Recent Trends in Real-Time Photovoltaic Prediction Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Study Selection
2.3. Data Analysis
3. Results
3.1. Forecasting Horizon
3.2. Field and Models
3.3. Prediction Objective
3.4. Input Parameters
3.5. Purpose of the System
3.6. Time Discretization
3.7. Hardware
3.8. Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuo, W.-C.; Chen, C.-H.; Hua, S.-H.; Wang, C.-C. Assessment of Different Deep Learning Methods of Power Generation Forecasting for Solar PV System. Appl. Sci. 2022, 12, 7529. [Google Scholar] [CrossRef]
- Alexakos, A.; Amaxilatis, D.; Zaroliagis, C. Photovoltaic Energy Production Forecasting and Operational Analytics: A Real-World Study. In Proceedings of the 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and Other Affiliated Events (PerCom Workshops), Pisa, Italy, 21–25 March 2022; pp. 439–444. [Google Scholar]
- Dimovski, A.; Moncecchi, M.; Falabretti, D.; Merlo, M. PV Forecast for the Optimal Operation of the Medium Voltage Distribution Network: A Real-Life Implementation on a Large Scale Pilot. Energies 2020, 13, 5330. [Google Scholar] [CrossRef]
- Munshi, A. Short-Term Prediction of Photovoltaic Output Power for Grid Integration. Int. J. Comput. Sci. Netw. Secur. 2022, 22, 764–768. [Google Scholar] [CrossRef]
- Stüber, M.; Scherhag, F.; Deru, M.; Ndiaye, A.; Sakha, M.M.; Brandherm, B.; Baus, J.; Frey, G. Forecast Quality of Physics-Based and Data-Driven PV Performance Models for a Small-Scale PV System. Front. Energy Res. 2021, 9, 639346. [Google Scholar] [CrossRef]
- Schreiber, J.; Sick, B. Multi-Task Autoencoders and Transfer Learning for Day-Ahead Wind and Photovoltaic Power Forecasts. Energies 2022, 15, 8062. [Google Scholar] [CrossRef]
- Salamanis, A.I.; Xanthopoulou, G.; Bezas, N.; Timplalexis, C.; Bintoudi, A.D.; Zyglakis, L.; Tsolakis, A.C.; Ioannidis, D.; Kehagias, D.; Tzovaras, D. Benchmark Comparison of Analytical, Data-Based and Hybrid Models for Multi-Step Short-Term Photovoltaic Power Generation Forecasting. Energies 2020, 13, 5978. [Google Scholar] [CrossRef]
- Rodríguez-Benítez, F.J.; Arbizu-Barrena, C.; Huertas-Tato, J.; Aler-Mur, R.; Galván-León, I.; Pozo-Vázquez, D. A Short-Term Solar Radiation Forecasting System for the Iberian Peninsula. Part 1: Models Description and Performance Assessment. Sol. Energy 2020, 195, 396–412. [Google Scholar] [CrossRef]
- Kaiser, R.; Maravall, A. ARIMA Models and Signal Extraction. In Measuring Business Cycles in Economic Time Series; Lecture Notes in Statistics; Springer: New York, NY, USA, 2001; Volume 154, pp. 31–67. ISBN 978-0-387-95112-6. [Google Scholar]
- Farah, S.; Boland, J. Time Series Model for Real-Time Forecasting of Australian Photovoltaic Solar Farms Power Output. J. Renew. Sustain. Energy 2021, 13, 046102. [Google Scholar] [CrossRef]
- Polimeni, S.; Nespoli, A.; Leva, S.; Valenti, G.; Manzolini, G. Implementation of Different PV Forecast Approaches in a MultiGood MicroGrid: Modeling and Experimental Results. Processes 2021, 9, 323. [Google Scholar] [CrossRef]
- Almaghrabi, S.; Rana, M.; Hamilton, M.; Rahaman, M.S. Solar Power Time Series Forecasting Utilising Wavelet Coefficients. Neurocomputing 2022, 508, 182–207. [Google Scholar] [CrossRef]
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed.; O’Reilly Media, Inc.: Beijing, China; Sebastopol, CA, USA, 2019; ISBN 978-1-4920-3264-9. [Google Scholar]
- Perera, M.; De Hoog, J.; Bandara, K.; Halgamuge, S. Multi-Resolution, Multi-Horizon Distributed Solar PV Power Forecasting with Forecast Combinations. Expert Syst. Appl. 2022, 205, 117690. [Google Scholar] [CrossRef]
- Mubarak, H.; Hammoudeh, A.; Ahmad, S.; Abdellatif, A.; Mekhilef, S.; Mokhlis, H.; Dupont, S. A Hybrid Machine Learning Method with Explicit Time Encoding for Improved Malaysian Photovoltaic Power Prediction. J. Clean. Prod. 2023, 382, 134979. [Google Scholar] [CrossRef]
- Deep Learning. Available online: https://www.deeplearningbook.org/ (accessed on 7 June 2023).
