Concurrent Design of Alloy Compositions of CZTSSe and CdZnS Using SCAPS Simulation: Potential Routes to Overcoming VOC Deficit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Structure and Material Parameters
2.2. Numerical Simulation Methodology and MODELS
3. Results and Discussion
3.1. Calibration versus Experimental Work
3.2. Codesign and Optimization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Renewables 2019—Analysis—IEA. Available online: https://www.iea.org/reports/renewables-2019 (accessed on 1 March 2023).
- Okil, M.; Salem, M.S.; Abdolkader, T.M.; Shaker, A. From Crystalline to Low-cost Silicon-based Solar Cells: A Review. Silicon 2021, 14, 1895–1911. [Google Scholar] [CrossRef]
- Salem, M.S.; Zekry, A.; Shaker, A.; Abouelatta, M. Design and simulation of proposed low cost solar cell structures based on heavily doped silicon wafers. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 2393–2397. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H. Nanowires for High-Efficiency, Low-Cost Solar Photovoltaics. Crystals 2019, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Salem, M.S.; Alzahrani, A.J.; Ramadan, R.A.; Alanazi, A.; Shaker, A.; Abouelatta, M.; Gontrand, C.; Elbanna, M.; Zekry, A. Physically Based Analytical Model of Heavily Doped Silicon Wafers Based Proposed Solar Cell Microstructure. IEEE Access 2020, 8, 138898–138906. [Google Scholar] [CrossRef]
- Salhi, B. The Photovoltaic Cell Based on CIGS: Principles and Technologies. Materials 2022, 15, 1908. [Google Scholar] [CrossRef] [PubMed]
- Mabvuer, F.T.; Nya, F.T.; Kenfack, G.M.D.; Laref, A. Lowering Cost Approach for CIGS-Based Solar Cell Through Optimizing Band Gap Profile and Doping of Stacked Active Layers—SCAPS Modeling. ACS Omega 2023, 8, 3917–3928. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, T.I. Current spray-coating approaches to manufacture perovskite solar cells. Results Phys. 2023, 44, 106144. [Google Scholar] [CrossRef]
- Khattak, Y.H.; Baig, F.; Toura, H.; Ullah, S.; Marí, B.; Beg, S.; Ullah, H. Effect of CZTSe BSF and minority carrier life time on the efficiency enhancement of CZTS kesterite solar cell. Curr. Appl. Phys. 2018, 18, 633–641. [Google Scholar] [CrossRef]
- Mohammadnejad, S.; Parashkouh, A.B. CZTSSe solar cell efficiency improvement using a new band-gap grading model in absorber layer. Appl. Phys. A 2017, 123, 758. [Google Scholar] [CrossRef]
- Et-Taya, L.; Ouslimane, T.; Benami, A. Numerical analysis of earth-abundant Cu2ZnSn(SxSe1-x)4 solar cells based on Spectroscopic Ellipsometry results by using SCAPS-1D. Sol. Energy 2020, 201, 827–835. [Google Scholar] [CrossRef]
- Kim, J.; Hiroi, H.; Todorov, T.K.; Gunawan, O.; Kuwahara, M.; Gokmen, T.; Nair, D.; Hopstaken, M.; Shin, B.; Lee, Y.S.; et al. High Efficiency Cu2ZnSn(S,Se)4Solar Cells by Applying a Double In2S3/CdS Emitter. Adv. Mater. 2014, 26, 7427–7431. [Google Scholar] [CrossRef]
- Yang, K.-J.; Son, D.-H.; Sung, S.-J.; Sim, J.-H.; Kim, Y.-I.; Park, S.-N.; Jeon, D.-H.; Kim, J.; Hwang, D.-K.; Jeon, C.-W.; et al. A band-gap-graded CZTSSe solar cell with 12.3% efficiency. J. Mater. Chem. A 2016, 4, 10151–10158. [Google Scholar] [CrossRef]
