Harnessing Energy for Wearables: A Review of Radio Frequency Energy Harvesting Technologies
Abstract
:1. Introduction
2. Materials
Flexible and (Rigid)
3. Antenna Design
3.1. RF Energy Harvesting for Antenna Design and Characteristics
3.2. RF Wearable Energy Harvesting Antenna Design
3.3. RF Energy Harvesting with Implantable Antenna Design
3.4. RF Wearable Inkjet-Printed Energy Harvester
3.5. RF Textile-Based Wearable Energy Harvester
3.6. RF Flexible and Stretchable Energy Harvester
4. Power Management
4.1. Impedance Matching Network
4.2. Rectifier Circuit Design and Topologies
4.3. Challenges and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adami, S.E.; Proynov, P.; Hilton, G.S.; Yang, G.; Zhang, C.; Zhu, D.; Li, Y.; Beeby, S.P.; Craddock, I.J.; Stark, B.H. A Flexible 2.45-GHz Power Harvesting Wristband with Net System Output from −24.3 DBm of RF Power. IEEE Trans. Microw. Theory Tech. 2018, 66, 380–395. [Google Scholar] [CrossRef] [Green Version]
- Nepa, P.; Rogier, H. Wearable Antennas for Off-Body Radio Links at VHF and UHF Bands: Challenges, the State of the Art, and Future Trends below 1 GHz. IEEE Antennas Propag. Mag. 2015, 57, 30–52. [Google Scholar] [CrossRef] [Green Version]
- Ojha, S.S.; Singhal, P.K.; Thakare, V.V. Dual-Band Rectenna System for Biomedical Wireless Applications. Meas. Sens. 2022, 24, 100532. [Google Scholar] [CrossRef]
- Rao, A.S.; Aziz, A.; Aljaloud, K.; Qureshi, M.A.; Muhammad, A.; Rafique, A.; Hussain, R. Concomitance of Radio Frequency Energy Harvesting and Wearable Devices: A Review of Rectenna Designs. Int. J. RF Microw. Comput.-Aided Eng. 2022, 32, e23536. [Google Scholar] [CrossRef]
- Negra, R.; Jemili, I.; Belghith, A. Wireless Body Area Networks: Applications and Technologies. Procedia Comput. Sci. 2016, 83, 1274–1281. [Google Scholar] [CrossRef] [Green Version]
- Tran, L.G.; Cha, H.K.; Park, W.T. RF Power Harvesting: A Review on Designing Methodologies and Applications. Micro Nano Syst. Lett. 2017, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Saraereh, O.A.; Alsaraira, A.; Khan, I.; Choi, B.J. A Hybrid Energy Harvesting Design for On-Body Internet-of-Things (IoT) Networks. Sensors 2020, 20, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.W.; Bai, X.; Han, W.Y.; Zhao, B.H.; Xu, L.J.; Wei, J.J. The Design of Radio Frequency Energy Harvesting and Radio Frequency-Based Wireless Power Transfer System for Battery-Less Self-Sustaining Applications. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21658. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Wang, C.; Lu, C.; Zheng, W.; Gong, D. Wearable Mixed Energy Management System Based on Power Trajectory Tracking. Int. Trans. Electr. Energy Syst. 2022, 2022, 4332766. [Google Scholar] [CrossRef]
- Singh, D.; Ouamri, M.A.; Alzaidi, M.S.; Alharbi, T.E.A.; Ghoneim, S.S.M. Performance Analysis of Wireless Power Transfer Enabled Dual Hop Relay System Under Generalised Fading Scenarios. IEEE Access 2022, 10, 114364–114373. [Google Scholar] [CrossRef]
- Visser, H.J.; Keyrouz, S.; Kihshen, A.; Paraschiv, I. Optimizing RF Energy Transport: Channel Modelling and Transmit Antenna and Rectenna Design. In Proceedings of the 2012 Loughborough Antennas and Propagation Conference (LAPC 2012), Loughborough, UK, 12–13 November 2012. [Google Scholar]
- Tan, T.; Yan, Z.; Zou, H.; Ma, K.; Liu, F.; Zhao, L.; Peng, Z.; Zhang, W. Renewable Energy Harvesting and Absorbing via Multi-Scale Metamaterial Systems for Internet of Things. Appl. Energy 2019, 254, 113717. [Google Scholar] [CrossRef]
- Li, C.; Jiang, F.; Liu, C.; Liu, P.; Xu, J. Present and Future Thermoelectric Materials toward Wearable Energy Harvesting. Appl. Mater. Today 2019, 15, 543–557. [Google Scholar] [CrossRef]
- Bharti, M.; Jha, P.; Singh, A.; Chauhan, A.K.; Misra, S.; Yamazoe, M.; Debnath, A.K.; Marumoto, K.; Muthe, K.P.; Aswal, D.K. Scalable Free-Standing Polypyrrole Films for Wrist-Band Type Flexible Thermoelectric Power Generator. Energy 2019, 176, 853–860. [Google Scholar] [CrossRef]
- Xu, B. A Short Review of Textile Applications in Antenna Design. Trends Text. Eng. Fash. Technol. 2018, 1, 119–121. [Google Scholar] [CrossRef] [Green Version]
- Nawale, P.A.; Zope, R.G. Rectangular Microstrip Patch Antenna For 2.4 GHz Communication Using Defected Ground Structure. Int. J. Adv. Found. Res. Comput. 2015, 2, 1–11. [Google Scholar]
- Akhtar, F.; Rehmani, M.H. Energy Replenishment Using Renewable and Traditional Energy Resources for Sustainable Wireless Sensor Networks: A Review. Renew. Sustain. Energy Rev. 2015, 45, 769–784. [Google Scholar] [CrossRef]
- Bahk, J.H.; Fang, H.; Yazawa, K.; Shakouri, A. Flexible Thermoelectric Materials and Device Optimization for Wearable Energy Harvesting. J. Mater. Chem. C Mater. 2015, 3, 10362–10374. [Google Scholar] [CrossRef]
- Adami, S.E.; Zhu, D.; Li, Y.; Mellios, E.; Stark, B.H.; Beeby, S. A 2.45 GHz Rectenna Screen-Printed on Polycotton for on-Body RF Power Transfer and Harvesting. In Proceedings of the 2015 IEEE Wireless Power Transfer Conference, WPTC 2015, Boulder CO, USA, 13–15 May 2015. [Google Scholar]