- Kumar, P.M.; Saravanakumar, R.; Karthick, A.; Mohanavel, V. Artificial Neural Network-Based Output Power Prediction of Grid-Connected Semitransparent Photovoltaic System. Environ. Sci. Pollut. Res. 2022, 29, 10173–10182. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.K.; Park, N. Deep RNN-Based Photovoltaic Power Short-Term Forecast Using Power IoT Sensors. Energies 2021, 14, 436. [Google Scholar] [CrossRef]
- Raj, V.; Dotse, S.-Q.; Sathyajith, M.; Petra, M.I.; Yassin, H. Ensemble Machine Learning for Predicting the Power Output from Different Solar Photovoltaic Systems. Energies 2023, 16, 671. [Google Scholar] [CrossRef]
- Document Search—Web of Science Core Collection. Available online: https://www.webofscience.com/wos/woscc/basic-search (accessed on 10 July 2023).
- Aljanad, A.; Tan, N.M.L.; Agelidis, V.G.; Shareef, H. Neural Network Approach for Global Solar Irradiance Prediction at Extremely Short-Time-Intervals Using Particle Swarm Optimization Algorithm. Energies 2021, 14, 1213. [Google Scholar] [CrossRef]
- Almaghrabi, S.; Rana, M.; Hamilton, M.; Rahaman, M.S. Spatially Aggregated Photovoltaic Power Prediction Using Wavelet and Convolutional Neural Networks. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8. [Google Scholar]
- Anand, P.; Mohana Sundaram, K. FPGA Based Substantial Power Evolution Controlling Strategy for Solar and Wind Forecasting Grid Connected System. Microprocess. Microsyst. 2020, 74, 103001. [Google Scholar] [CrossRef]
- Bozorg, M.; Bracale, A.; Caramia, P.; Carpinelli, G.; Carpita, M.; De Falco, P. Bayesian Bootstrap Quantile Regression for Probabilistic Photovoltaic Power Forecasting. Prot. Control. Mod. Power Syst. 2020, 5, 21. [Google Scholar] [CrossRef]
- Bozorg, M.; Bracale, A.; Carpita, M.; De Falco, P.; Mottola, F.; Proto, D. Bayesian Bootstrapping in Real-Time Probabilistic Photovoltaic Power Forecasting. Sol. Energy 2021, 225, 577–590. [Google Scholar] [CrossRef]
- Bozorg, M.; Carpita, M.; De Falco, P.; Lauria, D.; Mottola, F.; Proto, D. A Derivative-Persistence Method for Real Time Photovoltaic Power Forecasting. In Proceedings of the 2020 International Conference on Smart Grids and Energy Systems (SGES), Perth, Australia, 23–26 November 2020; pp. 843–847. [Google Scholar]
- Cannizzaro, D.; Aliberti, A.; Bottaccioli, L.; Macii, E.; Acquaviva, A.; Patti, E. Solar Radiation Forecasting Based on Convolutional Neural Network and Ensemble Learning. Expert Syst. Appl. 2021, 181, 115167. [Google Scholar] [CrossRef]
- Carriere, T.; Vernay, C.; Pitaval, S.; Kariniotakis, G. A Novel Approach for Seamless Probabilistic Photovoltaic Power Forecasting Covering Multiple Time Frames. IEEE Trans. Smart Grid 2020, 11, 2281. [Google Scholar] [CrossRef] [Green Version]
