Evaluation of Multi-Utility Models with Municipal Solid Waste Combustion as the Primary Source under Specific Geographical and Operating Conditions
Abstract
:1. Introduction
2. Component Specifications and Operation
2.1. Fluidized Bed Combustion (FBC) System
2.2. VAR System
2.3. MED System
3. Methods and Criteria
3.1. Energy and Exergy Analysis
- FBC operation at different pressures
- VAR for single effect and double effect
- MED for 3 stage and 5 stage
3.2. Operation of MSW Boiler
3.3. MSW Generation Rate and Its Components
3.4. Variants within the Three Models
- Variant A: Single effect VAR+3 effect MED
- Variant B: Single effect VAR + 5 effect MED
- Variant C: Double effect VAR + 3 effect MED
- Variant D: Double effect VAR + 5 effect MED
4. Results and Discussion
Different Climate Zones-Implementation Case Study of the Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khourchid, A.M.; Al-Ansari, T.A.; Al-Ghamdi, S.G. Cooling Energy and Climate Change Nexus in Arid Climate and the Role of Energy Transition. Buildings 2023, 13, 836. [Google Scholar] [CrossRef]
- Rambo, K.A.; Warsinger, D.M.; Shanbhogue, S.J.; Ghoniem, A.F. Water-energy nexus in Saudi Arabia. Energy Procedia 2017, 105, 3837–3843. [Google Scholar] [CrossRef] [Green Version]
- Albaik, I.; Al-Dadah, R.; Mahmoud, S.; Almesfer, M.K.; Ismail, M.A.; Elsayed, E.; Saleh, M. A comparison between the packed and coated finned tube for adsorption system using aluminium fumarate: Numerical study. Therm. Sci. Eng. Prog. 2021, 22, 100859. [Google Scholar] [CrossRef]
- Dajnak, D.; Lockwood, F. Use of thermal energy from waste for seawater desalination. Desalination 2000, 130, 137–146. [Google Scholar] [CrossRef]
- Udomsri, S.; Martin, A.R.; Martin, V. Thermally driven cooling coupled with municipal solid waste-fired power plant: Application of combined heat, cooling and power in tropical urban areas. Appl. Energy 2011, 88, 1532–1542. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Preto, F.; Zhu, J.; Xu, C. Ash Deposition in Biomass Combustion or Co-Firing for Power/Heat Generation. Energies 2012, 5, 5171–5189. [Google Scholar] [CrossRef]
- Bolhàr-Nordenkampf, M.; Nummelin, T.; Luomaharju, T.; Viljanen, J. Operating Experience from the Worlds Largest Waste Fired Circulating Fluidized Bed Reactor in Västerås. Waste Manag. 2015, 5, 168–178. [Google Scholar]
- Fitzgerald, G. Pre-processing and treatment of municipal solid waste (MSW) prior to incineration. In Waste to Energy Conversion Technology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 55–71. [Google Scholar]
- Available online: https://www.veoliawatertechnologies.com/en/technologies/multiple-effect-distillation-med (accessed on 10 June 2023).
- Nubi, O.; Morse, S.; Murphy, R.J. Prospective Life Cycle Costing of Electricity Generation from Municipal Solid Waste in Nigeria. Sustainability 2022, 14, 13293. [Google Scholar] [CrossRef]
- Tozlu, A.; Abusoglu, A.; Ozahi, E.; Anvari-Moghaddam, A. Municipal solid waste-based district heating and electricity production: A case study. J. Clean. Prod. 2021, 297, 126495. [Google Scholar] [CrossRef]
- Fabricius, M.; Tarp, D.; Rasmussen, T.W.; Arabkoohsar, A. Utilization of Excess Production of Waste-Fired CHP Plants for District Cooling Supply, an Effective Solution for a Serious Challenge. Energies 2020, 13, 3319. [Google Scholar] [CrossRef]
- Köppen, W.; Geiger, R. Handbuch der Klimatologie; Gebrüder Borntraeger: Berlin, Germany, 1930; Volume 1. [Google Scholar]
- Leckner, B.; Lind, F. Combustion of municipal solid waste in fluidized bed or on grate—A comparison. Waste Manag. 2020, 109, 94–108. [Google Scholar] [CrossRef] [PubMed]
- AlRwashdeh, S.S.; Ammari, H. Life cycle cost analysis of two different refrigeration systems powered by solar energy. Case Stud. Therm. Eng. 2019, 16, 100559. [Google Scholar] [CrossRef]
- Chen, H. Forward Osmosis of Water Across Ionic Membranes for Desalination; University of Delaware: Newark, DE, USA, 2020. [Google Scholar]
- Available online: https://www.epa.gov/sites/default/files/2015_07/documents/catalog_of_chp_technologies_section_4._technology_characterization_-_steam_turbines.pdf (accessed on 10 June 2023).