- Haagenson, T.; Noghanian, S.; De León, P.; Chang, Y.H. Textile Antennas for Spacesuit Applications: Design, Simulation, Manufacturing, and Testing of Textile Patch Antennas for Spacesuit Applications. IEEE Antennas Propag. Mag. 2015, 57, 64–73. [Google Scholar] [CrossRef]
- Lu, Y.; Biswas, M.C.; Guo, Z.; Jeon, J.-W.; Wujcik, E.K. Recent Developments in Bio-Monitoring via Advanced Polymer Nanocomposite-Based Wearable Strain Sensors. Biosens. Bioelectron. 2019, 123, 167–177. [Google Scholar] [CrossRef]
- Hasni, U.; Piper, M.E.; Lundquist, J.; Topsakal, E. Screen-Printed Fabric Antennas for Wearable Applications. IEEE Open J. Antennas Propag. 2021, 2, 591–598. [Google Scholar] [CrossRef]
- Ramesh Varma, D.; Durga Saranya, B.; Pavani, G.; Venkata Subbarao, M.; Challa Ram, G.; Girish Kumar, D. Design of Fabric Antennas for Body Protective Garment Applications and Analysis on Their Performance. Mater. Today Proc. 2023, 80, 1538–1547. [Google Scholar] [CrossRef]
- Chouhan, S.; Chouhan, J.; Mukati, G.; Kumbhare, K.; Yadav, J.; Kumar Kurre, S.; Srivastav, V.K. Design of Meander Line Antenna Using Low Tangent Loss Material. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Boyes, S.J.; Huang, Y.; Khiabani, N.; Soh, P.J.; Vandenbosch, G.A.E. Repeatability and Uncertainty Evaluations of On-Body Textile Antenna Efficiency Measurements in a Reverberation Chamber. In Proceedings of the 2012 Loughborough Antennas and Propagation Conference (LAPC 2012), Loughborough, UK, 12–13 November 2012. [Google Scholar]
- Paracha, K.N.; Abdul Rahim, S.K.; Soh, P.J.; Khalily, M. Wearable Antennas: A Review of Materials, Structures, and Innovative Features for Autonomous Communication and Sensing. IEEE Access 2019, 7, 56694–56712. [Google Scholar] [CrossRef]
- Xu, P.; Flandre, D.; Bol, D. Analysis and Design of RF Energy-Harvesting Systems With Impedance-Aware Rectifier Sizing. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 361–365. [Google Scholar] [CrossRef]
- Singh, D.; Ouamri, M.A.; Muthanna, M.S.A.; Adam, A.B.M.; Muthanna, A.; Koucheryavy, A.; El-Latif, A.A.A. A Generalized Approach on Outage Performance Analysis of Dual-Hop Decode and Forward Relaying for 5G and beyond Scenarios. Sustainability 2022, 14, 12870. [Google Scholar] [CrossRef]
- Habibzadeh, H.; Soyata, T.; Kantarci, B.; Boukerche, A.; Kaptan, C. Sensing, Communication and Security Planes: A New Challenge for a Smart City System Design. Comput. Netw. 2018, 144, 163–200. [Google Scholar] [CrossRef]
- Du, Y.; Xu, J.; Paul, B.; Eklund, P. Flexible Thermoelectric Materials and Devices. Appl. Mater. Today 2018, 12, 366–388. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, J.; Huang, Z.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Flexible Electrically Resistive-Type Strain Sensors Based on Reduced Graphene Oxide-Decorated Electrospun Polymer Fibrous Mats for Human Motion Monitoring. Carbon 2018, 126, 360–371. [Google Scholar] [CrossRef]
- Kursheed, B.; Budyal, V.R. An Integrated Model to Enhance Energy Efficiency in 5th Generation for Internet of Things. In Proceedings of the Proceedings of 2018 2nd International Conference on Advances in Electronics, Computers and Communications, ICAECC 2018, Bangalore, India, 9–10 February 2018. [Google Scholar]
- Wen, D.; Hao, Y.; Munoz, M.O.; Wang, H.; Zhou, H. A Compact and Low-Profile MIMO Antenna Using a Miniature Circular High-Impedance Surface for Wearable Applications. IEEE Trans. Antennas Propag. 2018, 66, 96–104. [Google Scholar] [CrossRef]
- Ur-Rehman, M.; Malik, N.A.; Yang, X.; Abbasi, Q.H.; Zhang, Z.; Zhao, N. A Low Profile Antenna for Millimeter-Wave Body-Centric Applications. IEEE Trans. Antennas Propag. 2017, 65, 6329–6337. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, J.M.; Karami, A.; Jafari, F. A Secure Smart Home Using Internet-of-Things. In Proceedings of the ACM International Conference Proceeding Series, London, UK, 14–16 December 2017. [Google Scholar]
- Yang, T.; Xie, D.; Li, Z.; Zhu, H. Recent Advances in Wearable Tactile Sensors: Materials, Sensing Mechanisms, and Device Performance. Mater. Sci. Eng. R Rep. 2017, 115, 1–37. [Google Scholar] [CrossRef]
- Agiwal, M.; Roy, A.; Saxena, N. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655. [Google Scholar] [CrossRef]
- Lakshmanan, R.; Sukumaran, S.K. Flexible Ultra Wide Band Antenna for WBAN Applications. Procedia Technol. 2016, 24, 880–887. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, A.K.; Chuah, J.H.; Ramiah, H.; Ahmadian, J.; Mak, P.I.; Martins, R.P. A 73.9%-Efficiency CMOS Rectifier Using a Lower DC Feeding (LDCF) Self-Body-Biasing Technique for Far-Field RF Energy-Harvesting Systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 992–1002. [Google Scholar] [CrossRef]
- IoT Design Pro Overview-of-Rf-Energy-Harvesting-Its-Working-and-Applications 1/15. Available online: https://iotdesignpro.com/articles/an-overview-of-rf-energy-harvesting-its-working-and-applications (accessed on 13 June 2023).