- Cordeiro-Costas, M.; Villanueva, D.; Eguía-Oller, P.; Granada-Álvarez, E. Machine Learning and Deep Learning Models Applied to Photovoltaic Production Forecasting. Appl. Sci. 2022, 12, 8769. [Google Scholar] [CrossRef]
- Dong, J.; Olama, M.M.; Kuruganti, T.; Melin, A.M.; Djouadi, S.M.; Zhang, Y.; Xue, Y. Novel Stochastic Methods to Predict Short-Term Solar Radiation and Photovoltaic Power. Renew. Energy 2020, 145, 333–346. [Google Scholar] [CrossRef]
- Duman Altan, A.; DiKen, B.; KayiŞoğlu, B. Prediction of Photovoltaic Panel Power Outputs Using Time Series and Artificial Neural Network Methods. Tekirdağ Ziraat Fakültesi Derg. 2021, 18, 457–469. [Google Scholar] [CrossRef]
- Gao, B.; Huang, X.; Shi, J.; Tai, Y.; Zhang, J. Hourly Forecasting of Solar Irradiance Based on CEEMDAN and Multi-Strategy CNN-LSTM Neural Networks. Renew. Energy 2020, 162, 1665–1683. [Google Scholar] [CrossRef]
- Ghimire, S.; Nguyen-Huy, T.; Prasad, R.; Deo, R.C.; Casillas-Pérez, D.; Salcedo-Sanz, S.; Bhandari, B. Hybrid Convolutional Neural Network-Multilayer Perceptron Model for Solar Radiation Prediction. Cogn. Comput. 2023, 15, 645–671. [Google Scholar] [CrossRef]
- Goh, S.M.; Kow, K.W.; Tan, M.; Rajkumar, R.; Wong, Y.W. Hardware Implementation of an Active Learning Self-Organizing Neural Network to Predict the Power Fluctuation Events of a Photovoltaic Grid-Tied System. Microprocess. Microsyst. 2022, 90, 104448. [Google Scholar] [CrossRef]
- Haupt, S.E.; McCandless, T.C.; Dettling, S.; Alessandrini, S.; Lee, J.A.; Linden, S.; Petzke, W.; Brummet, T.; Nguyen, N.; Kosović, B.; et al. Combining Artificial Intelligence with Physics-Based Methods for Probabilistic Renewable Energy Forecasting. Energies 2020, 13, 1979. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, M.; Katragadda, S.; Wojtkiewicz, J.; Gottumukkala, R.; Maida, A.; Chambers, T.L. Direct Normal Irradiance Forecasting Using Multivariate Gated Recurrent Units. Energies 2020, 13, 3914. [Google Scholar] [CrossRef]
- Huertas-Tato, J.; Aler, R.; Galván, I.M.; Rodríguez-Benítez, F.J.; Arbizu-Barrena, C.; Pozo-Vázquez, D. A Short-Term Solar Radiation Forecasting System for the Iberian Peninsula. Part 2: Model Blending Approaches Based on Machine Learning. Sol. Energy 2020, 195, 685–696. [Google Scholar] [CrossRef]
- Khortsriwong, N.; Boonraksa, P.; Boonraksa, T.; Fangsuwannarak, T.; Boonsrirat, A.; Pinthurat, W.; Marungsri, B. Performance of Deep Learning Techniques for Forecasting PV Power Generation: A Case Study on a 1.5 MWp Floating PV Power Plant. Energies 2023, 16, 2119. [Google Scholar] [CrossRef]
- Kumari, P.; Toshniwal, D. Extreme Gradient Boosting and Deep Neural Network Based Ensemble Learning Approach to Forecast Hourly Solar Irradiance. J. Clean. Prod. 2021, 279, 123285. [Google Scholar] [CrossRef]
- Kumari, P.; Toshniwal, D. Long Short Term Memory–Convolutional Neural Network Based Deep Hybrid Approach for Solar Irradiance Forecasting. Appl. Energy 2021, 295, 117061. [Google Scholar] [CrossRef]
