- Sawyerr, N.; Trois, C.; Workneh, T.; Okudoh, V. An Overview of Biogas Production: Fundamentals, Applications and Future Research. Int. J. Energy Econ. Policy 2019, 9, 105–116. [Google Scholar] [CrossRef]
- Ekstrand, E.M.; Björn, A.; Karlsson, A.; Schnürer, A.; Kanders, L.; Shakeri Yekta, S.; Karlsson, M.; Moestedt, J. Identifying targets for increased biogas production through chemical and organic matter characterization of digestate from full-scale biogas plants: What remains and why? Biotechnol. Biofuels 2022, 15, 16. [Google Scholar] [CrossRef]
- Kuźnia, M.; Jerzak, W.; Lyko, P.; Sikora, J. Analysis of the Combustion Products of Biogas Produced from Organic Municipal Waste. J. Power Technol. 2015, 95, 158–165. [Google Scholar]
- Jerzak, W.; Kuźnia, M.; Szajding, A. Experimental Studies and the Chemical Kinetics Modelling of Oxidation of Hydrogen Sulfide Contained in Biogas. Selected Papers from IX International Conference on Computational Heat and Mass Transfer (ICCHMT2016). Book Ser. Procedia Eng. 2016, 157, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Wilk, M.; Magdziarz, A.; Zajemska, M.; Kuźnia, M. Syngas as a Reburning Fuel for Natural Gas Combustion. Chem. Process Eng. 2014, 35, 181–190. [Google Scholar] [CrossRef]
- Catenacci, A.; Boniardi, G.; Mainardis, M.; Gievers, F.; Farru, G.; Asunis, F.; Malpei, F.; Goi, D.; Cappai, G.; Canziani, R. Processes, Applications and Legislative Framework for Carbonized Anaerobic Digestate: Opportunities and Bottlenecks. A Critical Review. Energ. Convers. Manag. 2022, 263, 115691. [Google Scholar] [CrossRef]
- Skrzypczak, D.; Trzaska, K.; Mikula, K.; Gil, F.; Izydorczyk, G.; Mironiuk, M.; Polomska, X.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Conversion of Anaerobic Digestates from Biogas Plants: Laboratory Fertilizer Formulation, Scale-up and Demonstration of Applicative Properties on Plants. Renew. Energ. 2023, 203, 506–517. [Google Scholar] [CrossRef]
- Hämäläinen, A.; Kokko, M.; Kinnunen, V.; Hilli, T.; Rintala, J. Hydrothermal Carbonisation of Mechanically Dewatered Digested Sewage Sludge—Energy and Nutrient Recovery in Centralised Biogas Plant. Water Res. 2021, 201, 117284. [Google Scholar] [CrossRef]
- Cao, Z.; Hülsemann, B.; Wüst, D.; Illi, L.; Oechsner, H.; Kruse, A. Valorization of Maize Silage Digestate from Two-Stage Anaerobic Digestion by Hydrothermal Carbonization. Energ. Convers. Manag. 2020, 222, 113218. [Google Scholar] [CrossRef]
- Cao, Z.; Hülsemann, B.; Wüst, D.; Oechsner, H.; Lautenbach, A.; Kruse, A. Effect of Residence Time during Hydrothermal Carbonization of Biogas Digestate on the Combustion Characteristics of Hydrochar and the Biogas Production of Process Water. Bioresour. Technol. 2021, 333, 125110. [Google Scholar] [CrossRef]
- Śliz, M.; Tuci, F.; Czerwińska, K.; Fabrizi, S.; Lombardi, L.; Wilk, M. Hydrothermal Carbonization of the Wet Fraction from Mixed Municipal Solid Waste: Hydrochar Characteristics and Energy Balance. Waste Manag. 2022, 151, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Czerwińska, K.; Śliz, M.; Wilk, M. Hydrothermal Carbonization Process: Fundamentals, Main Parameter Characteristics and Possible Applications Including an Effective Method of SARS-CoV-2 Mitigation in Sewage Sludge. A Review. Renew. Sust. Energ. Rev. 2022, 154, 111873. [Google Scholar] [CrossRef]
- Masoumi, S.; Borugadda, V.B.; Nanda, S.; Dalai, A.K. Hydrochar: A Review on Its Production Technologies and Applications. Catalysts 2021, 11, 939. [Google Scholar] [CrossRef]
- Hydrothermal Carbonization of Biomass: A Summary and Discussion of Chemical Mecha-Nisms for Process Engineering. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1002/bbb.198?src=getftr (accessed on 28 February 2023).