- Liu, Y.; Khanbareh, H.; Halim, M.A.; Feeney, A.; Zhang, X.; Heidari, H.; Ghannam, R. Piezoelectric Energy Harvesting for Self-powered Wearable Upper Limb Applications. Nano Sel. 2021, 2, 1459–1479. [Google Scholar] [CrossRef]
- Shi, B.; Liu, Z.; Zheng, Q.; Meng, J.; Ouyang, H.; Zou, Y.; Jiang, D.; Qu, X.; Yu, M.; Zhao, L.; et al. Body-Integrated Self-Powered System for Wearable and Implantable Applications. ACS Nano 2019, 13, 6017–6024. [Google Scholar] [CrossRef]
- Song, Y.; Min, J.; Yu, Y.; Wang, H.; Yang, Y.; Zhang, H.; Gao, W. Wireless Battery-Free Wearable Sweat Sensor Powered by Human Motion. Sci. Adv. 2020, 6, eaay9842. [Google Scholar] [CrossRef]
- Shi, Y.; Jing, J.; Fan, Y.; Yang, L.; Li, Y.; Wang, M. A Novel Compact Broadband Rectenna for Ambient RF Energy Harvesting. AEU-Int. J. Electron. Commun. 2018, 95, 264–270. [Google Scholar] [CrossRef]
- Yoo, J.; Devices Research Update, B.; Li, J.; Dong, Y. Human Body as a Low-Loss Transmission Path. Available online: https://physicsworld.com/a/body-coupled-energy-harvesting-can-power-multiple-wearable-devices/ (accessed on 20 March 2022).
- Celik, A.; Salama, K.N.; Eltawil, A.M. The Internet of Bodies: A Systematic Survey on Propagation Characterization and Channel Modeling. IEEE Internet Things J. 2022, 9, 321–345. [Google Scholar] [CrossRef]
- Bosso, N.; Magelli, M.; Zampieri, N. Application of Low-Power Energy Harvesting Solutions in the Railway Field: A Review. Veh. Syst. Dyn. 2021, 59, 841–871. [Google Scholar] [CrossRef]
- Ingale, C.; Ingale, T.; Trikolikar, A. Study of Different Types of Microwave Antenna and Its Applications. ISSN Int. J. Comput. Technol. Electron. Eng. ISO Certif. J. E-NSPIRE 2013, 3, 103–106. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2016. [Google Scholar]
- Osaretin, P. Microwave Antenna Performance Metrics. In Data Acquisition Applications; InTech: Bolton, UK, 2012. [Google Scholar]
- Manrique, R.; Torres, R.; Domínguez, C.; Tiezzi, F.; Mosig, J.R. Design and Prototyping of a Microstrip Transmit-Receive Array Antenna for Mobile Ku-Band Satellite Terminals. In Proceedings of the EuCAP 2010—The 4th European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010. [Google Scholar]
- Mansour, M.M.; Kanaya, H. Novel L-Slot Matching Circuit Integrated with Circularly Polarized Rectenna for Wireless Energy Harvesting. Electronics 2019, 8, 651. [Google Scholar] [CrossRef] [Green Version]
- Serra, A.A.; Nepa, P.; Manara, G. A Wearable Two-Antenna System on a Life Jacket for Cospas-Sarsat Personal Locator Beacons. IEEE Trans. Antennas Propag. 2012, 60, 1035–1042. [Google Scholar] [CrossRef]
- Divakaran, S.K.; Krishna, D. Das; Nasimuddin RF Energy Harvesting Systems: An Overview and Design Issues. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21633. [Google Scholar] [CrossRef] [Green Version]
- Thakar, P.T.; Shah, N.; Shah, R.; Sharma, V.; Bandi, Y. Antenna-Based RF Energy Harvesting. In Lecture Notes on Data Engineering and Communications Technologies; Springer: Singapore, 2020; Volume 36, pp. 481–491. [Google Scholar]
- Karampatea, A.; Siakavara, K. Synthesis of Rectenna for Powering Micro-Watt Sensors by Harvesting Ambient RF Signals’ Power. Electronics 2019, 8, 1108. [Google Scholar] [CrossRef] [Green Version]
- Karampatea, A.; Siakavara, K. Hybrid Rectennas of Printed Dipole Type on Double Negative Dielectric Media for Powering Sensors via RF Ambient Energy Harvesting. AEU-Int. J. Electron. Commun. 2019, 108, 242–250. [Google Scholar] [CrossRef]
- Said, M.A.M.; Zakaria, Z.; Husain, M.N.; Misran, M.H.; Noor, F.S.M. 2.45 GHz Rectenna with High Gain for RF Energy Harvesting. Telkomnika (Telecommun. Comput. Electron. Control) 2019, 17, 384–391. [Google Scholar] [CrossRef]
- Afridi, M.A. Microstrip Patch Antenna—Designing at 2.4 GHz Frequency. Biol. Chem. Res. 2015, 2015, 128–132. [Google Scholar]
- Suhail, G.T. Design and Improve Coatings for Some Antennas. IOSR J. Eng. 2014, 4, 50–56. [Google Scholar] [CrossRef]
- Dutta, K.; Guha, D.; Kumar, C. Theory of Controlled Aperture Field for Advanced Superstrate Design of a Resonance Cavity Antenna with Improved Radiations Properties. IEEE Trans. Antennas Propag. 2017, 65, 1399–1403. [Google Scholar] [CrossRef]
- Saha, C.R.; Huda, M.N.; Mumtaz, A.; Debnath, A.; Thomas, S.; Jinks, R. Photovoltaic (PV) and Thermo-Electric Energy Harvesters for Charging Applications. Microelectron. J. 2020, 96, 104685. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, L.; Wang, X. Flexible and Wearable Healthcare Sensors for Visual Reality Health-Monitoring. Virtual Real. Intell. Hardw. 2019, 1, 411–427. [Google Scholar] [CrossRef]
