A Review of Power Transfer Systems for Light Rail Vehicles: The Case for Capacitive Wireless Power Transfer
Abstract
:1. Introduction
2. Power Transfer Systems for Light Rail Vehicles
2.1. Overhead Catenary System/Pantograph
2.2. Ground-Level Power Supply
2.3. Alimentation Par Sol
2.4. Fourth Rail System
2.5. Summary of Existing Power Systems
- Efficiency: The system must effectively power a fully laden LRV
- Safety: The system must maintain a high level of safety when operating near pedestrian traffic
- Cost: The system must be cost effective to implement and maintain
- Reliability: The system must be robust under continuous working conditions
- Compatibility: The system must be compatible with various LRV chassis, make, model and capacity.
3. Wireless Power Transfer
3.1. Inductive Power Transfer
3.2. Capacitive Power Transfer
4. Comparison of Inductive and Capacitive Wireless Power Transfer Technologies
4.1. Power Transfer Capability and Efficiency
4.2. Misalignment
4.3. External Factors and Safety
4.4. Complexity and Cost
5. Capacitive Power Transfer System
5.1. Working Principles
5.2. Mutual and Parasitic Capacitance Modelling
5.3. Coupling Coefficient
5.4. Load Value and Variation
5.5. Voltage Phase Difference
5.6. Imapct of Misalignment
5.7. Coupler Plate Structure
5.8. Coupler Plate Shape and Material
5.9. Compensation Methods
6. Feasibility of CPT for LRV Systems
6.1. Power Requirements of Existing LRV Networks
LRV | Location | PDM | Length (m) | Width (m) | Max Speed (km/h) | Motor Power (kW) | Auxiliary Power (kW) | Total Power (kW) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Bombardier Flexity 2 | Blackpool, UK | OCS | 32.20 | 2.65 | 70 | 480 | 50 | 530 | [98] |
Alstom Citadis 402 | Paris, France | APS | 42.70 | 2.65 | 60 | N/A | N/A | 720 | [99] |
Alstom Flexity Swift | Melbourne, Australia | OCS | 33.45 | 2.65 | 80 | 510–550 | 50 | 560–600 | [97] |
Stadler Variobahn | Aarhus, Denmark | OCS | 32.56 | 2.65 | 80 | 360 | 50 | 410 | [100] |
Brookville Liberty | Phoenix, USA | OCS/ESS | 20.28 | 2.46 | 77 | 396 | 50 | 446 | [101] |
Alstom Citadis 305 | Sydney, Australia | OCS/APS | 33.45 | 2.65 | 80 | 500 | 50 | 550 |
Name of LRV | Supply Voltage (VDC) | Maximum Power Requirement (kW) | Plating Area Requirement at 51.6 kW/m2 (Ap) (m2) | Available Underside Area (Ab) (m2) | Req. Area of Plating on Underside (%) |
---|---|---|---|---|---|
Bombardier Flexity 2 | 600 | 530 | 10.27 | 53.13 | 19.33 |
Alstom Citadis 402 | 750 | 720 | 13.95 | 72.10 | 19.34 |
Alstom Flexity Swift | 600 | 560–600 | 10.85–11.62 | 5.19 | 19.65–21.05 |
Alstom Citadis 305 | 750 | 550 | 10.65 | 55.20 | 19.30 |
Stadler Variobahn | 750 | 410 | 7.94 | 53.72 | 14.78 |
Brookville Liberty | 750 | 446 | 8.64 | 29.60 | 29.19 |
6.2. Structure of a CPT System for LRV
6.3. Impedance Matching Network
6.4. Safety, Other Factors, Limitations, and Recommendations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The International Assocation of Public Transport. The Global Tram and Light Rail Landscape 2019–2021; UITP: Brussels, Belgium, 2023. [Google Scholar]
- Rail Unit of the UITP Secretariat. The Global Tram and Light Rail Landscape; International Association of Public Transport: Brussels, Belgium, 2019. [Google Scholar]
- Abd Rahman, F.A.; Ab Kadir, M.Z.A.; Osman, M.; Amirulddin, U.A.U. Review of the AC Overhead Wires, the DC Third Rail and the DC Fourth Rail Transit Lines: Issues and Challenges. IEEE Power Energy Soc. Sect. 2022, 8, 213277–213295. [Google Scholar] [CrossRef]
- Alstom. APS: Service-Proven Catenary-Free Tramway Operations, Alstom. 2022. Available online: https://www.alstom.com/our-solutions/infrastructure/aps-service-proven-catenary-free-tramway-operations (accessed on 27 March 2022).
