Controlling Parameters in the Efficiency of Hydrogen Production via Electrification with Multi-Phase Plasma Processing Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental Procedures and Product Analysis
2.3. Design of Experiments
2.4. Plasma Power Calculation
3. Results and Discussion
3.1. Product Selectivity
3.2. Product Yields
3.3. Effect of Different Parameters
3.3.1. Effect of Changing Capacitance
3.3.2. Effect of Changing Power
3.3.3. Effect of Changing Energy per Pulse
3.3.4. Effect of Pulsing Frequency and Breakdown Voltage
3.3.5. Effect of Changing Gas
3.4. Thermodynamics Related to Higher Yield
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Energy Outlook 2021—Analysis—IEA. Available online: https://www.iea.org/reports/world-energy-outlook-2021 (accessed on 6 March 2022).
- National Grid Electricity System Operator. National Grid Future Energy Scenarios 2019; Future Energy Scenarios; National Grid Electricity System Operator: London, UK, 2019. [Google Scholar]
- Mohtasham, J. Review Article-Renewable Energies. Energy Procedia 2015, 74, 1289–1297. [Google Scholar] [CrossRef] [Green Version]
- Beiter, P.; Tian, T. 2015 Renewable Energy Data Book; Barriers to Industrial Energy Efficiency—Report to Congress; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2015; Volume 9. [Google Scholar]
- Dincer, I. Renewable Energy and Sustainable Development: A Crucial Review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Napp, T.A.; Gambhir, A.; Hills, T.P.; Florin, N.; Fennell, P.S. A Review of the Technologies, Economics and Policy Instruments for Decarbonising Energy-Intensive Manufacturing Industries. Renew. Sustain. Energy Rev. 2014, 30, 616–640. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghussain, L. Global Warming: Review on Driving Forces and Mitigation. Environ. Prog. Sustain. Energy 2019, 38, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Sévellec, F.; Drijfhout, S.S. Long-Term Global Warming Trend. Nat. Commun. 2022, 9, 3024. [Google Scholar] [CrossRef]
- Hoppe, T.; de Vries, G. Social Innovation and the Energy Transition. Sustainability 2019, 11, 141. [Google Scholar] [CrossRef] [Green Version]
- Khezri, M.; Heshmati, A.; Khodaei, M. Environmental Implications of Economic Complexity and Its Role in Determining How Renewable Energies Affect CO2 Emissions. Appl. Energy 2022, 306, 117948. [Google Scholar] [CrossRef]
- Rosen, M.A.; Koohi-Fayegh, S. The Prospects for Hydrogen as an Energy Carrier: An Overview of Hydrogen Energy and Hydrogen Energy Systems. Energy Ecol. Environ. 2016, 1, 10–29. [Google Scholar] [CrossRef] [Green Version]
- Kovač, A.; Paranos, M.; Marciuš, D. Hydrogen in Energy Transition: A Review. Int. J. Hydrogen Energy 2021, 46, 10016–10035. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen Production for Energy: An Overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Quarton, C.J.; Samsatli, S. The Value of Hydrogen and Carbon Capture, Storage and Utilisation in Decarbonising Energy: Insights from Integrated Value Chain Optimisation. Appl. Energy 2020, 257, 113936. [Google Scholar] [CrossRef]
- Shinnar, R. The Hydrogen Economy, Fuel Cells, and Electric Cars. Technol. Soc. 2003, 25, 455–476. [Google Scholar] [CrossRef]
- Momirlan, M.; Veziroglu, T.N. The Properties of Hydrogen as Fuel Tomorrow in Sustainable Energy System for a Cleaner Planet. Int. J. Hydrogen Energy 2005, 30, 795–802. [Google Scholar] [CrossRef]