- Lei, Y.; Zhao, W.; Zhang, Y.; Jiang, Q.; He, J.; Baeumner, A.J.; Wolfbeis, O.S.; Wang, Z.L.; Salama, K.N.; Alshareef, H.N. A MXene-Based Wearable Biosensor System for High-Performance In Vitro Perspiration Analysis. Wiley Online Libr. 2019, 15, 1901190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandodkar, A.J.; Gutruf, P.; Choi, J.; Lee, K.H.; Sekine, Y.; Reeder, J.T.; Jeang, W.J.; Aranyosi, A.J.; Lee, S.P.; Model, J.B.; et al. Battery-Free, Skin-Interfaced Microfluidic/Electronic Systems for Simultaneous Electrochemical, Colorimetric, and Volumetric Analysis of Sweat. Sci. Adv. 2019, 5, eaav3294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liew, H.F.; Baharuddin, I.; Rosemizi, A.R.; Muzamir, I.; Hassan, S.I.S. Review of Feasibility Wind Turbine Technologies for Highways Energy Harvesting. J. Phys. Conf. Ser. 2020, 1432, 012059. [Google Scholar] [CrossRef]
- Zareei, M.; Vargas-Rosales, C.; Anisi, M.H.; Musavian, L.; Villalpando-Hernandez, R.; Goudarzi, S.; Mohamed, E.M. Enhancing the Performance of Energy Harvesting Sensor Networks for Environmental Monitoring Applications. Energies 2019, 12, 2794. [Google Scholar] [CrossRef] [Green Version]
- Shearer, J.; Greene, C. 2019, Powering Devices Using RF Energy Harvesting. DW Harrist—U.S. Patent 10,284,019, 31 December 2006. [Google Scholar]
- Li, L.; Zhang, X.; Song, C.; Huang, Y. Progress, Challenges, and Perspective on Metasurfaces for Ambient Radio Frequency Energy Harvesting. Appl. Phys. Lett. 2020, 116, 060501. [Google Scholar] [CrossRef]
- Luo, Y.; Pu, L.; Wang, G.; Zhao, Y. RF Energy Harvesting Wireless Communications: Rf Environment, Device Hardware and Practical Issues. Sensors 2019, 19, 3010. [Google Scholar] [CrossRef] [Green Version]
- Babayo, A.A.; Anisi, M.H.; Ali, I. A Review on Energy Management Schemes in Energy Harvesting Wireless Sensor Networks. Renew. Sustain. Energy Rev. 2017, 76, 1176–1184. [Google Scholar] [CrossRef]
- Din, N.M.; Chakrabarty, C.K.; Bin Ismail, A.; Devi, K.K.A.; Chen, W.Y. Design of RF Energy Harvesting System for Energizing Low Power Devices. Prog. Electromagn. Res. 2012, 132, 49–69. [Google Scholar] [CrossRef] [Green Version]
- Sidhu, R.K.; Singh Ubhi, J.; Aggarwal, A. A Survey Study of Different RF Energy Sources for RF Energy Harvesting. In Proceedings of the 2019 International Conference on Automation, Computational and Technology Management, ICACTM 2019, London, UK, 24–26 April 2019. [Google Scholar]
- Muncuk, U.; Alemdar, K.; Sarode, J.D.; Chowdhury, K.R. Multiband Ambient RF Energy Harvesting Circuit Design for Enabling Batteryless Sensors and IoT. IEEE Internet Things J. 2018, 5, 2700–2714. [Google Scholar] [CrossRef]
- Anika, A.S.; Dewanjee, P.S.; Akter, N. Optimized process design of rf energy harvesting circuit for low power devices. Int. J. Appl. Eng. Res. 2018, 13, 849–854. [Google Scholar]
- Yang, F.; Du, L.; Yu, H.; Huang, P. Magnetic and Electric Energy Harvesting Technologies in Power Grids: A Review. Sensors 2020, 20, 1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojo, F.K.; Akande, D.O.; Salleh, M.F.M. An Overview of RF Energy Harvesting and Information Transmission in Cooperative Communication Networks. Telecommun. Syst. 2019, 70, 295–308. [Google Scholar] [CrossRef]
- Loubet, G.; Takacs, A.; Dragomirescu, D. Implementation of a Battery-Free Wireless Sensor for Cyber-Physical Systems Dedicated to Structural Health Monitoring Applications. IEEE Access 2019, 7, 24679–24690. [Google Scholar] [CrossRef]
- Munir, B.; Dyo, V. On the Impact of Mobility on Battery-Less RF Energy Harvesting System Performance. Sensors 2018, 18, 3597. [Google Scholar] [CrossRef] [Green Version]
- Ostfeld, A.E.; Gaikwad, A.M.; Khan, Y.; Arias, A.C. High-Performance Flexible Energy Storage and Harvesting System for Wearable Electronics. Sci. Rep. 2016, 6, 26122. [Google Scholar] [CrossRef] [Green Version]
- Szarka, G.D.; Stark, B.H.; Burrow, S.G. Review of Power Conditioning for Kinetic Energy Harvesting Systems. IEEE Trans. Power Electron. 2012, 27, 803–815. [Google Scholar] [CrossRef]
- Li, Z.; Zuo, L.; Luhrs, G.; Lin, L.; Qin, Y.X. Electromagnetic Energy-Harvesting Shock Absorbers: Design, Modeling, and Road Tests. IEEE Trans. Veh. Technol. 2013, 62, 1065–1074. [Google Scholar] [CrossRef]
- Sun, H.; Huang, J.; Wang, Y. An Omnidirectional Rectenna Array With an Enhanced RF Power Distributing Strategy for RF Energy Harvesting. IEEE Trans. Antennas Propag. 2022, 70, 4931–4936. [Google Scholar] [CrossRef]