- Marincic, A.S. Nikola Tesla and the Wireless Transmission of Energy. IEEE Trans. Power Appar. Syst. 1982, 10, 4064–4068. [Google Scholar] [CrossRef]
- Erel, M.Z.; Bayindir, K.C.; Aydemir, M.T.; Chaudhary, S.K.; Guerrero, J.M. A Comprehensive Review on Wireless Capacitive Power Transfer Technology: Fundamentals and Applications. IEEE Access 2021, 10, 3116–3143. [Google Scholar] [CrossRef]
- Rossow, M. Wireless Power Transfer for Electric Transit Applications; Federal Transit Administration: Washington, DC, USA, 2014. [Google Scholar]
- Kulkarni, S.; Pappalardo, C.M.; Shabana, A.A. Pantograph/Catenary Contact Formulations. J. Vib. Acoust. 2016, 139, 1–12. [Google Scholar] [CrossRef]
- Kaleybar, H.J.; Brenna, M.; Foiadelli, F.; Fazel, S.S.; Zaninelli, D. Power Quality Phenomena in Electric Railway Power Supply Systems: An Exhaustive Framework and Classification. Energies 2020, 13, 6662. [Google Scholar] [CrossRef]
- Willis, B. File:Pantograph by Brecknell Willis on a TRA EMU300 train.jpg, Brecknill Willis. 15 February 2021. Available online: https://commons.wikimedia.org/wiki/File:Pantograph_by_Brecknell_Willis_on_a_TRA_EMU300_train.jpg (accessed on 24 June 2023).
- Cristopher English, S.Y. Sydney Light Rail Commences Revenue Service: Light Rail returns to the heart of Sydney. In Alstom Press Release; Alstom: Sydney, Australia, 2019. [Google Scholar]
- Scott, R. Warning of Railway Line Dangers after 49 Die on Tracks. BBC News, 15 July 2010. [Google Scholar]
- Giri, S.; Waghmode, A.; Tumram, N.K. Study of different facets of electrocution. Egypt. J. Forensic Sci. 2019, 9, 1–6. [Google Scholar] [CrossRef]
- Bradwel, A. British Rail experience with electrical insulation. In Proceedings of the IEEE Colloquium on Mechanical Influence on Electrical Insulation Performance, London, UK, 28 February 1995. [Google Scholar]
- Meng, H.; Wei, X.; Kang, X.; Yan, Y. Reliability Analysis of the Third Rail System Based on Fault Tree. In Proceedings of the 5th International Conference on Electromechanical Control Technology and Transportation (ICECTT), Nanchang, China, 15–17 May 2020. [Google Scholar]
- Yadav. Traction Choices: Overhead ac vs Third Rail dc. Int. Railw. J. 2013. Available online: https://www.railjournal.com/in_depth/traction-choices-overhead-ac-vs-third-rail-dc/#:~:text=offering%20high%20efficiency%20%2D%20a%20750V,has%20a%20longer%20life%20expectancy (accessed on 28 March 2022).
- White, R. C/DC railway electrification and protection. In Proceedings of the 2008 IET Professional Development course on Electric Traction Systems, Manchester, UK, 3–7 November 2008. [Google Scholar]
- Riley, A. Conductor Rail. British Steel. Available online: https://britishsteel.co.uk/what-we-do/rail/conductor-rail/ (accessed on 30 June 2022).
- Chan, S. Flooding Cripples Subway System. The New York Times. 8 August 2007. Available online: https://cityroom.blogs.nytimes.com/2007/08/08/flooding-cripples-subway-system/ (accessed on 1 April 2022).
- Guerrieri, M. Catenary-Free Tramway Systems: Functional and Cost–Benefit. Urban Rail Transit 2019, 5, 289–309. [Google Scholar] [CrossRef] [Green Version]
- Petin, B. Sydney Light Rail Project—Presentation to Stakeholders. Alstom, 28 April 2016. Available online: https://www.engineersaustralia.org.au/sites/default/files/resource-files/2017-01/sydney_light_rail.pdf (accessed on 1 April 2022).