- Najjar, Y.S.H.; Abu-Shamleh, A. Performance evaluation of a large-scale thermal power plant based on the best industrial practices. Sci. Rep. 2020, 10, 20661. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, F.K.; Alswailem, Y.K.; Alshabragi, A.M.; Sherif, M.A. Smart Planning of Waste Management System in Saudi Arabia; Challenges and Opportunities. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022. [Google Scholar]
- Ibikunle, R.; Titiladunayo, I.; Akinnuli, B.; Dahunsi, S.; Olayanju, T. Estimation of power generation from municipal solid wastes: A case Study of Ilorin metropolis, Nigeria. Energy Rep. 2019, 5, 126–135. [Google Scholar] [CrossRef]
- D5231-92; Standard Test Method for Determination of the Composition of Unprocessed Municipal Solid Waste. ASTM: West Conshohocken, PA, USA, 2016.
- Ouda, O.K.M. Assessment of the Environmental Values of Waste-to-Energy in the Gaza Strip. Curr. World Environ. J. 2013, 8, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Islam, K.M.N. Municipal Solid Waste to Energy Generation in Bangladesh: Possible Scenarios to Generate Renewable Electricity in Dhaka and Chittagong City. J. Renew. Energy 2016, 2016, 1712370. [Google Scholar] [CrossRef] [Green Version]
- Konwar, D.; Gogoi, T. Performance of double effect H2O–LiCl absorption refrigeration systems and comparison with H2O–LiBr systems, Part 1: Energy analysis. Therm. Sci. Eng. Prog. 2018, 8, 184–203. [Google Scholar] [CrossRef]
- Ameri, M.; Mohammadi, S.S.; Hosseini, M.; Seifi, M. Effect of design parameters on multi-effect desalinationsystem specifications. Desalination 2009, 245, 266–283. [Google Scholar] [CrossRef]
- Ortega-Delgado, B.; García-Rodríguez, L.; Alarcón-Padilla, D.-C. Opportunities of improvement of the MED seawater desalination process by pretreatments allowing high-temperature operation. Desalination Water Treat. 2017, 97, 94–108. [Google Scholar] [CrossRef]
- Available online: https://www.argaam.com/en/article/articledetail/id/1611319 (accessed on 10 June 2023).
- Navarro, R.; Lizaso, J.L.S.; Sola, I. Assessment of Energy Consumption of Brine Discharge from SWRO Plants. Water 2023, 15, 786. [Google Scholar] [CrossRef]
- Available online: https://www.stats.gov.sa/sites/default/files/Electrical%20Energy%20Statistics%202020EN_0.pdf (accessed on 10 June 2023).