- Lauria, D.; Mottola, F.; Proto, D. Caputo Derivative Applied to Very Short Time Photovoltaic Power Forecasting. Appl. Energy 2022, 309, 118452. [Google Scholar] [CrossRef]
- Lee, J.; Wang, W.; Harrou, F.; Sun, Y. Reliable Solar Irradiance Prediction Using Ensemble Learning-Based Models: A Comparative Study. Energy Convers. Manag. 2020, 208, 112582. [Google Scholar] [CrossRef] [Green Version]
- Leva, S.; Nespoli, A.; Pretto, S.; Mussetta, M.; Ogliari, E.G.C. PV Plant Power Nowcasting: A Real Case Comparative Study With an Open Access Dataset. IEEE Access 2020, 8, 194428–194440. [Google Scholar] [CrossRef]
- Mehazzem, F.; André, M.; Calif, R. Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region. Energies 2022, 15, 8671. [Google Scholar] [CrossRef]
- Nkounga, W.M.; Ndiaye, M.F.; Cisse, O.; Bop, M.; Grandvaux, F.; Ndiaye, M.L.; Tabourot, L. Short-Term Multi Horizons Forecasting of Solar Irradiation Based on Artificial Neural Network with Meteorological Data: Application in the North-West of Senegal. In Proceedings of the 2021 Sixteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 5–7 May 2021; p. 1. [Google Scholar]
- Oprea, S.-V.; Bâra, A. Ultra-Short-Term Forecasting for Photovoltaic Power Plants and Real-Time Key Performance Indicators Analysis with Big Data Solutions. Two Case Studies—PV Agigea and PV Giurgiu Located in Romania. Comput. Ind. 2020, 120, 103230. [Google Scholar] [CrossRef]
- Pahmi, M.Z.B.A.H.; Ayob, A.; Ansari, S.; Saad, M.H.M.; Hussain, A. Artificial Neural Network Based Forecasting of Power Under Real Time Monitoring Environment. In Proceedings of the 2021 IEEE International Conference on Sensors and Nanotechnology (SENNANO), Port Dickson, Malaysia, 22–24 September 2021; pp. 122–125. [Google Scholar]
- Pattanaik, D.; Mishra, S.; Khuntia, G.P.; Dash, R.; Swain, S.C. An Innovative Learning Approach for Solar Power Forecasting Using Genetic Algorithm and Artificial Neural Network. Open Eng. 2020, 10, 630–641. [Google Scholar] [CrossRef]
- Puah, B.K.; Chong, L.W.; Wong, Y.W.; Begam, K.M.; Khan, N.; Juman, M.A.; Rajkumar, R.K. A Regression Unsupervised Incremental Learning Algorithm for Solar Irradiance Prediction. Renew. Energy 2021, 164, 908–925. [Google Scholar] [CrossRef]
- Rafati, A.; Joorabian, M.; Mashhour, E.; Shaker, H.R. High Dimensional Very Short-Term Solar Power Forecasting Based on a Data-Driven Heuristic Method. Energy 2021, 219, 119647. [Google Scholar] [CrossRef]
- Rai, A.; Shrivastava, A.; Jana, K.C. Differential Attention Net: Multi-Directed Differential Attention Based Hybrid Deep Learning Model for Solar Power Forecasting. Energy 2023, 263, 125746. [Google Scholar] [CrossRef]
- Rosato, A.; Araneo, R.; Andreotti, A.; Succetti, F.; Panella, M. 2-D Convolutional Deep Neural Network for the Multivariate Prediction of Photovoltaic Time Series. Energies 2021, 14, 2392. [Google Scholar] [CrossRef]