- Raper, A. Sydney Light Rail Budget Surpassed $3 billion, Auditor-General’s Report Finds. ABC News, 11 June 2020. [Google Scholar]
- Audit Office. CBD South East Sydney Light Rail: Follow-Up Performance Audit; Audit Office of New South Wales: Sydney, Ausrtialia, 2020. [Google Scholar]
- Dekker, N. Stray current control-an overview of options [DC traction systems]. In IEE Seminar on DC Traction Stray Current Control—Offer a Stray a Good Ohm? IET: London, UK, 1999. [Google Scholar]
- Mohammed, A.S.; Mustafa, A.Q.; Layth, A.B.; Ali, A.O.; Crăciunescu, A. A Comparative Study of Capacitive Couplers in Wireless Power Transfer. In Proceedings of the 2018 International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest, Romania, 1–3 November 2018. [Google Scholar]
- Lecluyse, C.; Minnaert, B.; Kleemann, M. A Review of the Current State of Technology of Capacitive Wireless Power Transfer Technology. Energies 2021, 14, 5862. [Google Scholar] [CrossRef]
- Belo, D.; Carvalho, N.B. 2017 11th European Conference on Antennas and Propagation (EUCAP). In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017. [Google Scholar]
- Dai, J.; Ludois, D.C. A Survey of Wireless Power Transfer and a Critical Comparison of Inductive and Capacitive Coupling for Small Gap Applications. IEEE Trans. Power Electron. 2015, 30, 6017–6029. [Google Scholar] [CrossRef]
- Vincent, D.; Huynh, P.S.; Azeez, N.A.; Patnaik, L.; Williamson, S.S. Evolution of Hybrid Inductive and Capacitive AC Links for Wireless EV Charging—A Comparative Overview. IEEE Trans. Transp. Electrif. 2019, 5, 1060–1077. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Lu, F. Review, Analysis, and Design of Four Basic CPT Topologies and the Application of High-Order Compensation Networks. IEEE Trans. Power Electron. 2022, 37, 6181–6193. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, C.; Fei, L. Long-Distance and High-Power Capacitive Power Transfer based on the Double-Sided LC Compensation: Analysis and Design. In Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19–21 June 2019. [Google Scholar]
- Zhang, H.; Zhu, C.; Zheng, S.; Mei, Y.; Lu, F. High Power Capacitive Power Transfer for Electric Aircraft Charging Application. In Proceedings of the 2019 IEEE National Aerospace and Electronics Conference (NAECON), Dayton, OH, USA, 15–19 July 2019. [Google Scholar]
- Zhang, H.; Lu, F.; Hofmann, H.; Liu, W.; Mi, C.C. A Four-Plate Compact Capacitive Coupler Design and LCL-Compensated Topology for Capacitive Power Transfer in Electric Vehicle Charging Application. IEEE Trans. Power Electron. 2016, 31, 8541–8551. [Google Scholar]
- Lu, F.; Zhang, H.; Mi, C. A Review on the Recent Development of Capacitive Wireless Power Transfer Technology. Energies 2017, 10, 1752. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yuan, X.; Wang, C.; He, Y. Comparative Analysis of Two-Coil and Three-Coil Structures for Wireless Power Transfer. IEEE Trans. Power Electron. 2016, 32, 341–352. [Google Scholar] [CrossRef]
- Mahesh, A.; Chokkalingam, B.; Mihet-Popa, L. Review on Inductive Wireless Power Transfer Charging for Electric vehicles—A Review. IEEE Access 2021, 1, 99. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, B.-S.; Lee, J.-H.; Lee, S.-H.; Park, C.-B.; Jung, S.-M.; Lee, S.-G.; Yi, K.-P. Development of 1-MW Inductive Power Transfer System for a High-Speed Train. IEEE Trans. Ind. Electron. 2015, 62, 6242–6250. [Google Scholar] [CrossRef]
- Barsari, V.Z.; Thrimawithana, D.J.; Covic, G.A.; Kim, S. A Switchable Inductively Coupled Connector for IPT Roadway Applications. In Proceedings of the 2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Seoul, Republic of Korea, 15–19 November 2020. [Google Scholar]