- Leena, P.A.; Kurian, J. Hydrothermal Carbonization of Organic Wastes to Carbonaceous Solid Fuel—A Review of Mechanisms and Process Parameters. Fuel 2020, 279, 118472. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. The Production of Carbon Materials by Hydrothermal Carbonization of Cellulose. Carbon 2009, 47, 2281–2289. [Google Scholar] [CrossRef] [Green Version]
- Lachos-Perez, D.; César Torres-Mayanga, P.; Abaide, E.R.; Zabot, G.L.; De Castilhos, F. Hydrothermal Carbonization and Liquefaction: Differences, Progress, Challenges, and Opportunities. Bioresour. Technol. 2022, 343, 126084. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Murillo, A.; Libra, J.A.; Ro, K.S. Theoretical Framework for Estimating Design Reactor Pressure for Water-Based Hydrothermal Carbonization (HTC) Systems. Therm. Sci. Eng. Prog. 2022, 30, 101241. [Google Scholar] [CrossRef]
- Tippayawong, N.; Kantakanit, P.; Koonaphapdeelert, S. Characterization of Hydrochar from Hydrothermal Carbonization of Maize Residues. Energy Rep. 2020, 6, 114–118. [Google Scholar] [CrossRef]
- Poomsawat, S.; Poomsawat, W. Analysis of Hydrochar Fuel Characterization and Combustion Behavior Derived from Aquatic Biomass via Hydrothermal Carbonization Process. Case Stud. Therm. Eng. 2021, 27, 101255. [Google Scholar] [CrossRef]
- Śliz, M.; Czerwińska, K.; Magdziarz, A.; Lombardi, L.; Wilk, M. Hydrothermal Carbonization of the Wet Fraction from Mixed Municipal Solid Waste: A Fuel and Structural Analysis of Hydrochars. Energies 2022, 15, 6708. [Google Scholar] [CrossRef]
- Gaur, R.Z.; Khoury, O.; Zohar, M.; Poverenov, E.; Darzi, R.; Laor, Y.; Posmanik, R. Hydrothermal Carbonization of Sewage Sludge Coupled with Anaerobic Digestion: Integrated Approach for Sludge Management and Energy Recycling. Energy Convers. Manag. 2020, 224, 113353. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.; Wang, J.; Li, X.; Cheng, J.; Yang, H.; Chen, H. Effect of Residence Time on Chemical and Structural Properties of Hydrochar Obtained by Hydrothermal Carbonization of Water Hyacinth. Energy 2013, 58, 376–383. [Google Scholar] [CrossRef]
- Lucian, M.; Volpe, M.; Merzari, F.; Wüst, D.; Kruse, A.; Andreottola, G.; Fiori, L. Hydrothermal Carbonization Coupled with Anaerobic Digestion for the Valorization of the Organic Fraction of Municipal Solid Waste. Bioresour. Technol. 2020, 314, 123734. [Google Scholar] [CrossRef] [PubMed]
- Kratzeisen, M.; Starcevic, N.; Martinov, M.; Maurer, C.; Müller, J. Applicability of Biogas Digestate as Solid Fuel. Fuel 2010, 89, 2544–2548. [Google Scholar] [CrossRef]
- Zaini, I.N.; Novianti, S.; Nurdiawati, A.; Irhamna, A.R.; Aziz, M.; Yoshikawa, K. Investigation of the Physical Characteristics of Washed Hydrochar Pellets Made from Empty Fruit Bunch. Fuel Process. Technol. 2017, 160, 109–120. [Google Scholar] [CrossRef]
- Ganesh Saratale, R.; Kumar, G.; Banu, R.; Xia, A.; Periyasamy, S.; Dattatraya Saratale, G. A Critical Review on Anaerobic Digestion of Microalgae and Macroalgae and Co-Digestion of Biomass for Enhanced Methane Generation. Bioresour. Technol. 2018, 262, 319–332. [Google Scholar] [CrossRef]
- Koçer, A.T.; İnan, B.; Özçimen, D.; Gökalp, İ. A Study of Microalgae Cultivation in Hydrothermal Carbonization Process Water: Nutrient Recycling, Characterization and Process Design. Environ. Technol. Innov. 2023, 30, 103048. [Google Scholar] [CrossRef]