- Shboul, B.; AL-Arfi, I.; Michailos, S.; Ingham, D.; Ma, L.; Hughes, K.J.; Pourkashanian, M. A New ANN Model for Hourly Solar Radiation and Wind Speed Prediction: A Case Study over the North & South of the Arabian Peninsula. Sustain. Energy Technol. Assess. 2021, 46, 101248. [Google Scholar] [CrossRef]
- Simeunović, J.; Schubnel, B.; Alet, P.-J.; Carrillo, R.E. Spatio-Temporal Graph Neural Networks for Multi-Site PV Power Forecasting. IEEE Trans. Sustain. Energy 2022, 13, 1210–1220. [Google Scholar] [CrossRef]
- Simeunović, J.; Schubnel, B.; Alet, P.-J.; Carrillo, R.E.; Frossard, P. Interpretable Temporal-Spatial Graph Attention Network for Multi-Site PV Power Forecasting. Appl. Energy 2022, 327, 120127. [Google Scholar] [CrossRef]
- Solano, E.S.; Dehghanian, P.; Affonso, C.M. Solar Radiation Forecasting Using Machine Learning and Ensemble Feature Selection. Energies 2022, 15, 7049. [Google Scholar] [CrossRef]
- Succetti, F.; Rosato, A.; Araneo, R.; Panella, M. Deep Neural Networks for Multivariate Prediction of Photovoltaic Power Time Series. IEEE Access 2020, 8, 211490–211505. [Google Scholar] [CrossRef]
- Theocharides, S.; Theristis, M.; Makrides, G.; Kynigos, M.; Spanias, C.; Georghiou, G.E. Comparative Analysis of Machine Learning Models for Day-Ahead Photovoltaic Power Production Forecasting. Energies 2021, 14, 1081. [Google Scholar] [CrossRef]
- Theocharides, S.; Makrides, G.; Livera, A.; Theristis, M.; Kaimakis, P.; Georghiou, G.E. Day-Ahead Photovoltaic Power Production Forecasting Methodology Based on Machine Learning and Statistical Post-Processing. Appl. Energy 2020, 268, 115023. [Google Scholar] [CrossRef]
- Theocharides, S.; Makrides, G.; Theristis, M.; Georghiou, G.E. Novel Intraday Photovoltaic Production Forecasting Algorithm Using Deep Learning Ensemble Models; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2021. [Google Scholar]
- Tovar, M.; Robles, M.; Rashid, F. PV Power Prediction, Using CNN-LSTM Hybrid Neural Network Model. Case of Study: Temixco-Morelos, México. Energies 2020, 13, 6512. [Google Scholar] [CrossRef]
- Wai, R.-J.; Lai, P.-X. Design of Intelligent Solar PV Power Generation Forecasting Mechanism Combined with Weather Information under Lack of Real-Time Power Generation Data. Energies 2022, 15, 3838. [Google Scholar] [CrossRef]
- Walch, A.; Castello, R.; Mohajeri, N.; Scartezzini, J.-L. Big Data Mining for the Estimation of Hourly Rooftop Photovoltaic Potential and Its Uncertainty. Appl. Energy 2020, 262, 114404. [Google Scholar] [CrossRef]
- Wang, H.; Cai, R.; Zhou, B.; Aziz, S.; Qin, B.; Voropai, N.; Gan, L.; Barakhtenko, E. Solar Irradiance Forecasting Based on Direct Explainable Neural Network. Energy Convers. Manag. 2020, 226, 113487. [Google Scholar] [CrossRef]