- Huh, J.; Lee, S.W.; Lee, W.Y.; Cho, G.H.; Rim, C.T. Narrow-Width Inductive Power Transfer System for Online Electrical Vehicles. IEEE Trans. Power Electron. 2011, 26, 3666–3679. [Google Scholar] [CrossRef]
- Ning, P.; Miller, J.M.; Onar, O.C.; White, C.P. A compact wireless charging system for electric vehicles. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013. [Google Scholar]
- Lu, F.; Zhang, H.; Hofmann, H.; Mi, C.C. A Double-Sided LC-Compensation Circuit for Loosely Coupled Capacitive Power Transfer. IEEE Trans. Power Electron. 2018, 33, 1633–1643. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Park, S.-J.; Kim, D.-H. A Comparative Study of S-S and LCCL-S Compensation Topologies in Inductive Power Transfer Systems for Electric Vehicles. Energies 2019, 12, 1913. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Wu, D.; Yu, J. A Design Method of Compensation Circuit for High-Power Dynamic Capacitive Power Transfer System Considering Coupler Voltage Distribution for Railway Applications. Electronics 2021, 10, 153. [Google Scholar] [CrossRef]
- Regensburger, B.; Kumar, A.; Sinha, S.; Xu, J.; Afridi, K.K. High-Efficiency High-Power-Transfer-Density Capacitive Wireless Power Transfer System for Electric Vehicle Charging Utilizing Semi-Toroidal Interleaved-Foil Coupled Inductors. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 17–21 March 2019. [Google Scholar]
- Regensburger, B.; Estrada, J.; Kumar, A.; Sinha, S.; Popvic, Z.; Afridi, K.K. High-Performance Capacitive Wireless Power Transfer System for Electric Vehicle Charging with Enhanced Coupling Plate Design. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018. [Google Scholar]
- Regensburger, B.; Kumar, A.; Sinha, S.; Afridi, K.K. Impact of Foreign Objects on the Performance of Capacitive Wireless Charging Systems for Electric Vehicles. In Proceedings of the 2018 IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, USA, 13–15 June 2018. [Google Scholar]
- Lu, F.; Hofmann, H.; Mi, C. A Double-Sided LCLC-Compensated Capacitive Power Transfer System for Electric Vehicle Charging. IEEE Trans. Power Electron. 2015, 30, 6011–6014. [Google Scholar] [CrossRef]
- Behnamfar, M.; Javadi, H.; Afjei, E. A dynamic CPT system LC Compensated with a six-plate capacitive coupler for wireless charging of electric vehicle in motion. In Proceedings of the Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 4–6 August 2020. [Google Scholar]
- Lou, B.; Xu, L.; Long, T.; Xu, Y.; Mai, R.; He, Z. An LC-CLC Compensated CPT System to Achieve the Maximum Power Transfer for High Power Applications. In Proceedings of the Annual IEEE Conference on Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020. [Google Scholar]
- Zhang, H.; Lu, F.; Hofmann, H.; Liu, W.; Mi, C.C. Six-Plate Capacitive Coupler to Reduce Electric Field Emission in Large Air-Gap Capacitive Power Transfer. IEEE Trans. Power Electron. 2017, 33, 665–675. [Google Scholar] [CrossRef]
- Luo, B.; Mai, R.; Shi, R.; He, Z. Analysis and designed of three-phase capacitive coupled wireless power transfer for high power charging system. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018. [Google Scholar]
- Lu, F.; Zhang, H.; Hofmann, H.; Mi, C. A CLLC-compensated high power and large air-gap capacitive power transfer system for electric vehicle charging applications. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016. [Google Scholar]
- Sinha, S.; Regensburger, B.; Doubleday, K.; Kumar, A.; Pervaiz, S.; Afridi, K.K. High-power-transfer-density capacitive wireless power transfer system for electric vehicle charging. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017. [Google Scholar]
- Mahdi, H.; Hattori, R.; Hoff, B.; Uezu, A.; Akiyoshi, K. Design Considerations of Capacitive Power Transfer Systems. IEEE Access 2023, 11, 57806–57818. [Google Scholar] [CrossRef]