- Seyedsadr, S.; Al Afif, R.; Pfeifer, C. Hydrothermal Carbonization of Agricultural Residues: A Case Study of the Farm Residues -Based Biogas Plants. Carbon Resour. Convers. 2018, 1, 81–85. [Google Scholar] [CrossRef]
- Ro, K.S.; Libra, J.A.; Alvarez-Murillo, A. Comparative Studies on Water-and Vapor-Based Hydrothermal Carbonization: Process Analysis. Energies 2020, 13, 5733. [Google Scholar] [CrossRef]
- Wang, S.; Wen, Y.; Shi, Z.; Niedzwiecki, L.; Baranowski, M.; Czerep, M.; Mu, W.; Kruczek, H.P.; Jönsson, P.G.; Yang, W. Effect of Hydrothermal Carbonization Pretreatment on the Pyrolysis Behavior of the Digestate of Agricultural Waste: A View on Kinetics and Thermodynamics. Chem. Eng. J. 2022, 431, 133881. [Google Scholar] [CrossRef]
- Fakkaew, K.; Koottatep, T.; Polprasert, C. Effects of Hydrolysis and Carbonization Reactions on Hydrochar Production. Bioresour. Technol. 2015, 192, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Djandja, O.S.; Kang, S.; Huang, Z.; Li, J.; Feng, J.; Tan, Z.; Salami, A.A.; Lougou, B.G. Machine Learning Prediction of Fuel Properties of Hydrochar from Co-Hydrothermal Carbonization of Sewage Sludge and Lignocellulosic Biomass. Energy 2023, 271, 126968. [Google Scholar] [CrossRef]
- The Changing Landscape of Sludge Disposal. Available online: https://www.solenis.com/en/resources/blog/the-changing-landscape-of-sludge-disposal#:~:text=Worldwide%20sludge%20production%20is%20extensive%20and%20growing.%20In,17%20million%20tons%20of%20dry%20sludge%20per%20year (accessed on 20 March 2023).
- Djandja, O.S.; Salami, A.A.; Wang, Z.C.; Duo, J.; Yin, L.X.; Duan, P.G. Random Forest-Based Modeling for Insights on Phosphorus Content in Hydrochar Produced from Hydrothermal Carbonization of Sewage Sludge. Energy 2022, 245, 123295. [Google Scholar] [CrossRef]
- Wilk, M.; Śliz, M.; Lubieniecki, B. Hydrothermal Co-Carbonization of Sewage Sludge and Fuel Additives: Combustion Performance of Hydrochar. Renew. Energy 2021, 178, 1046–1056. [Google Scholar] [CrossRef]
- Wilk, M.; Magdziarz, A.; Jayaraman, K.; Szymańska-Chargot, M.; Gökalp, I. Hydrothermal Carbonization Characteristics of Sewage Sludge and Lignocellulosic Biomass. A Comparative Study. Biomass. Bioenergy 2019, 120, 166–175. [Google Scholar] [CrossRef]
- Liu, T.; Jiao, H.T.; Yang, L.; Zhang, W.; Hu, Y.; Guo, Y.; Yang, L.; Leng, S.; Chen, J.; Chen, J.; et al. Co-Hydrothermal Carbonization of Cellulose, Hemicellulose, and Protein with Aqueous Phase Recirculation: Insight into the Reaction Mechanisms on Hydrochar Formation. Energy 2022, 251, 123965. [Google Scholar] [CrossRef]
- Güleç, F.; Riesco, L.M.G.; Williams, O.; Kostas, E.T.; Samson, A.; Lester, E. Hydrothermal conversion of different lignocellulosic biomass feedstocks—Effect of the process conditions on hydrochar structures. Fuel 2021, 302, 121166. [Google Scholar] [CrossRef]
- Wilk, M.; Magdziarz, A.; Kalemba-Rec, I.; Szymańska-Chargot, M. Upgrading of Green Waste into Carbon-Rich Solid Biofuel by Hydrothermal Carbonization: The Effect of Process Parameters on Hydrochar Derived from Acacia. Energy 2020, 202, 117717. [Google Scholar] [CrossRef]
- Wang, T.; Si, B.; Gong, Z.; Zhai, Y.; Cao, M.; Peng, C. Co-Hydrothermal Carbonization of Food Waste-Woody Sawdust Blend: Interaction Effects on the Hydrochar Properties and Nutrients Characteristics. Bioresour. Technol. 2020, 316, 123900. [Google Scholar] [CrossRef] [PubMed]