- Elberry, A.M.; Thakur, J.; Santasalo-Aarnio, A.; Larmi, M. Large-Scale Compressed Hydrogen Storage as Part of Renewable Electricity Storage Systems. Int. J. Hydrogen Energy 2021, 46, 15671–15690. [Google Scholar] [CrossRef]
- Liu, W.; Sun, L.; Li, Z.; Fujii, M.; Geng, Y.; Dong, L.; Fujita, T. Trends and Future Challenges in Hydrogen Production and Storage Research. Environ. Sci. Pollut. Res. 2020, 27, 31092–31104. [Google Scholar] [CrossRef]
- Kojima, Y. Hydrogen Storage Materials for Hydrogen and Energy Carriers. Int. J. Hydrogen Energy 2019, 44, 18179–18192. [Google Scholar] [CrossRef]
- Andersson, J.; Grönkvist, S. Large-Scale Storage of Hydrogen. Int. J. Hydrogen Energy 2019, 44, 11901–11919. [Google Scholar] [CrossRef]
- Van Mierlo, J.; Maggetto, G.; Lataire, P. Which Energy Source for Road Transport in the Future? A Comparison of Battery, Hybrid and Fuel Cell Vehicles. Energy Convers. Manag. 2006, 47, 2748–2760. [Google Scholar] [CrossRef]
- European Commission HyWays. The European Hydrogen Roadmap; Directorat; Directorate-General for Research Information and Communication Unit: Dublin, Ireland, 2008. [Google Scholar]
- DOE. National Hydrogen Energy Roadmap; DOE: Washington, DC, USA, 2002. [Google Scholar]
- Holladay, J.D.; Hu, J.; King, D.L.; Wang, Y. An Overview of Hydrogen Production Technologies. Catal. Today 2009, 139, 244–260. [Google Scholar] [CrossRef]
- El-Shafie, M.; Kambara, S.; Hayakawa, Y. Hydrogen Production Technologies Overview. J. Power Energy Eng. 2019, 7, 107–154. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Froment, G.F. Methane Steam Reforming, Methanation and Water-gas Shift: I. Intrinsic Kinetics. AIChE J. 1989, 35, 88–96. [Google Scholar] [CrossRef]
- Rostrup-Nielsen, J.R. Catalytic Steam Reforming. Catal. Sci. Technol. 1984, 5, 1–117. [Google Scholar] [CrossRef]
- Olabi, A.G.; Bahri, A.S.; Abdelghafar, A.A.; Baroutaji, A.; Sayed, E.T.; Alami, A.H.; Rezk, H.; Abdelkareem, M.A. Large-Vscale Hydrogen Production and Storage Technologies: Current Status and Future Directions. Int. J. Hydrogen Energy 2021, 46, 23498–23528. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A Comparative Overview of Hydrogen Production Processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Chen, H.L.; Lee, H.M.; Chen, S.H.; Chao, Y.; Chang, M.B. Review of Plasma Catalysis on Hydrocarbon Reforming for Hydrogen Production-Interaction, Integration, and Prospects. Appl. Catal. B 2008, 85, 1–9. [Google Scholar] [CrossRef]
- Czylkowski, D.; Hrycak, B.; Miotk, R.; Jasiński, M.; Mizeraczyk, J.; Dors, M. Microwave Plasma for Hydrogen Production from Liquids. Nukleonika 2016, 61, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Jasiński, M.; Czylkowski, D.; Hrycak, B.; Dors, M.; Mizeraczyk, J. Atmospheric Pressure Microwave Plasma Source for Hydrogen Production. Int. J. Hydrogen Energy 2013, 38, 11473–11483. [Google Scholar]
- Chen, F.F. Introduction to Plasma Physics and Controlled Fusion; Plenum Press: New York, NY, USA, 2016. [Google Scholar]
- Fridman, A. Plasma Chemistry; Cambridge University Press: Cambridge, UK, 2008; Volume 9780521847353. [Google Scholar]
- Hooshmand, N.; Rahimpour, M.R.; Jahanmiri, A.; Taghvaei, H.; Mohamadzadeh Shirazi, M. Hexadecane Cracking in a Hybrid Catalytic Pulsed Dielectric Barrier Discharge Plasma Reactor. Ind. Eng. Chem. Res. 2013, 52, 4443–4449. [Google Scholar] [CrossRef]