- Zang, H.; Liu, L.; Sun, L.; Cheng, L.; Wei, Z.; Sun, G. Short-Term Global Horizontal Irradiance Forecasting Based on a Hybrid CNN-LSTM Model with Spatiotemporal Correlations. Renew. Energy 2020, 160, 26–41. [Google Scholar] [CrossRef]
- Zjavka, L. Solar and Wind Quantity 24 h—Series Prediction Using PDE-Modular Models Gradually Developed According to Spatial Pattern Similarity. Energies 2023, 16, 1085. [Google Scholar] [CrossRef]
Article | Year | Field | Model | Horizon | Prediction | Parameters | Time Division | Metrics |
---|---|---|---|---|---|---|---|---|
Ahn et al. [18] | 2021 | DL | LSTM | 5′–3 h | Power | Ir, temp, w.speed, humidity | 5′, 30′ | nRMSE, nMAE |
Aljanad et al. [21] | 2021 | DL | ANN | 1 d, 3 d | Irradiance | Temp, w.speed, w.dir, humidity, pressure | 5 s, 1′ | RMSE, MAE, MAPE, MSE |
Almaghrabi et al. [22] | 2021 | DL | CNN | 1 d | Power | Power | 30′ | RMSE, MAE, MRE |
Almaghrabi et al. [12] | 2022 | ST | Wavelet transform | 24 h | Power | Power | 30′ | RMSE, MAE, MRE, RAE, RRSE, R2 |
Anand et al. [23] | 2020 | ST | SPES | 1 h | Power | Ir, w.speed | 1 h | RMSE, MAE |
Bozorg et al. [24] | 2020 | ST | Bootstrapping | 24 h | Power | Ir, temp, pressure, cloud cover, precipitation | 1 h | NPS, AACE |
Bozorg et al. [25] | 2021 | ST | Bootstrapping | 1 h | Power | Ir, temp, pressure, cloud cover, precipitation | 1 h | NPS, AACE |
Bozorg et al. [26] | 2020 | ST | Persistence | 10′ | Power | Power | 10′ | RMSE, MAE, nMAPE, MdAPE |
Cannizzaro et al. [27] | 2021 | ML, DL, EN | CNN, RF, LSTM | 15′–24 h | Irradiance | Ir, temp, w.speed, humidity, pressure, cloud cover | 15′ | RMSE, MAE, nRMSE, R2 |
Carriere et al. [28] | 2020 | ML | Analog Ensemble | 30′–36 h | Power | NWP variables, satellite images | 30′ | RMSE, CRPS |
Cordeiro-Costas et al. [29] | 2022 | ML, DL | RF, XGB, SVR, ANN, RNN, CNN | 1 h | Power | Ir | 1 h | nRMSE, nMBE, R2 |
Dimovski et al. [3] | 2020 | ST, ML, DL | Persistence, MLR, SVM, DT, RF, ANN | 1–72 h | Power | Ir, temp, precipitation, w.speed | 1 h | nRMSE, nMAE, nMBE |
Dong et al. [30] | 2019 | ST | Uncertain basis functions, stochastic model | 1′–50′ | Irradiance, Power | Irradiance, Power | 1′, 5′, 50′ | nRMSE, MAPE |
Duman Altan et al. [31] | 2021 | ST, DL | SARIMA, ANN | - | Power | Ir, temp, w.speed, angle | 1 h | MAPE, R2 |
Farah et al. [10] | 2021 | ST | Fourier series, ARMA | 7′ | Power | Power | 1′ | nRMSE, nMAE |
Gao et al. [32] | 2020 | DL | CNN, LSTM | 1 h | Irradiance | Irradiance | 1′ | nRMSE, RMSE, MAE, FS |
Ghimire et al. [33] | 2022 | DL | CNN, MLP | 1 d | Irradiance | Temp, humidity, precipitation, vapor pressure | 1 d | RMSE, MAE, MBE, rRMSE, MAPE, SS |
Goh et al. [34] | 2022 | DL | ANN | - | Power | Ir, temp | 30″ | RMSE, MAE, R2 |
Haupt et al. [35] | 2020 | HY, EN | NWP, ANN, RF | 15′–345′ | Irradiance | NWP | 15′ | RMSE |