- Parmar, K.R.; Brown, A.E.; Hammerton, J.M.; Camargo-Valero, M.A.; Fletcher, L.A.; Ross, A.B. Co-Processing Lignocellulosic Biomass and Sewage Digestate by Hydrothermal Carbonisation: Influence of Blending on Product Quality. Energies 2022, 15, 1418. [Google Scholar] [CrossRef]
- Reza, M.T.; Werner, M.; Pohl, M.; Mumme, J. Evaluation of Integrated Anaerobic Digestion and Hydrothermal Carbonization for Bioenergy Production. J. Vis. Exp. 2014, 88, 51734. [Google Scholar] [CrossRef] [Green Version]
- Ferrentino, R.; Langone, M.; Mattioli, D.; Fiori, L.; Andreottola, G. Investigating the Enhancement in Biogas Production by Hydrothermal Carbonization of Organic Solid Waste and Digestate in an Inter-Stage Treatment Configuration. Processes 2022, 10, 777. [Google Scholar] [CrossRef]
- Czerwińska, K.; Marszałek, A.; Kudlek, E.; Śliz, M.; Dudziak, M.; Wilk, M. The Treatment of Post-Processing Liquid from the Hydrothermal Carbonization of Sewage Sludge. Sci. Total Environ. 2023, 885, 163858. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yang, H.; Karasev, A.V.; Wang, C.; Jönsson, P.G. Applications of Hydrochar and Charcoal in the Iron and Steelmaking Industry—Part 1: Characterization of Carbonaceous Materials. Sustainability 2022, 14, 9488. [Google Scholar] [CrossRef]
- Aragon-Briceño, C.; Pożarlik, A.; Bramer, E.; Brem, G.; Wang, S.; Wen, Y.; Yang, W.; Pawlak-Kruczek, H.; Niedźwiecki, Ł.; Urbanowska, A.; et al. Integration of Hydrothermal Carbonization Treatment for Water and Energy Recovery from Organic Fraction of Municipal Solid Waste Digestate. Renew. Energy 2022, 184, 577–591. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of Biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Zhu, G.; Yang, L.; Gao, Y.; Xu, J.; Chen, H.; Zhu, Y.; Wang, Y.; Liao, C.; Lu, C.; Zhu, C. Characterization and Pelletization of Cotton Stalk Hydrochar from HTC and Combustion Kinetics of Hydrochar Pellets by TGA. Fuel 2019, 244, 479–491. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, K.; Bhaskar, T. Hydochar and Biochar: Production, Physicochemical Properties and Techno-Economic Analysis. Bioresour. Technol. 2020, 310, 123442. [Google Scholar] [CrossRef]
- Malghani, S.; Gleixner, G.; Trumbore, S.E. Chars Produced by Slow Pyrolysis and Hydrothermal Carbonization Vary in Carbon Sequestration Potential and Greenhouse Gases Emissions. Soil Biol. Biochem. 2013, 62, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Ma, X.; Zheng, C.; Huang, T.; Lu, X.; Tian, Y. Co-Hydrothermal Carbonization of Water Hyacinth and Sewage Sludge: Effects of Aqueous Phase Recirculation on the Characteristics of Hydrochar. Energ. Fuels 2020, 34, 14147–14158. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, Y.; Zhu, Y.; Peng, C.; Xu, B.; Wang, T.; Li, C.; Zeng, G. Influence of Temperature on Nitrogen Fate during Hydrothermal Carbonization of Food Waste. Bioresour. Technol. 2018, 247, 182–189. [Google Scholar] [CrossRef]
- Zheng, C.; Ma, X.; Yao, Z.; Chen, X. The Properties and Combustion Behaviors of Hydrochars Derived from Co-Hydrothermal Carbonization of Sewage Sludge and Food Waste. Bioresour. Technol. 2019, 285, 121347. [Google Scholar] [CrossRef]
- de Araújo, T.P.; Quesada, H.B.; Bergamasco, R.; Vareschini, D.T.; de Barros, M.A.S.D. Activated Hydrochar Produced from Brewer’s Spent Grain and Its Application in the Removal of Acetaminophen. Bioresour. Technol. 2020, 310, 123399. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, L.; Zhang, S.; Li, Q.; Hu, X. Hydrothermal Carbonization of Cellulose in Aqueous Phase of Bio-Oil: The Significant Impacts on Properties of Hydrochar. Fuel 2022, 315, 123132. [Google Scholar] [CrossRef]