- Wang, B.; Cheng, Y.; Wang, C.; Zou, J. Steam Reforming of Methane in a Gliding Arc Discharge Reactor to Produce Hydrogen and Its Chemical Kinetics Study. Chem. Eng. Sci. 2022, 253, 117560. [Google Scholar] [CrossRef]
- Ulejczyk, B.; Nogal, Ł.; Młotek, M.; Krawczyk, K. Enhanced Production of Hydrogen from Methanol Using Spark Discharge Generated in a Small Portable Reactor. Energy Rep. 2022, 8, 183–191. [Google Scholar] [CrossRef]
- Fan, Z.; Sun, H.; Zhang, S.; Han, W.; Zhang, C.; Yang, Q.; Shao, T. COx-Free Co-Cracking of n-Decane and CH4 to Hydrogen and Acetylene Using Pulsed Spark Plasma. Chem. Eng. J. 2022, 436, 135190. [Google Scholar] [CrossRef]
- Akande, O.; Lee, B.J. Plasma Steam Methane Reforming (PSMR) Using a Microwave Torch for Commercial-Scale Distributed Hydrogen Production. Int. J. Hydrogen Energy 2022, 47, 2874–2884. [Google Scholar] [CrossRef]
- Fulcheri, L.; Rohani, V.J.; Wyse, E.; Hardman, N.; Dames, E. An Energy-Efficient Plasma Methane Pyrolysis Process for High Yields of Carbon Black and Hydrogen. Int. J. Hydrogen Energy 2023, 48, 2920–2928. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, X.; Sun, B.; Li, Z.; Liu, J. Hydrogen Production from Methane via Liquid Phase Microwave Plasma: A Deoxidation Strategy. Appl. Energy 2022, 328, 120200. [Google Scholar] [CrossRef]
- Li, X.S.; Zhu, A.M.; Wang, K.J.; Xu, Y.; Song, Z.M. Methane Conversion to C2 Hydrocarbons and Hydrogen in Atmospheric Non-Thermal Plasmas Generated by Different Electric Discharge Techniques. Catal. Today 2004, 98, 617–624. [Google Scholar] [CrossRef]
- Wang, K.; Hill, A.; Islam, S.; Kraus, J.; Campbell, C.; Stanich, R.; Jemison, H.; Staack, D. CO 2 -Free Conversion of Fossil Fuels by Multiphase Plasma at Ambient Conditions. Fuel 2021, 304, 121469. [Google Scholar] [CrossRef]
- Kunpeng, W.; David, S.; Howard, J.; Islam, B.S.; Charles, M.; Wang, K.; Staack, D.; Jemison, H.; Bhuiyan, S.I.; Martens, C.; et al. Heavy Oil Cracking Device Scaleup with Multiple Electrical Discharge Modules. U.S. Patent 17/048,635, 19 April 2019. [Google Scholar]
- Rathore, K.; Bhuiyan, S.I.S.I.; Slavens, S.M.S.M.; Staack, D. Microplasma Ball Reactor for JP-8 Liquid Hydrocarbon Conversion to Lighter Fuels. Fuel 2021, 285, 118943. [Google Scholar] [CrossRef]
- Wang, K.; Islam, S.; Hil, A.; Kraus, J.; Campbell, C.; Jemison, H.; Staack, D. Electric Fuel Conversion with Hydrogen Production by Multiphase Plasma at Ambient Pressure. Chem. Eng. J. 2021, 433, 133660. [Google Scholar] [CrossRef]
- Wang, K.; Bhuiyan, S.I.; Baky, M.A.H.; Kraus, J.; Campbell, C.; Tang, X.; Jemison, H.; Staack, D. Role of Bubble and Impurity Dynamics in Electrical Breakdown of Dielectric Liquids. Plasma Sources Sci. Technol. 2021, 30, 055013. [Google Scholar] [CrossRef]
- Wang, K.; Bhuiyan, S.I.; Hil Baky, M.A.; Kraus, J.; Campbell, C.; Jemison, H.; Staack, D. Relative Breakdown Voltage and Energy Deposition in the Liquid and Gas Phase of Multiphase Hydrocarbon Plasmas. J. Appl. Phys. 2021, 129, 123301. [Google Scholar] [CrossRef]
- Kang, H.S.; Lee, D.H.; Kim, K.T.; Jo, S.; Pyun, S.; Song, Y.H.; Yu, S. Methane to Acetylene Conversion by Employing Cost-Effective Low-Temperature Arc. Fuel Process. Technol. 2016, 148, 209–216. [Google Scholar] [CrossRef]