- Alkurt, F.O.; Altintas, O.; Ozakturk, M.; Karaaslan, M.; Akgol, O.; Unal, E.; Sabah, C. Enhancement of Image Quality by Using Metamaterial Inspired Energy Harvester. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2020, 384, 126041. [Google Scholar] [CrossRef]
- Gu, Y.; Liu, W.; Zhao, C.; Wang, P. A Goblet-like Non-Linear Electromagnetic Generator for Planar Multi-Directional Vibration Energy Harvesting. Appl. Energy 2020, 266, 114846. [Google Scholar] [CrossRef]
- Hariyawan, M.Y.; Darwis, R.S.; Posma, S.N. Selected Radio Frequency Power Harvesting by Using Broadband Triangle Monopole Patch. Adv. Sci. Lett. 2016, 22, 3080–3084. [Google Scholar] [CrossRef]
- Zorbas, D.; Raveneau, P.; Ghamri-Doudane, Y.; Douligeris, C. The Charger Positioning Problem in Clustered RF-Power Harvesting Wireless Sensor Networks. Ad Hoc Netw. 2018, 78, 42–53. [Google Scholar] [CrossRef]
- Hameed, Z.; Moez, K. Hybrid Forward and Backward Threshold-Compensated RF-DC Power Converter for RF Energy Harvesting. IEEE J. Emerg. Sel. Top. Circuits Syst. 2014, 4, 335–343. [Google Scholar] [CrossRef]
- Assimonis, S.D.; Fusco, V.; Georgiadis, A.; Samaras, T. Efficient and Sensitive Electrically Small Rectenna for Ultra-Low Power RF Energy Harvesting. Sci. Rep. 2018, 8, 15038. [Google Scholar] [CrossRef] [Green Version]
- Al-Shidaifat, A.; Kumar, S.; Chakrabartty, S.; Song, H. A Conceptual Investigation at the Interface between Wireless Power Devices and CMOS Neuron IC for Retinal Image Acquisition. Appl. Sci. 2020, 10, 6154. [Google Scholar] [CrossRef]
- Cavalheiro, D.; Moll, F.; Valtchev, S. TFET-Based Power Management Circuit for RF Energy Harvesting. IEEE J. Electron Devices Soc. 2017, 5, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.E.; Abdullah, K.; Habaebi, M.H.; Ramli, H.A.M.; Asnawi, A.L. Rf Energy Harvesting Wireless Networks: Challenges, and Opportunities. Indones. J. Electr. Eng. Inform. 2021, 9, 101–113. [Google Scholar] [CrossRef]
- Chen, M.C.; Sun, T.W.; Tsai, T.H. Dual-Domain Maximum Power Tracking for Multi-Input RF Energy Harvesting with a Reconfigurable Rectifier Array. Energies 2022, 15, 2068. [Google Scholar] [CrossRef]
- Beato-López, J.J.; Royo-Silvestre, I.; Algueta-Miguel, J.M.; Gómez-Polo, C. A Combination of a Vibrational Electromagnetic Energy Harvester and a Giant Magnetoimpedance (GMI) Sensor. Sensors 2020, 20, 1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Jung, W.J.; Park, J.S. An Injection-Locked Based Voltage Boost-up Rectifier for Wireless RF Power Harvesting Applications. J. Electr. Eng. Technol. 2018, 13, 2441–2446. [Google Scholar] [CrossRef]
- Dostal, F.; Nast, E. New Advances in Energy Harvesting Power Conversion. Analog. Devices 2015, 49, 1–3. [Google Scholar]
- Colaiuda, D.; Ulisse, I.; Ferri, G. Rectifiers’ Design and Optimization for a Dual-Channel RF Energy Harvester. J. Low Power Electron. Appl. 2020, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Farrar, C.R.; Park, G.; Rosing, T.; Todd, M.D.; Hodgkiss, W. Energy Harvesting for Structural Health Monitoring Sensor Networks. In Proceedings of the Structural Health Monitoring 2007: Quantification, Validation, and Implementation—Proceedings of the 6th International Workshop on Structural Health Monitoring, IWSHM 2007, Stanford, CA, USA, 11–13 September 2007; Volume 2. [Google Scholar]
- Ball, A.D.; Gu, F.; Cattley, R.; Wang, X.; Tang, X. Energy Harvesting Technologies for Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring: A Review. Sensors 2018, 18, 4113. [Google Scholar]
- Gholikhani, M.; Roshani, H.; Dessouky, S.; Papagiannakis, A.T. A Critical Review of Roadway Energy Harvesting Technologies. Appl. Energy 2020, 261, 114388. [Google Scholar] [CrossRef]
- Fan, S.; Yuan, Z.; Gou, W.; Zhao, Y.; Song, C.; Huang, Y.; Zhou, J.; Geng, L. A 2.45-GHz Rectifier-Booster Regulator with Impedance Matching Converters for Wireless Energy Harvesting. IEEE Trans. Microw. Theory Tech. 2019, 67, 3833–3843. [Google Scholar] [CrossRef]
- Al-Absi, M.A.; Al-Batati, S.R. Hybrid Internal Vth Cancellation Rectifiers for Rf Energy Harvesting. IEEE Access 2020, 8, 51976–51980. [Google Scholar] [CrossRef]
- Cansiz, M.; Altinel, D.; Kurt, G.K. Efficiency in RF Energy Harvesting Systems: A Comprehensive Review. Energy 2019, 174, 292–309. [Google Scholar] [CrossRef]