- Amaripadath, D.; Velickovic, M.; Attia, S. Performance Evaluation of a Nearly Zero-Energy Office Building in Temperate Oceanic Climate Based on Field Measurements. Energies 2022, 15, 6755. [Google Scholar] [CrossRef]
- Ghaffour, N.; Missimer, T.M.; Amy, G.L. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination 2013, 309, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Karmakar, A.; Daftari, T.; Sivagami, K.; Chandan, M.R.; Shaik, A.H.; Kiran, B.; Chakraborty, S. A comprehensive insight into Waste to Energy conversion strategies in India and its associated air pollution hazard. Environ. Technol. Innov. 2023, 29, 103017. [Google Scholar] [CrossRef]
- Aldhafeeri, Z.M.; Alhazmi, H. Sustainability Assessment of Municipal Solid Waste in Riyadh, Saudi Arabia, in the Framework of Circular Economy Transition. Sustainability 2022, 14, 5093. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Burhan, M.; Ghaffour, N.; Ng, K.C. A multi evaporator desalination system operated with thermocline energy for future sustainability. Desalination 2018, 435, 268–277. [Google Scholar] [CrossRef]
Model 1 | Model 2 | Model 3 | |
---|---|---|---|
Energy | |||
Boiler | |||
Turbine | |||
VAR | |||
MED | |||
OFWH | - | ||
Pump | + | ||
Exergy | |||
Boiler | |||
Turbine | |||
VAR | |||
MED | |||
OFWH | - | ||
Pump |
Components | LHV kWh/kg | % | LHV per kg | Contents of the Components |
---|---|---|---|---|
Paper | 3.75 | 28.5 | 1.03 | Wasted Papers, cardboard, box board, bags, magazines, tissue, newspapers, tissues |
Plastic | 9.72 | 5.2 | 0.60 | Disposable glass, spoons, plates, wrapping films, wrapping film, plastic bottles, polythene |
Glass | 0.00 | 4.6 | 0.00 | Bottles, glassware, bulbs, ceramics, etc. |
Wood | 4.72 | 8 | 0.38 | Bottles, glassware, bulbs, ceramics, etc. |
Textiles | 5.23 | 6.4 | 0.39 | Clothes, diapers, etc. |
Organics | 1.55 | 37 | 0.56 | Food stuff, fruits and vegetable refuse, peel, etc. |
Others | 3.36 | 10.3 | 0.35 | Leathers, rubber, fibers, rubber, yard waste, soils, tire, appliances, electronics |
State Points | T (°C) | P (kPa) | x (%) | H (kJ/kg) | m (kg/s) | Exergy (kJ/kg) |
---|---|---|---|---|---|---|
(a) Model 1 | ||||||
1 | 250 | 1200 | 100 | 2936 | 422 | 903.7 |
2 | 120 | 190 | 100 | 2707 | 211 | 579.4 |
3 | 90 | 70.18 | 0.99 | 2659 | 211 | 434.6 |
4 | 118.6 | 190 | 0 | 497.9 | 211 | 51.39 |
5 | 90 | 70.18 | 0 | 377 | 211 | 25.95 |
6 | 90.01 | 190 | 0 | 377.2 | 211 | 26.07 |
7 | 104.3 | 190 | 0 | 437.5 | 422 | 37.83 |
8 | 104.5 | 1200 | 0 | 438.8 | 422 | 38.92 |
(b) Model 2 | ||||||
1 | 250 | 1200 | 100 | 2936 | 422 | 903.6 |
2 | 120 | 198.7 | 1 | 2589 | 84.4 | 556.7 |
3 | 120 | 198.7 | 1 | 2589 | 337.6 | 556.7 |
4 | 250 | 198.7 | 100 | 2971 | 337.6 | 676.3 |
5 | 120 | 198 | 1 | 2970 | 337.6 | 675.5 |
6 | 119.9 | 198 | 0 | 503.4 | 337.6 | 52.72 |
7 | 120 | 198.7 | 0 | 503.8 | 84.4 | 52.83 |
8 | 119.9 | 198.7 | 0 | 503.4 | 337.6 | 52.72 |
9 | 119.9 | 198.7 | 0 | 503.5 | 422 | 52.74 |
10 | 120 | 1200 | 0 | 504.7 | 422 | 53.85 |
(c) Model 3 | ||||||
1 | 250 | 1200 | 100 | 2936 | 422 | 903.5 |
2 | 120 | 198.7 | 1 | 2589 | 422 | 557.4 |
3 | 100 | 80 | 0.6 | 1756 | 422 | 283.4 |
4 | 100 | 80 | 0 | 391.7 | 422 | 28.64 |
5 | 100.4 | 1200 | 0 | 421.7 | 422 | 35.4 |