- Cheng, C.; Guo, Q.; Ding, L.; Raheem, A.; He, Q.; Shiung Lam, S.; Yu, G. Upgradation of Coconut Waste Shell to Value-Added Hydrochar via Hydrothermal Carbonization: Parametric Optimization Using Response Surface Methodology. Appl. Energy 2022, 327, 120136. [Google Scholar] [CrossRef]
- Afolabi, O.O.D.; Sohail, M.; Cheng, Y.L. Optimisation and Characterisation of Hydrochar Production from Spent Coffee Grounds by Hydrothermal Carbonisation. Renew. Energy 2020, 147, 1380–1391. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Lee, J.Y.; Mao, X.; Ye, L.; Xu, W.; Ning, X.; Zhang, N.; Teng, H.; Wang, C. Hydrothermal Carbonization of Maize Straw for Hydrochar Production and Its Injection for Blast Furnace. Appl. Energy 2020, 266, 114818. [Google Scholar] [CrossRef]
- Liu, X.; Fan, Y.; Zhai, Y.; Liu, X.; Wang, Z.; Zhu, Y.; Shi, H.; Li, C.; Zhu, Y. Co-Hydrothermal Carbonization of Rape Straw and Microalgae: PH-Enhanced Carbonization Process to Obtain Clean Hydrochar. Energy 2022, 257, 124733. [Google Scholar] [CrossRef]
- Wilk, M.; Śliz, M.; Gajek, M. The Effects of Hydrothermal Carbonization Operating Parameters on High-Value Hydrochar Derived from Beet Pulp. Renew. Energy 2021, 177, 216–228. [Google Scholar] [CrossRef]
- Wilk, M.; Magdziarz, A. Hydrothermal Carbonization, Torrefaction and Slow Pyrolysis of Miscanthus Giganteus. Energy 2017, 140, 1292–1304. [Google Scholar] [CrossRef]
- Śliz, M.; Wilk, M. A Comprehensive Investigation of Hydrothermal Carbonization: Energy Potential of Hydrochar Derived from Virginia Mallow. Renew. Energy 2020, 156, 942–950. [Google Scholar] [CrossRef]
- Lu, X.; Ma, X.; Qin, Z.; Chen, X.; Yue, W. Co-Hydrothermal Carbonization of Sewage Sludge and Swine Manure: Hydrochar Properties and Heavy Metal Chemical Speciation. Fuel 2022, 330, 125573. [Google Scholar] [CrossRef]
- Wilk, M. A Novel Method of Sewage Sludge Pre-Treatment-HTC. In Proceedings of the 1st International Conference on the Sustainable Energy and Environment Development (SEED 2016), Krakow, Poland, 17–19 May 2016; Volume 10, p. 00103. [Google Scholar] [CrossRef]
- Tu, R.; Sun, Y.; Wu, Y.; Fan, X.; Cheng, S.; Jiang, E.; Xu, X. A New Index for Hydrochar Based on Fixed Carbon Content to Predict Its Structural Properties and Thermal Behavior. Energy 2021, 229, 120572. [Google Scholar] [CrossRef]
- Romano, P.; Stampone, N.; Di Giacomo, G. Evolution and Prospects of Hydrothermal Carbonization. Energies 2023, 16, 3125. [Google Scholar] [CrossRef]
- Álvarez, M.L.; Gascó, G.; Plaza, C.; Paz-Ferreiro, J.; Méndez, A. Hydrochars from Biosolids and Urban Wastes as Substitute Materials for Peat. Land Degrad. Dev. 2017, 28, 2268–2276. [Google Scholar] [CrossRef]
- Saleh, M.; Isik, Z.; Yabalak, E.; Yalvac, M.; Dizge, N. Green Production of Hydrochar Nut Group from Waste Materials in Subcritical Water Medium and Investigation of Their Adsorption Performance for Crystal Violet. Water Environ. Res. 2021, 93, 3075–3089. [Google Scholar] [CrossRef]
- Li, Y.; Meas, A.; Shan, S.; Yang, R.; Gai, X. Production and Optimization of Bamboo Hydrochars for Adsorption of Congo Red and 2-Naphthol. Bioresour. Technol. 2016, 207, 379–386. [Google Scholar] [CrossRef]
- Naphthol. Available online: https://medical-dictionary.thefreedictionary.com/2-naphthol (accessed on 20 March 2023).