- Basim, M.; Ain, Q.U.; Shehzad, K.; Shah, S.A.A.; Ali, A.; Jang, B.; Pu, Y.; Yoo, J.M.; Lee, K.Y. A Comprehensive Review on High-Efficiency RF-DC Converter for Energy Harvesting Applications. J. Semicond. Technol. Sci. 2022, 22, 304–325. [Google Scholar] [CrossRef]
- Sun, R.; Li, Q.; Yao, J.; Scarpa, F.; Rossiter, J. Tunable, Multi-Modal, and Multi-Directional Vibration Energy Harvester Based on Three-Dimensional Architected Metastructures. Appl. Energy 2020, 264, 114615. [Google Scholar] [CrossRef]
- Sarma, M.P.; Sarma, K.K. A Transmission Gate Based High Frequency Rectifier Designed Using 45nm CMOS Process for RF Energy Harvesting Application. WSEAS Trans. Circuits Syst. 2019, 18, 44–49. [Google Scholar]
- Sharma, P.; Singh, A.K. A Survey on RF Energy Harvesting Techniques for Lifetime Enhancement of Wireless Sensor Networks. Sustain. Comput. Inform. Syst. 2023, 37, 100836. [Google Scholar] [CrossRef]
- Boussetta, M.; Motahhir, S.; Bachtiri, R.E.; Allouhi, A.; Khanfara, M.; Chaibi, Y. Design and Embedded Implementation of a Power Management Controller for Wind-PV-Diesel Microgrid System. Int. J. Photoenergy 2019, 2019, 8974370. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Khan, L.U.; Yaqoob, I.; Ahmed, E.; Qureshi, M.A.; Ahmed, A. Energy Harvesting in 5G Networks: Taxonomy, Requirements, Challenges, and Future Directions. arXiv 2019, arXiv:1910.00785. [Google Scholar]
- Saffari, P.; Basaligheh, A.; Moez, K. An RF-to-DC Rectifier with High Efficiency over Wide Input Power Range for RF Energy Harvesting Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 4862–4875. [Google Scholar] [CrossRef]
- Xiang, Z.; Han, S.; Liu, B.; Peng, H.; Wang, Z.; Sun, G. Design and Analysis of a PMOS RF-DC Conversion Circuit at UHF for Ambient Energy Harvesting. In Proceedings of the 2019 IEEE/CIC International Conference on Communications Workshops in China, ICCC Workshops 2019, Changchun, China, 11–13 August 2019. [Google Scholar]
- Yahya Alkhalaf, H.; Yazed Ahmad, M.; Ramiah, H. Self-Sustainable Biomedical Devices Powered by RF Energy: A Review. Sensors 2022, 22, 6371. [Google Scholar] [CrossRef]
- Yu, B.-Y.; Wang, Z.-H.; Ju, L.; Zhang, C.; Liu, Z.-G.; Tao, L.; Lu, W.-B. Flexible and Wearable Hybrid RF and Solar Energy Harvesting System. IEEE Trans. Antennas Propag. 2022, 70, 2223–2233. [Google Scholar] [CrossRef]
- Noghabaei, S.M.; Radin, R.L.; Savaria, Y.; Sawan, M. A High-Sensitivity Wide Input-Power-Range Ultra-Low-Power RF Energy Harvester for IoT Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 440–451. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, P.; Li, G. A Multibeam and Surface Plasmonic Clothing With RF Energy-Localized Harvester for Powering Battery-Free Wireless Sensor. IEEE Internet Things J. 2022, 9, 13955–13964. [Google Scholar] [CrossRef]
- Mohammed, N.; Wang, R.; Jackson, R.W.; Noh, Y.; Gummeson, J.; Lee, S. Charging Wearable Devices Through Natural Interactions with Instrumented Everyday Objects. GetMobile: Mob. Comput. Commun. 2022, 26, 29–33. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, P. Reinforcement Learning Based Energy-Neutral Operation for Hybrid EH Powered TBAN. Future Gener. Comput. Syst. 2023, 140, 311–320. [Google Scholar] [CrossRef]
E-Textile | Surface Resistivity (Ω2) |
---|---|
Silver jersey knit fabric | 2 |
Silverell fabric | 5 |
Nickel copper ripstop fabric | 0.03 |
Pure copper polyester taffeta fabric | 0.05 |
Ripstop silver fabric | 0.25 |
Commonly Used Fabrics Permittivity | |
Fabrics | Permittivity (×) |
Wash cotton | 151 |
Curtain cotton | 147 |
Polyester | 144 |
Polycot | 156 |
Jeans cotton | 167 |
Floor spread | 146 |
Dedicated RF Harvester Systems | Ambient RF Harvester Systems |
---|---|
They have dedicated RF sources | They have ambient RF sources. These are sources that are not solely dedicated to providing RF energy transfer. |
A cost of constructing RF sources to specifically provide the RF energy to be used is incurred. As such, the RF energy is not free. | The RF energy is essentially free. It uses already constructed RF sources. |
Suitable for devices with QoS (Quality of Service) constraints, and they are fully controllable. | Not controllable. |
Provide higher power densities, and it is a predictable energy supplier. | It is not a predictable energy supplier. |
Conductive Material | Thickness t (mm) | Conductivity σ (Sm) |
---|---|---|
EgaIn liquid fillet | 0.08 | 2.5 × 105 |
Polyleurethene–nanoparticle composite sheet | 0.0065 | 1.1 × 106 |
Zoflex + copper | 0.175 | 1.93 × 105 |
Silver flakes+ Fluorine rubber | N. A | 8.5 × 104 |
AgNWPDMS | 0.5 | 8.1 × 105 |