Output @ P = 1200 (kPa) T = 250 °C | Units | Model 1 | Model 2 | Model 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | A | B | C | D | A | B | C | D | ||
Turbine output Power (×103) | kW | 106.5 | 106.5 | 106.5 | 106.5 | 146.6 | 146.6 | 146.6 | 146.6 | 146.1 | 146.1 | 146.1 | 146.1 |
VAR Inlet (×103) | kW | 456.1 | 456.1 | 456.6 | 456.1 | 176.0 | 176.0 | 176.0 | 176.0 | 351.9 | 351.9 | 351.9 | 351.9 |
MED Inlet (×103) | kW | 481.6 | 481.6 | 481.8 | 481.6 | 832.9 | 832.9 | 832.9 | 832.9 | 575.6 | 575.6 | 575.6 | 575.6 |
Cooling rate (×103) | kW | 319.3 | 319.3 | 315.0 | 314.7 | 320.3 | 320.3 | 592.0 | 592.0 | 320.3 | 320.3 | 419.8 | 419.8 |
Distilled water output | kg/s | 357 | 639.5 | 357.2 | 639.8 | 805.8 | 1388 | 806 | 1388 | 477.2 | 839.8 | 477.2 | 839.8 |
Name of the city | New Delhi [31] | Riyadh [32] | London [33] | |
Climatic zone | Humid subtropical | Arid desert | Temperate oceanic | |
MSW generation rate (million tons/year) | 4.13 | 3.4 | 7 | |
Composition | Paper | 11% | 11.6 | 15% |
Plastic | 13.5% | 13.0 | 15% | |
Glass | 6% | 3.0 | 11% | |
Wood | 6% | 6.60 | 5% | |
Textiles | 1.5 | 2.90 | 5% | |
Organics | 50–55% | 57.20 | 18% | |
Others | 6.3% | 3.36 | 28% | |
LHV (kWh/kg) | 2.06 | 2.51 | 2.77 | |
Electrical power requirement (GWh/y) | 26,319 | 48,478 | 37,800 | |
Cooling energy requirement, GWh/y) | 1350 | 33,934 | 0.018 | |
Desalination energy requirement (GWh/y) | 1040 | 722 | 816,000 | |
Availability from MSW using Model 1 (% replacement) | Electrical power, GWh/y | 3718.76 (14.3%) | 3061.45 (6.32%) | 26,319 (23.95%) |
Cooling, GWh/y | 7963.04 (589.85%) | 6555.53 (19.32%) | 1350 (999.75%) | |
Water, GWh/y | 378.37 (36.38%) | 311.49 (42.56%) | 1040 (61.66%) | |
Availability from MSW using Model 2 (% replacement) | Electrical power, GWh/y | 5118.96 (19.45%) | 4214.16 (8.69%) | 26,319 (32.97%) |
Cooling, GWh/y | 3072.78 (227.65) | 2529.65 (7.45%) | 1350 (385.79%) | |
Water, GWh/y | 654.37 (62.92%) | 538.71 (73.60%) | 1040 (106.65%) | |
Availability from MSW using Model 3 (% replacement) | Electrical power, GWh/y | 5101.51 (19.38%) | 4199.79 (8.66%) | 26,319 (32.85%) |
Cooling, GWh/y | 4300.67 (318.57%) | 3540.50 (10.43%) | 1350 (539.95%) | |
Water, GWh/y | 452.22 (43.48%) | 372.29 (50.87%) | 1040 (73.70%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaneesamkandi, Z.; Sayeed, A. Evaluation of Multi-Utility Models with Municipal Solid Waste Combustion as the Primary Source under Specific Geographical and Operating Conditions. Energies 2023, 16, 5696. https://doi.org/10.3390/en16155696
Kaneesamkandi Z, Sayeed A. Evaluation of Multi-Utility Models with Municipal Solid Waste Combustion as the Primary Source under Specific Geographical and Operating Conditions. Energies. 2023; 16(15):5696. https://doi.org/10.3390/en16155696
Chicago/Turabian StyleKaneesamkandi, Zakariya, and Abdul Sayeed. 2023. "Evaluation of Multi-Utility Models with Municipal Solid Waste Combustion as the Primary Source under Specific Geographical and Operating Conditions" Energies 16, no. 15: 5696. https://doi.org/10.3390/en16155696
APA StyleKaneesamkandi, Z., & Sayeed, A. (2023). Evaluation of Multi-Utility Models with Municipal Solid Waste Combustion as the Primary Source under Specific Geographical and Operating Conditions. Energies, 16(15), 5696. https://doi.org/10.3390/en16155696