- Wang, D.; Li, Z.; Lv, F.; Guan, M.; Chen, J.; Wu, C.; Li, Y.; Li, Y.; Zhang, W. Characterization of Microspheres γ-AlOOH and the Excellent Removal Efficiency of Congo Red. J. Phys. Chem. Solids 2023, 174, 111043. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, T.; Ren, H.; Kruse, A.; Cui, R. Polyethylene Imine Modified Hydrochar Adsorption for Chromium (VI) and Nickel (II) Removal from Aqueous Solution. Bioresour. Technol. 2018, 247, 370–379. [Google Scholar] [CrossRef]
- Khosravi, A.; Zheng, H.; Liu, Q.; Hashemi, M.; Tang, Y.; Xing, B. Production and Characterization of Hydrochars and Their Application in Soil Improvement and Environmental Remediation. Chem. Eng. J. 2022, 430, 133142. [Google Scholar] [CrossRef]
- Shuang, E.; Jin, C.; Liu, J.; Yang, L.; Yang, M.; Xu, E.; Wang, K.; Sheng, K.; Zhang, X. Engineering Functional Hydrochar Based Catalyst with Corn Stover and Model Components for Efficient Glucose Isomerization. Energy 2022, 249, 123668. [Google Scholar] [CrossRef]
- Quevedo-Amador, R.A.; Reynel-Avila, H.E.; Mendoza-Castillo, D.I.; Badawi, M.; Bonilla-Petriciolet, A. Functionalized Hydrochar-Based Catalysts for Biodiesel Production via Oil Transesterification: Optimum Preparation Conditions and Performance Assessment. Fuel 2022, 312, 122731. [Google Scholar] [CrossRef]
- Memon, S.S.; Memon, N.; Memon, S.; Lachgar, A.; Memon, A. Batch to Batch Variation Study for Biodiesel Production by Hydrothermal Carbon Catalyst: Preparation, Characterization and Its Application. Mater. Res. Express 2020, 7, 015521. [Google Scholar] [CrossRef]
- Ibrahim, S.F.; Asikin-Mijan, N.; Ibrahim, M.L.; Abdulkareem-Alsultan, G.; Izham, S.M.; Taufiq-Yap, Y.H. Sulfonated Functionalization of Carbon Derived Corncob Residue via Hydrothermal Synthesis Route for Esterification of Palm Fatty Acid Distillate. Energy Convers. Manag. 2020, 210, 112698. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Cai, J.; Wilson, K.; Lee, A.F. Bio/Hydrochar Sorbents for Environmental Remediation. Energy Environ. Mater. 2020, 3, 453–468. [Google Scholar] [CrossRef]
Country | Total Biogas Energy Supply per Capita [GJ/cap] | Supply of Biogas to Natural Gas Supply per Capita [GJ/GJ_NG] |
---|---|---|
Germany | 3.8 | 0.1 |
Denmark | 2.9 | 0.155 |
Finland | 1.4 | 0.089 |
Italy | 1.4 | 0.033 |
Austria | 1 | 0.028 |
Belgium | 0.8 | 0.015 |
Croatia | 0.8 | 0.034 |
Sweden | 0.8 | 0.193 |
Norway | 0.7 | 0.016 |
France | 0.6 | 0.026 |
Switzerland | 0.6 | 0.045 |
Estonia | 0.4 | 0.036 |
Component | Unit | Agricultural Waste |
---|---|---|
CH4 | mol.% | 60–75 |