Copper-coated taffeta | 0.15 | 3.4 × 106 |
PANICCO | 0.075 | 7.3 × 103 |
Meshed fabric | 0.057 | 2 × 105 |
Parameter | 2019 TMTT | 2018 TMTT | 2016 TMTT | 2018 AWPL | 2013 IMWS | 2013 IMS |
---|---|---|---|---|---|---|
Frequency (GHz) | 2.45 | 2.45 | 0.85, 1.85 | 2.45, 5.5 | 1.8, 2.45 | 0.9, 1.8, 2.45 |
Rectifier Architecture | RBR | Half-wave | Greinacher | Greinacher | Half-wave | Dickson |
Number of Stages | 4 | 1 | 2 | 2 | 1 | 4 |
Peak PCE (dBm) | 37% at 13 | 56.0% at −10 | 44.2% at −10 | 36.0% at 5 | 75.1% at 12 | 43% at 16 |
Load Resistance at Peak PCE (kΩ) | 20 | 3 | 9.53 | 12 | 0.917 | 0.012 |
Output Voltage at −10 dBm (V) | 1.70 | 0.41 | 0.65 | 0.49 | 0.50 | 0.24 |
Voltage Improvement (%) | 315 | 0 | 58 | 20 | 22 | 42 |
Challenges | Future Directions |
---|---|
Efficiency Improvement |
|
Limited RF Power Density |
|
Integration and Design |
|
Miniaturization |
|
Materials and Fabrication Techniques |
|
Study | Research Focus | Key Findings |
---|---|---|
[107] | Lifetime enhancement of wireless sensor networks (WSNs) through energy harvesting and efficient RF to DC conversion | - RF energy is abundant but has low power density, making RF energy harvesting an attractive solution for WSNs. - Designing RF energy harvesting systems involves challenges such as achieving maximum power conversion efficiency (PCE) at low input power and optimising rectifier circuit and antenna topologies. - Recent antenna designs are featured, considering their structure, attributes, and materials. |
[54] | Review work on rectifier circuits and matching networks | - Developed a framework for designing ambient RF energy harvesting systems. - Identified challenges in conversion efficiency, bandwidth, and form factor. - Emphasised the importance of achieving high conversion efficiency under varying load and input power conditions. |
[32] | Investigation on enhancing energy efficiency in 5th generation IoT | - Investigated an integrated model with combined control unit components. - Delaying the select and sleep mechanism (SSM) resulted in reduced power consumption. - Compared with the Traditional Zooming Scheme to demonstrate improved energy efficiency. |
[108] | The development of a sophisticated control system that proficiently governs the power generation and consumption dynamics within the microgrid. | - Focused on maximising efficiency in the electricity distribution of a microgrid. - Employed an off-grid hybrid renewable energy system with a power management controller. - Validated the application through a case study of an isolated mosque in Morocco. |
[76] | Investigation of magnetic and electric energy harvesting technologies in power grids | - Reviewed energy harvesting methods for electric and magnetic fields in power grids. - Aimed to address power supply issues through energy harvesting techniques. - Highlighted the potential for low-power sensing of simple parameters within a wider serviceable range. |
[67] | Enhancing the performance of energy harvesting sensor networks for environmental monitoring applications | - Utilising clustering and transmission power adjustment improves power distribution and network performance. - It resulted in a 20% improvement in packet delivery ratio, a 10% increase in network lifetime, and reduced delay by minimising hop count. |
[70] | RF energy harvesting for wireless communications (RF-EHWC) | - Harvesting RF energy from the environment makes wireless sensor networks self-sustaining. - The study explores hardware design, RF energy distribution, implementation, and applications in smart healthcare services for animals, 5G-assisted RF-EHWC, and wirelessly charging wearable devices. |
[109] | Energy harvesting technology roles in 5G networks by providing sustainable power sources. | - Energy harvesting plays a crucial role in extending device and network battery life by harnessing energy from environmental sources and ambient radio frequency signals. - The study covers energy conversion methods, models, propagation, and requirements in 5G networks. |
[110] | Wide input range, voltage compensated RF-to-DC power converter. | - The design efficiently converts RF signals to DC voltages by applying optimum compensation voltage produced by subthreshold auxiliary transistors. - The compensated rectifiers achieve higher efficiency over a wider input power range. The design demonstrated a measured power conversion efficiency (PCE) above 20% while driving a resistive load. |