- Chen, F.; Kringos, N. Towards new infrastructure materials for on-the-road charging. In Proceedings of the 2014 IEEE International Electric Vehicle Conference (IEVC), Florence, Italy, 17–19 December 2014. [Google Scholar]
- Villar, I.; Garcia-Bediaga, A.; Iruretagoyena, U.; Arregi, R.; Estevez, P. Design and experimental validation of a 50kW IPT for Railway Traction Applications. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018. [Google Scholar]
- Chen, L.; Nagendra, G.R.; Boys, J.T.; Covic, G.A. Double-Coupled Systems for IPT Roadway Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 3, 37–40. [Google Scholar] [CrossRef]
- Nama, J.K.; Verma, A.K. An Efficient Wireless Charger for Electric Vehicle Battery Charging. In Proceedings of the 2020 IEEE 9th Power India International Conference (PIICON), Sonepat, India, 28 February–1 March 2020. [Google Scholar]
- Schönberg, J. Bombardier’s PRIMOVE Technology Enters Service on Scandinavia’s First Inductively Charged Bus Line. Bombardier, 7 December 2016. [Google Scholar]
- Kim, J.; Kim, H.; Kim, D.; Park, J.; Park, B.; Huh, S.; Ahn, S. Analysis of Eddy Current Loss for Wireless Power Transfer in Conductive Medium Using Z parameters Method. In Proceedings of the IEEE Wireless Power Transfer Conference, Seoul, Republic of Korea, 15–19 November 2020. [Google Scholar]
- Yashima, Y.; Omori, H.; Morizane, T.; Nakaoka, M. Leakage Magnetic Field Reduction from New Eddy Current-based Shielding Method Wireless Power Transfer System Embedding. In Proceedings of the 2015 International Conference on Electrical Drives and Power Electronics (EDPE), The High Tatras, Slovakia, 21–23 September 2015. [Google Scholar]
- Zhang, W.; White, J.C.; Abraham, A.M.; Mi, C.C. Loosely Coupled Transformer Structure and Interoperability Study for EV Wireless Charging Systems. IEEE Trans. Power Electron. 2015, 30, 6356–6367. [Google Scholar] [CrossRef]
- Tran, M.T.; Thekkan, S.; Polat, H.; Tran, D.-D.; Baghdadi, M.E.; Hegazy, O. Inductive Wireless Power Transfer Systems for Low-Voltage and High-Current Electric Mobility Applications: Review and Design Example. Energies 2023, 16, 2953. [Google Scholar] [CrossRef]
- Nutwong, S.; Sangswang, A.; Naetiladdanon, S.; Mujjalinvimut, E. Comparative Study of IPT Multi-Transmitter Coils Single-Receiver Coil System Focusing on Misalignment Tolerance and System Efficiency. In Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Republic of Korea, 7–10 October 2018. [Google Scholar]
- Sritongon, C.; Wisestherrakul, P.; Hansupho, N.; Nutwong, S.; Sangswang, A.; Naetiladdanon, S. Novel IPT Multi-Transmitter Coils with Increase Misalignment Tolerance and System Efficiency. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018. [Google Scholar]
- Chen, Y.; Mai, R.; Zhang, Y.; Li, M.; He, Z. Improving Misalignment Tolerance for IPT System Using a Third-Coil. IEEE Trans. Power Electron. 2019, 34, 3009–3013. [Google Scholar] [CrossRef]
- Mai, R.; Yang, B.; Chen, Y.; Yang, N.; He, Z.; Gao, S. A Misalignment Tolerant IPT System with Intermediate Coils for Constant-Current Output. IEEE Trans. Power Electron. 2019, 34, 7151–7155. [Google Scholar] [CrossRef]
- Lu, F.; Zhang, H.; Mi, C. A Two-Plate Capacitive Wireless Power Transfer System for Electric Vehicle Charging Applications. IEEE Trans. Power Electron. 2018, 33, 964–969. [Google Scholar] [CrossRef]
- Elekhtiar, A.; Eltagy, L.; Zamzam, T.; Massoud, A. Design of a capacitive power transfer system for charging of electric vehicles. In Proceedings of the 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang, Malaysia, 28–29 April 2018. [Google Scholar]
- IEEE C95.1-1995; IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. IEEE Standards Coordinating Committee: Piscataway, NJ, USA, 1999.