- Rühle, S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 2016, 130, 139–147. [Google Scholar] [CrossRef]
- Dermenji, L.; Guc, M.; Gurieva, G.; Dittrich, T.; Rappich, J.; Curmei, N.; Bruc, L.; Sherban, D.; Simashkevich, A.; Schorr, S.; et al. Thin films of (AgxCu1−x)2ZnSn(S,Se)4 (x = 0.05–0.20) prepared by spray pyrolysis. Thin Solid Films 2019, 690, 137532. [Google Scholar] [CrossRef]
- Li, S.; Lloyd, M.A.; McCandless, B.E.; Baxter, J.B. Effects of cation composition on carrier dynamics and photovoltaic performance in Cu2ZnSnSe4 monocrystal solar cells. Sol. Energy Mater. Sol. Cells 2020, 205, 110255. [Google Scholar] [CrossRef]
- Gao, S.; Jiang, Z.; Wu, L.; Ao, J.; Zeng, Y.; Sun, Y.; Zhang, Y. Interfaces of high-efficiency kesterite Cu2ZnSnS(e)4thin film solar cells. Chin. Phys. B 2018, 27, 018803. [Google Scholar] [CrossRef] [Green Version]
- Basyoni, M.S.S.; Salah, M.M.; Mousa, M.; Shaker, A.; Zekry, A.; Abouelatta, M.; Alshammari, M.T.; Al-Dhlan, K.A.; Gontrand, C. On the Investigation of Interface Defects of Solar Cells: Lead-Based vs Lead-Free Perovskite. IEEE Access 2021, 9, 130221–130232. [Google Scholar] [CrossRef]
- Yan, C.; Sun, K.; Liu, F.; Huang, J.; Zhou, F.; Hao, X. Boost Voc of pure sulfide kesterite solar cell via a double CZTS layer stacks. Sol. Energy Mater. Sol. Cells 2017, 160, 7–11. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.; Ryu, S.; Oh, J.; Shin, B. Improving the open-circuit voltage of Cu2ZnSnSe4 thin film solar cells via interface passivation. Prog. Photovolt. Res. Appl. 2017, 25, 308–317. [Google Scholar] [CrossRef]
- Enkhbat, T.; Enkhbayar, E.; Sharif, H.; Mina, S.; Song, S.; Kim, J. Insights into High-Efficiency Ag-Alloyed CZTSSe Solar Cells Fabricated through Aqueous Spray Deposition. ACS Appl. Mater. Interfaces 2021, 13, 45426–45434. [Google Scholar] [CrossRef]
- O’Neill, A.; Jo, E.; Choi, E.; Park, J.; Kim, J.H.; Yun, J.S.; Seidel, J. Enhancing CZTSSe solar cells through electric field induced ion migration. J. Mater. Chem. A 2022, 10, 5642–5649. [Google Scholar] [CrossRef]
- Pakštas, V.; Grincienė, G.; Selskis, A.; Balakauskas, S.; Talaikis, M.; Bruc, L.; Curmei, N.; Niaura, G.; Franckevičius, M. Improvement of CZTSSe film quality and superstrate solar cell performance through optimized post-deposition annealing. Sci. Rep. 2022, 12, 1–9. [Google Scholar] [CrossRef]
- Shaker, A.; Salem, M.S.; Jayan, K.D. Analysis and design of p-n homojunction Sb2Se3 solar cells by numerical simulation. Sol. Energy 2022, 242, 276–286. [Google Scholar] [CrossRef]
- Salem, M.S.; Shaker, A.; Almurayziq, T.S.; Alshammari, M.T. Prospective efficiency boosting of full-inorganic single-junction Sb2(S, Se)3 solar cell. Sol. Energy Mater. Sol. Cells 2022, 248, 112001. [Google Scholar] [CrossRef]
- Minbashi, M.; Ghobadi, A.; Yazdani, E.; Kordbacheh, A.A.; Hajjiah, A. Efficiency enhancement of CZTSSe solar cells via screening the absorber layer by examining of different possible defects. Sci. Rep. 2020, 10, 21813. [Google Scholar] [CrossRef] [PubMed]