- Dinh, D.K.; Lee, D.H.; Song, Y.H.; Jo, S.; Kim, K.T.; Iqbal, M.; Kang, H. Efficient Methane-to-Acetylene Conversion Using Low-Current Arcs. RSC Adv. 2019, 9, 32403–32413. [Google Scholar] [CrossRef] [PubMed]
- Van Surksum, T.L. Fundamental Investigations of Hydrocarbon Plasma Chemistry. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2020. [Google Scholar]
- Maqueo, P.D.G.; Coulombe, S.; Bergthorson, J.M. Energy Efficiency of a Nanosecond Repetitively Pulsed Discharge for Methane Reforming. J. Phys. D Appl. Phys. 2019, 52, 274002. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, S.; Gao, Y.; Huang, B.; Zhang, C.; Shao, T. Non-Oxidative Methane Conversion in Diffuse, Filamentary, and Spark Regimes of Nanosecond Repetitively Pulsed Discharge with Negative Polarity. Plasma Process. Polym. 2019, 16, 1900050. [Google Scholar] [CrossRef]
- Delikonstantis, E.; Scapinello, M.; Van Geenhoven, O.; Stefanidis, G.D. Nanosecond Pulsed Discharge-Driven Non-Oxidative Methane Coupling in a Plate-to-Plate Electrode Configuration Plasma Reactor. Chem. Eng. J. 2020, 380, 122477. [Google Scholar] [CrossRef]
- Gutsol, A.; Rabinovich, A.; Fridman, A. Combustion-Assisted Plasma in Fuel Conversion. J. Phys. D Appl. Phys. 2011, 44, 274001. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, K.T.; Song, Y.H.; Kang, W.S.; Jo, S. Mapping Plasma Chemistry in Hydrocarbon Fuel Processing Processes. Plasma Chem. Plasma Process. 2013, 33, 249–269. [Google Scholar] [CrossRef]
- Rathore, K.; Wakim, D.; Chitre, A.; Staack, D. Glow Discharge Characteristics of Non-Thermal Microplasmas at above Atmospheric Pressure. Plasma Sources Sci. Technol. 2020, 29, 055011. [Google Scholar] [CrossRef]
Carrier Gas | CH4 | Ar | ||||||
---|---|---|---|---|---|---|---|---|
Target power (W) | 0.1 | 1 | 4 | 0.1 | 1 | 4 | ||
Capacitance (pF) | 25 | 100 | 440 | 25 | 100 | 440 | ||
Experiment number | E1 | E3 | E4 | E6 | E8 | E10 | E11 | E14 |
E2 | E5 | E7 | E9 | E12 | E15 | |||
E13 | E16 |
Source | DF | Adj SS | Coefficient | F-Value | p-Value |
---|---|---|---|---|---|
Capacitance | 1 | 81.27 | −0.01257 | 3.76 | 0.073 |
Voltage | 1 | 0.000046 | NS* | 1.9 | 0.19 |
Frequency | 1 | 0.000047 | NS* | 1.95 | 0.184 |
Energy per pulse | 1 | 79.93 | −0.0218 | 3.58 | 0.079 |
Power | 1 | 81.70 | −1.248 | 3.79 | 0.072 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhuiyan, S.I.; Wang, K.; Baky, M.A.H.; Kraus, J.; Jemison, H.; Staack, D. Controlling Parameters in the Efficiency of Hydrogen Production via Electrification with Multi-Phase Plasma Processing Technology. Energies 2023, 16, 5509. https://doi.org/10.3390/en16145509
Bhuiyan SI, Wang K, Baky MAH, Kraus J, Jemison H, Staack D. Controlling Parameters in the Efficiency of Hydrogen Production via Electrification with Multi-Phase Plasma Processing Technology. Energies. 2023; 16(14):5509. https://doi.org/10.3390/en16145509
Chicago/Turabian StyleBhuiyan, Shariful Islam, Kunpeng Wang, Md Abdullah Hil Baky, Jamie Kraus, Howard Jemison, and David Staack. 2023. "Controlling Parameters in the Efficiency of Hydrogen Production via Electrification with Multi-Phase Plasma Processing Technology" Energies 16, no. 14: 5509. https://doi.org/10.3390/en16145509
APA StyleBhuiyan, S. I., Wang, K., Baky, M. A. H., Kraus, J., Jemison, H., & Staack, D. (2023). Controlling Parameters in the Efficiency of Hydrogen Production via Electrification with Multi-Phase Plasma Processing Technology. Energies, 16(14), 5509. https://doi.org/10.3390/en16145509