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar] [CrossRef]
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for Limiting Exposure to Time-Varying Electric and Magnetic Fields (1 Hz to 100 kHz). Health Phys. 2010, 99, 818–836. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.C. Safety of Wireless Power Transfer. IEEE Access 2021, 9, 125342–125347. [Google Scholar] [CrossRef]
- Muharam, A.; Ahmad, S.; Hattori, R.; Hapid, A. 13.56 MHz Scalable Shielded-Capacitive Power Transfer for Electric Vehicle Wireless Charging. In Proceedings of the 2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Seoul, Republic of Korea, 15–19 November 2020. [Google Scholar]
- Yi, K.; Jung, J.; Lee, B.-H.; You, Y. Study on a capacitive coupling wireless power transfer with electric vehicle’s dielectric substrates for charging an electric vehicle. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw, Poland, 11–14 September 2017. [Google Scholar]
- MSWire Industries. Speciality Wire—Litz Wire, MSWire. 2022. Available online: https://mwswire.com/specialty-wire/litz-wire/ (accessed on 30 April 2022).
- Wang, W.; Zhou, L.; Eull, M.; Preindl, M. Comparison of Litz Wire and PCB Inductor Designs for Bidirectional Transformerless EV Charger with High Efficiency. In Proceedings of the 2021 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 21–25 June 2021. [Google Scholar]
- Luo, B.; Hu, A.P.; Munir, H.; Zhu, Q.; Mai, R.; He, Z. Compensation Network Design of CPT Systems for Achieving Maximum Power Transfer Under Coupling Voltage Constraints. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 138–148. [Google Scholar] [CrossRef]
- Liu, C.; Hu, A.P. Steady state analysis of a capacitively coupled contactless power transfer system. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009. [Google Scholar]
- Al-Saad, M.; Fadel, M.; Al-Chlaihawi, S.; Craciunescu, A. Capacitive Power Transfer for Wireless Batteries Charging. Electroteh. Electron. Autom. 2018, 66, 40–51. [Google Scholar]
- Al-Saadi, M.; Al-Gizi, A.G.; Ahmed, S.; Craciunescu, A. Analysis of Charge Plate Configurations in Unipolar Capacitive Power Transfer System for the Electric Vehicles Batteries Charging. Procedia Manuf. 2019, 32, 418–425. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; He, X.; Luo, B.; Mai, R. Research and Application of Capacitive Power Transfer System. Electronics 2022, 11, 1158. [Google Scholar] [CrossRef]
- Sedehi, R.; Budgett, D.; Hu, A.P.; Mccormick, D. Effects of Conductive Tissue on Capacitive Wireless Power Transfer. In Proceedings of the WoW 2018, Montreal, QC, Canada, 3–7 June 2018. [Google Scholar]
- Huang, L.; Hu, A. Defining the mutual coupling of capacitivepower transfer for wireless power transfer. Electron. Lett. 2015, 51, 1806–1807. [Google Scholar] [CrossRef]
- Theodoridis, M.P. Effective Capacitive Power Transfer. IEEE Trans. Power Electron. 2012, 27, 4906–4913. [Google Scholar] [CrossRef]
- Luo, B.; Mai, R.; Chen, Y.; Zhang, Y.; He, Z. A voltage stress optimization method of capacitive power transfer charging system. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017. [Google Scholar]
- Bui, D.; Mostafa, T.M.; Hu, A.P.; Hattori, R. DC-DC Converter Based Impedance Matching for Maximum Power Transfer of CPT System with High Efficiency. In Proceedings of the 2018 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (Wow), Montreal, QC, Canada, 3–7 June 2018. [Google Scholar]
- Qing, X.; Su, Y.; Hu, A.P.; Dai, X.; Liu, Z. Dual-loop Control Method for CPT System under Coupling Misalignments and Load Variations. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 10, 4902–4912. [Google Scholar] [CrossRef]