[11] | Optimisation of RF energy transfer through modelling | - RF energy transfer is subject to path loss, resulting in low RF power available on the rectenna and low RF-to-DC conversion efficiency. - Optimisation is crucial for both the subsystem and rectenna to balance efficiency and boost converter performance. |
[111] | Circuit conversion design for ambient energy harvesting at ultra-high frequency (UHF) | - The study investigates power conversion efficiency and output voltage theoretically for ambient energy harvesting at UHF. - Specific circuit design considerations are explored. |
[112] | Wearable and Implantable medical devices (IMDs) and their power supply challenges | - Identified system elements for enabling optimised device operation. - Characteristics required for efficient RFEH implementation. - Identification of gaps in RFEH implementation - Exploration of future research opportunities in the field. |
[113] | Flexible and wearable hybrid RF and solar energy harvesting system for powering wearable electronic devices | - Compared to a single solar cell, the hybrid system provides an additional 35.6–769.5% output power when RF source power varies from 4 to 10 dBm. - The proposed flexible and wearable RF-solar energy harvester has the potential for practical use in powering various devices |
[114] | Harvesting radio frequency energy (RFEH) for self-powered micro-systems | - Improved sensitivity and input power range of the converter. - Better performance compared to previously reported results. - Enables self-powered micro-systems with efficient energy harvesting. |
[115] | Wearable RF energy-localised harvester for powering a Bluetooth sensor module | - Shows potential for powering small electronic devices in wearable applications. - Harvested power density of 2.75 μW/cm2 and supports battery-free Bluetooth temperature and humidity sensor. |
[116] | Challenges with on-device batteries in ultra-low power wearable devices and the emergence of wireless power transmission technologies | - Batteries in wearable devices pose constraints in usability and functionality, including periodic charging and e-waste generation. - Wireless power transmission technologies offer a potential solution for unobtrusive and seamless charging of wearable devices. - Existing solutions, such as RF signals, lasers, and electromagnetic fields, face challenges related to infrastructure requirements and power transmission magnitude. - Further research is needed to develop wireless power transmission technologies that overcome these challenges for wearable devices. |
[115] | Development of a wearable RF energy-localised harvester for powering a Bluetooth sensor module | - The harvester was made of flexible materials for a compact and low-profile design. - The harvested power supports a battery-free Bluetooth humidity sensor and temperature with a power density of 2.75 μW/cm2. - The system demonstration of RF energy harvesting showcases the potential to power small electronic devices for wearable applications. |
[117] | Feasible study of wearable energy neutral operation (ENO) while maintaining robustness in wireless textile body area network (TBAN) | - Reliability and energy issues are challenges faced by TBAN. - Numerical results show stable power levels and improved packet error rate and battery power with the proposed optimisation algorithms. - DQN-based optimisation performs better than Q-Learning, achieving a 14% improvement in PER and 56% improvement in battery pow |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nwalike, E.D.; Ibrahim, K.A.; Crawley, F.; Qin, Q.; Luk, P.; Luo, Z. Harnessing Energy for Wearables: A Review of Radio Frequency Energy Harvesting Technologies. Energies 2023, 16, 5711. https://doi.org/10.3390/en16155711
Nwalike ED, Ibrahim KA, Crawley F, Qin Q, Luk P, Luo Z. Harnessing Energy for Wearables: A Review of Radio Frequency Energy Harvesting Technologies. Energies. 2023; 16(15):5711. https://doi.org/10.3390/en16155711
Chicago/Turabian StyleNwalike, Ezekiel Darlington, Khalifa Aliyu Ibrahim, Fergus Crawley, Qing Qin, Patrick Luk, and Zhenhua Luo. 2023. "Harnessing Energy for Wearables: A Review of Radio Frequency Energy Harvesting Technologies" Energies 16, no. 15: 5711. https://doi.org/10.3390/en16155711
APA StyleNwalike, E. D., Ibrahim, K. A., Crawley, F., Qin, Q., Luk, P., & Luo, Z. (2023). Harnessing Energy for Wearables: A Review of Radio Frequency Energy Harvesting Technologies. Energies, 16(15), 5711. https://doi.org/10.3390/en16155711