CO2 | mol.% | 19–33 |
H2S | ppm | 2160–7200 |
NH3 | ppm | 72–144 |
N2 | mol.% | 0–1 |
O2 | mol.% | <0.5 |
H2O | mol.% | <6 |
Thiols | ppmv S | 0.1–10 |
Sulphides | ppmv S | 0–5.5 |
Thiophenes | ppmv S | 0–0.5 |
Feedstock of Hydrochar | Temperature [°C] | Time [h] | C [%] | N [%] | H [%] | S [%] | O [%] | Ash [%] | FC [%] | VM [%] | HHV [MJ/kg] | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sewage sludge and food waste | 280 | 1 | 71.00 | 3.94 | 6.90 | 0 | 11.78 | 6.38 | 31.65 | 61.97 | 31.50 | Zheng et al. [85] |
Brewers’ spent grain | 220 | 16 | 70.92 | 3.83 | 6.70 | 0.15 | 15.50 | 2.90 | 42.80 | 52.24 | 30.95 | de Araújo et al. [86] |
Aqueous phase of bio-oil | 260 | 8 | 75.10 | - | 5.50 | - | 19.40 | - | - | - | 30.20 | Lin et al. [87] |
Coconut waste shell | 220 | 1 | 68.83 | 0.46 | 6.66 | 0 | 24.05 | 0 | 35.54 | 64.46 | 29.39 | Cheng et al. [88] |
Spent coffee grounds | 200 | 1 | 65.45 | 2.61 | 7.12 | - | 24.81 | 0.98 | 29.67 | 69.35 | 27.59 | Afolabi et al. [89] |
Maize straw | 220 | 1 | 56.50 | 0.93 | 5.59 | 0.15 | 33.24 | 3.59 | 21.53 | 74.88 | 22.80 | Wang et al. [90] |
Rape straw and microalgae | 240 | 0.5 | 58.85 | 3.73 | 6.30 | 0.52 | 30.39 | 0.21 | - | - | 22.30 | Liu et al. [91] |
Beet pulp | 220 | 1 | 55.10 | 1.59 | 5.67 | 0.1 | 36.67 | 0.88 | 28.56 | 70.47 | 22.10 | Wilk et al. [92] |
Miscanthus giganteus | 200 | 2 | 54.90 | 0.16 | 5.90 | 0 | 37.3 | 1.75 | 20.18 | 75.82 | 21.10 | Wilk et al. [93] |
Virginia mallow | 200 | 1 | 52.50 | 0.46 | 5.78 | - | 40.21 | 1.05 | 14.42 | 80.19 | 20.91 | Śliz et al. [94] |
Swine manure | 230 | 1 | 39.36 | 1.99 | 4.60 | 0.41 | 16.75 | 36.90 | 14.47 | 48.64 | 16.37 | Lu et al. [95] |
Sewage sludge | 200 | 10 | 33.80 | 2.80 | 3.80 | 1.33 | 5.43 | 52.84 | 6.29 | 40.17 | 14.73 | Wilk [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikusińska, J.; Kuźnia, M.; Czerwińska, K.; Wilk, M. Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process. Energies 2023, 16, 5458. https://doi.org/10.3390/en16145458
Mikusińska J, Kuźnia M, Czerwińska K, Wilk M. Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process. Energies. 2023; 16(14):5458. https://doi.org/10.3390/en16145458
Chicago/Turabian StyleMikusińska, Joanna, Monika Kuźnia, Klaudia Czerwińska, and Małgorzata Wilk. 2023. "Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process" Energies 16, no. 14: 5458. https://doi.org/10.3390/en16145458
APA StyleMikusińska, J., Kuźnia, M., Czerwińska, K., & Wilk, M. (2023). Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process. Energies, 16(14), 5458. https://doi.org/10.3390/en16145458