- Zou, L.J.; Hu, A.P.; Su, Y.-G. A single-wire capacitive power transfer system with large coupling alignment tolerance. In Proceedings of the 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, China, 20–22 May 2017. [Google Scholar]
- Liu, C.; Hu, A.P.; Dai, X. A contactless power transfer system with capacitively coupled matrix pad. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Pheonix, AZ, USA, 17–22 September 2011. [Google Scholar]
- FRahman, K.A.; Saat, S.; Khafe, A.; Yusop, Y.; Husin, S.H.; Jamaluddin, M.H. Efficiency comparison of capacitive wireless power transfer for different materials. Int. J. Power Electron. Drive Syst. IJPEDS 2020, 11, 200–212. [Google Scholar]
- Ge, B.; Ludois, D.C.; Perez, R. The use of dielectric coatings in capacitive power transfer systems. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014. [Google Scholar]
- Choi, J.; Tsukiyama, D.; Tsuruda, Y.; Davila, J.M.R. High-Frequency, High-Power Resonant Inverter With eGaN FET for Wireless Power Transfer. IEEE Trans. Power Electron. 2018, 33, 1890–1896. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Chen, R.; Viswanathan, A. Survey of Resonant Converter Topologies. In Power Supply Design Seminar; Texas Instruments Incorporated: Dallas, TX, USA, 2018. [Google Scholar]
- Kodeeswaran, S.; Gayathri, M.N. Performance Investigation of Capacitive Wireless Charging Topologies for Electric Vehicles. In Proceedings of the 2021 International Conference on Innovative Trends in Information Technology (ICITIIT), Kottayam, India, 11–12 February 2021. [Google Scholar]
- Al-Saadi, M.; Hussien, E.A.; Ahmed, S.; Craciunescu, A. Comparative Study of Compensation Circuit Topologies in 6.6 kW Capacitive Power Transfer System. In Proceedings of the 2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 28–30 March 2019. [Google Scholar]
- Anderson, D.E.; Croset, A. New Traction Power Technologies to Improve the Melbourne Tram Network; Department of Transport Victoria: Melbourne, Austrialia, 2019. [Google Scholar]
- Gebauer, H. Flexity 2 Tram; Bombardier: Vienna, Austria, 2012. [Google Scholar]
- Alstom. Rolling Stock Tramway Citadis Marchaux—Paris Citadis Line T3; Alstom: Montreal, QC, Canada, 2012. [Google Scholar]
- Stadler Group. Variobahn Low-Floor Light Rail Vehicle; Stadler Group: Aarhus, Denmark, 2016. [Google Scholar]
- Brookville Corp. Liberty Modern Streetcars; Brookville Corp: Brookville, PA, USA, 2012. [Google Scholar]
- Transport Assets Standards Authority. Traction Power Supply Infrastructure and Light Rail Vehicle Interface T LR EL 00007 ST; Transport Asset Standards Authority: Sydney, NSW, Australia, 2018. [Google Scholar]
- Su, Y.-G.; Xie, S.-Y.; Hu, A.P.; Tang, C.-S.; Zhou, W.; Huang, L. Capacitive Power Transfer System with a Mixed-Resonant Topology for Constant-Current Multiple-Pickup Applications. IEEE Trans. Power Electron. 2017, 32, 8778–8786. [Google Scholar] [CrossRef]
- Chopra, S.; Bauer, P. Driving Range Extension of EV With On-Road Contactless Power Transfer—A Case Study. IEEE Trans. Ind. Electron. 2011, 60, 329–338. [Google Scholar] [CrossRef]
- Dai, J.; Ludois, D.C. Capacitive Power Transfer Through a Conformal Bumper for Electric Vehicle Charging. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1015–1025. [Google Scholar] [CrossRef]
- Adamowicz, M.; Szewczyk, J. SiC-Based Power Electronic Traction Transformer (PETT) for 3 kV DC Rail Traction. Energies 2020, 13, 5573. [Google Scholar] [CrossRef]
- Alstom. Alstom Presents APS for Road, Its Innovative Electric Road Solution, Alstom, 11 November 2017. Available online: https://www.alstom.com/press-releases-news/2017/11/alstom-presents-aps-for-road-its-innovative-electric-road-solution (accessed on 28 March 2022).