Hosseini et al. [36] | 2020 | DL | GRU | 15′–3 h | Irradiance | Ir, temp, w.speed, w.dir, humidity, zenith angle, cloud coverage | 1 h | RMSE, MAPE |
Huertas-Tato et al. [37] | 2019 | ML, EN | SVM, smart persistence, Satellite, NWP | 15′–6 h | Irradiance | Irradiance | 15′ | RMSE, rRMSE, rMAE, BIAS |
Khortsriwong et al. [38] | 2023 | DL | RNN, CNN, LSTM, GRU | 1 d, 1 w | Power | Ir, temp, w.speed | 5′ | RMSE, MAE, MAPE |
Kumar et al. [17] | 2021 | DL | ANN, RNN | 1 h, 1 d, 1 w | Power | Ir, temp, w.speed | 1 h | RMSE, MSE, MAPE, R2 |
Kumari et al. [39] | 2020 | EN, DL | XGBF-DNN | 1 h | Irradiance | Ir, temp, w.speed, humidity | 1 h | RMSE, MBE |
Kumari et al. [40] | 2021 | DL | CNN, LSTM | 1 h | Irradiance | Temp, w.speed, humidity, pressure, cloud cover, precipitation, zenith angle, dew point, cloud type | 1 h | RMSE, MAE, R |
Lauria et al. [41] | 2022 | ST | Caputo derivative | 1′–10′ | Power | Power | 1′, 5′, 10′ | RMSE, MAE, nMAPE, rRMSE |
Lee et al. [42] | 2020 | ML, EN | Boosting, bagging, RF | 1 h | Irradiance | Temp, w.speed, humidity, cloud cover, dew point temp | 1 h | RMSE, MAPE, R2 |
Leva et al. [43] | 2020 | DL, ST | ANN, persistence, PHANN (hybrid) | 30′–24 h | Power | Ir, temp, humidity, w.speed, w.dir, | 1′, 1 h | nRMSE, NMAE, WMAE, EMAE, OMAE |
Mehazzem et al. [44] | 2022 | ST | STVAR | 1′ | Irradiance | Irradiance | 1′ | rRMSE, rMAE, rMBE |
Mubarak et al. [15] | 2022 | ML, EN | LASSO, RF | 1 h | Power | Ir, temp, w.speed | 1 h | RMSE, MSE, MAE, R2 |
Munshi [4] | 2022 | ST | Statistical | 30′–120′ | Power | Ir, temp | 10′ | RMSE, MAE |
Nkounga et al. [45] | 2021 | DL | ANN | 30′–6 h | Irradiance | Ir, temp, humidity, pressure | 10′ | nRMSE, RMSE, R |
Oprea et al. [46] | 2020 | DL | ANN | 30′ | Power | Ir, temp, w.speed, w.dir, humidity, dew point temp | 10′ | PELI, PPLI |
Pahmi et al. [47] | 2021 | DL | ANN | - | Power | Ir, temp, humidity, voltage, current | - | RMSE, R2 |
Pattanaik et al. [48] | 2020 | DL | ANN | 1 m | Power | Ir, temp | 1 m | MS, SS |
Perera et al. [14] | 2022 | ML, ST, EN | Persistence, ARIMA, SVR, MLR | 5′–3 d | Power | Power | 1′, 5′, 1 h, 1 d | MASE |
Polimeni et al. [11] | 2021 | DL, ST | Persistence, ANN | 30′–24 h | Power | Power | 1′, 1 h | nRMSE, NMAE |
Puah et al. [49] | 2020 | DL | ANN | 1 h | Irradiance | Irradiance | 1′ | RMSE, MASE |
Rafati et al. [50] | 2020 | DL | MLP | 15′ | Power | Power | 15′ | RMSE, MAE, MRE |
Rai et al. [51] | 2022 | DL | CNN, LSTM, attention | 5′ | Power | Ir, temp, w.speed, w.dir, pressure | 5′ | MSE, MAE |
Raj et al. [19] | 2023 | ML, EN | RF, GBM | 1′ | Power | Ir, temp, w.speed, humidity | 1′ | nRMSE, RMSE, MAE, R2 |
Rodríguez-Benítez et al. [8] | 2019 | ST, PH, HY | Smart persistence, Satellite, NWP | 15′–6 h | Irradiance | Irradiance | 1′ | RMSE, rRMSE, rMAE, BIAS |
Rosato et al. [52] | 2021 | DL | CNN, LSTM | 3 d, 1 w | Power | Temp, w.speed, w.dir, humidity, pressure, turbulence | 1 h | RMSE |