- Yi, Z.; Chen, Z.; Yin, K. Sensing as the key to the safety and sustainability of new energy storage devices. Prot. Control Mod. Power Syst. 2023, 8, 1–22. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, D.; Du, J.; Sun, H.; Li, L.; Wang, L.; Wang, K. A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms. Energies 2022, 16, 3167. [Google Scholar] [CrossRef]
Technology | Advantages | Challenges |
---|---|---|
OCS |
|
|
Ground-Level Power Supply (incl APS) |
|
|
Plate Structure | Resonance Topology | Size of Plate (m2) | Power Transfer (W) | Eff (%) | Power Density/1 m2 (W) | Gap (mm) | Source |
---|---|---|---|---|---|---|---|
4 Plate | LCLC | 0.37 | 2400 | 90.8 | 3243.2 | 150 | [47] |
6 Plate | LC | 0.18 | 261 | 90 | 725.0 | 150 | [48] |
4 Plate | LC-CLC | 0.42 | 2040 | 90.3 | 2428.6 | 150 | [49] |
6 Plate | LCL | 0.37 | 1970 | 91.6 | 2662.2 | 150 | [50] |
4 Plate | LCLC-CL | 0.0625 | 3000 | 92.46 | 24,000.0 | 40 | [43] |
6 Plate | CLC | 0.25 | 2100 | 87.77 | 4200.0 | 150 | [51] |
4 Plate | CLLC | 0.37 | 2570 | 89.3 | 3473.0 | 150 | [52] |
4 Plate | LC | 0.03 | 1530 | 97.1 | 25,500.0 | 20 | [32] |
4 Plate | LC | 0.0118 | 1217 | 74.7 | 51,567.8 | 150 | [45] |
2 Plate | LC | 0.015 | 589 | N/A | 19,633.3 | 120 | [53] |
4 Plate | LCL | 0.038 | 2.25 | 93–94 | 29,600.0 | 120 | [44] |
4 Plate | L | 0.0375 | 100 | 87.4 | 2666.67 | 30 | [54] |
Factor of Design | IPT | CPT |
---|---|---|
Power transfer | <800 kW | <50 kW |
Efficiency | Up to 95% | Up to 95% |
Performance with misalignment | Poor (<150 mm) | Excellent (<300 mm) |
Viable airgap distance | 100–500 mm | <150 mm |
Operating frequency | 20 kHz–10 MHz | 20 kHz–26 MHz |
Safety factors | Safety risks and fire hazards due to heat generated from eddy currents, Magnetic fields around coupling at high PT, No risk of dielectric breakdown | No eddy currents, Electric fields around coupling during high PT, Risk of dielectric breakdown |
Main contributing factor to losses | Losses due to eddy currents in plates and nearby objects | Losses due to low coupling between plates |
Cost | High-cost materials (ferrite cores and Litz wire) | Low-cost materials (i.e., aluminium plates) |
LC Series | CL Parallel | LC Parallel | LCL | LCLC | |
---|---|---|---|---|---|
Frequency Bandwidth | Wide | Wide | Moderate | Narrow | Narrow |
Component Stresses | Lowest | High | Low | High | Moderate |
Type of Resonance | Series resonance | Parallel resonance | Parallel resonance | Parallel resonance | Parallel resonance |
Complexity | Low | Low | Moderate | High | Highest |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
John Williams, K.; Wiseman, K.; Deilami, S.; Town, G.; Taghizadeh, F. A Review of Power Transfer Systems for Light Rail Vehicles: The Case for Capacitive Wireless Power Transfer. Energies 2023, 16, 5750. https://doi.org/10.3390/en16155750
John Williams K, Wiseman K, Deilami S, Town G, Taghizadeh F. A Review of Power Transfer Systems for Light Rail Vehicles: The Case for Capacitive Wireless Power Transfer. Energies. 2023; 16(15):5750. https://doi.org/10.3390/en16155750
Chicago/Turabian StyleJohn Williams, Kyle, Kade Wiseman, Sara Deilami, Graham Town, and Foad Taghizadeh. 2023. "A Review of Power Transfer Systems for Light Rail Vehicles: The Case for Capacitive Wireless Power Transfer" Energies 16, no. 15: 5750. https://doi.org/10.3390/en16155750
APA StyleJohn Williams, K., Wiseman, K., Deilami, S., Town, G., & Taghizadeh, F. (2023). A Review of Power Transfer Systems for Light Rail Vehicles: The Case for Capacitive Wireless Power Transfer. Energies, 16(15), 5750. https://doi.org/10.3390/en16155750