Salamanis et al. [7] | 2020 | PH, ST, ML, DL, HY | Physical, persistence, ARIMA, SVR, GBT, ANN, LSTM, hybrid | 15′–180′ | Power | Temp, w.speed, cloud cover | 15′ | RMSE, MAE, MAPE, WRSE |
Schreiber et al. [6] | 2022 | DL | Autoencoder, CNN | 24 h | Power | NWP variables | 1 h | nRMSE, RMSE |
Shboul et al. [53] | 2021 | DL | ANN | 1 h | Irradiance | Angle, cloud cover | 1 h | MAPE, R |
Simeunovic et al. [54] | 2021 | DL | LSTM, transformer, ANN | 6 h | Power | NWP variables | 15′ | nRMSE, nMAE |
Simeunovic et al. [55] | 2022 | DL | ANN | 4–6 h | Power | Power | 15′ | nRMSE, nMAE |
Solano et al. [56] | 2022 | ML, EN | SVR, XGBT, CatBoost, ensemble | 1–3 h | Irradiance | Ir, w.speed, dry bulb temp, pressure, humidity | 1 h | RMSE, MAE, MAPE |
Stüber et al. [5] | 2021 | ML, DL, PH, EN | FFNN, LSTM, RF, physical, ensemble | 1 d | Power | Ir, temp, w.speed | 1 h | s, mm |
Succetti et al. [57] | 2020 | DL | LSTM, CNN | 1–3 d | Power | Ir, Temp, w.speed | 1 h | MAE |
Theocharides et al. [58] | 2021 | DL, ML | Bayesian NN, SVR, RT | 1 d | Power | Ir, temp, pressure, NWP | 1 h | nRMSE, MAPE, RMSE, nMBE, SS |
Theocharides et al. [59] | 2020 | DL | ANN | 1 d | Power | Ir, temp, w.speed, w.dir, humidity | 1 h | nRMSE, MAPE, SS |
Theocharides et al. [60] | 2021 | DL, EN | Bayesian NN | 1–5 h | Power | Ir, temp, angle | 1 h | nRMSE, MAPE |
Tovar et al. [61] | 2020 | DL | CNN, LSTM | 10′–180′ | Power | Ir, temp, w.speed, humidity, pressure | 10′ | RMSE, MAE, MSE |
Wai et al. [62] | 2022 | DL | LSTM | 4 h | Power | Ir, temp | 1 h | nRMSE, nMAE |
Walch et al. [63] | 2020 | ML, PH, EN | RF, ELM-E, physical | 1 h | Power | Ir, temp, albedo | 1 h | MSE |
Wang et al. [64] | 2020 | DL | ANN (DXNN) | 1′–90′ | Irradiance | Ir, temp, w.speed, w.dir, humidity, sun altitude | 1′–90′ | MAE, RMSE, R2 |
Zang et al. [65] | 2020 | DL | CNN, LSTM | 1 h | Irradiance | Temp, w.speed, w.dir, humidity, precipitation, zenith angle, dew point temp | 1 h | nRMSE, RMSE, nMAE, MAE, R |
Zjavka [66] | 2023 | DL | Differential NN | 24 h | Irradiance | Ir, w.speed | 30′ | RMSE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallardo, I.; Amor, D.; Gutiérrez, Á. Recent Trends in Real-Time Photovoltaic Prediction Systems. Energies 2023, 16, 5693. https://doi.org/10.3390/en16155693
Gallardo I, Amor D, Gutiérrez Á. Recent Trends in Real-Time Photovoltaic Prediction Systems. Energies. 2023; 16(15):5693. https://doi.org/10.3390/en16155693
Chicago/Turabian StyleGallardo, Isaac, Daniel Amor, and Álvaro Gutiérrez. 2023. "Recent Trends in Real-Time Photovoltaic Prediction Systems" Energies 16, no. 15: 5693. https://doi.org/10.3390/en16155693
APA StyleGallardo, I., Amor, D., & Gutiérrez, Á. (2023). Recent Trends in Real-Time Photovoltaic Prediction Systems. Energies, 16(15), 5693. https://doi.org/10.3390/en16155693