- Et-Taya, L.; Benami, A.; Ouslimane, T. Study of CZTSSe-Based Solar Cells with Different ETMs by SCAPS. Sustainability 2022, 14, 1916. [Google Scholar] [CrossRef]
- Pandey, K.; Patel, A.K.; Mishra, R. Numerical study on performance enhancement of CZTSSe solar cells with Cu2O and MoTe2 as hole transport layer. J. Comput. Electron. 2022, 21, 895–904. [Google Scholar] [CrossRef]
- Yousefi, M.; Minbashi, M.; Monfared, Z.; Memarian, N.; Hajjiah, A. Improving the efficiency of CZTSSe solar cells by engineering the lattice defects in the absorber layer. Sol. Energy 2020, 208, 884–893. [Google Scholar] [CrossRef]
- Burgelman, M.; Decock, K.; Niemegeers, A.; Verschraegen, J.; Degrave, S. SCAPS Manual; University of Gent: Ghent, Belgium, 2014. [Google Scholar]
- Burgelman, M.; Verschraegen, J.; Degrave, S.; Nollet, P. Modeling thin-film PV devices. Prog. Photovolt. Res. Appl. 2004, 12, 143–153. [Google Scholar] [CrossRef]
- Meher, S.; Balakrishnan, L.; Alex, Z. Analysis of Cu2ZnSnS4/CdS based photovoltaic cell: A numerical simulation approach. Superlattices Microstruct. 2016, 100, 703–722. [Google Scholar] [CrossRef]
- Smets, A.H.M.; Jäger, K.; Isabella, O.; van Swaaij, R.A.; Zeman, M. Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems; UIT Cambridge: Cambridge, UK, 2016; p. 462. [Google Scholar]
- Green, M.L.; Choi, C.L.; Hattrick-Simpers, J.R.; Joshi, A.M.; Takeuchi, I.; Barron, S.C.; Campo, E.; Chiang, T.; Empedocles, S.; Gregoire, J.M.; et al. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Appl. Phys. Rev. 2017, 4, 011105. [Google Scholar] [CrossRef] [Green Version]
- Welch, A.W.; Baranowski, L.L.; Peng, H.; Hempel, H.; Eichberger, R.; Unold, T.; Lany, S.; Wolden, C.; Zakutayev, A. Trade-Offs in Thin Film Solar Cells with Layered Chalcostibite Photovoltaic Absorbers. Adv. Energy Mater. 2017, 7, 1601935. [Google Scholar] [CrossRef]
- Collord, A.D.; Xin, H.; Hillhouse, H.W. Combinatorial Exploration of the Effects of Intrinsic and Extrinsic Defects in Cu2ZnSn(S,Se)4. IEEE J. Photovolt. 2015, 5, 288–298. [Google Scholar] [CrossRef]
- Yordanov, G.H.; Midtgard, O.-M.; Saetre, T.O. Equivalent cell temperature calculation for PV modules with variable ideality factors. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; Volume 2012, pp. 505–508. [Google Scholar] [CrossRef]
- Hanak, J.; Bykov, E.; Elgamel, H.; Grecu, D.; Putt, J.; Reiter, N.; Shvydka, D.; Powell, R. Rapid optimization of CdTe(1-x)Sx absorber films and PV devices by means of the combinatorial method. In Proceedings of the Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference—2000 (Cat. No.00CH37036), Anchorage, AK, USA, 15–22 September 2000; pp. 495–498. [Google Scholar] [CrossRef]
- Mokurala, K.; Baranowski, L.L.; Lucas, F.W.D.S.; Siol, S.; van Hest, M.F.A.M.; Mallick, S.; Bhargava, P.; Zakutayev, A. Combinatorial Chemical Bath Deposition of CdS Contacts for Chalcogenide Photovoltaics. ACS Comb. Sci. 2016, 18, 583–589. [Google Scholar] [CrossRef]
- Woods-Robinson, R.; Han, Y.; Mangum, J.S.; Melamed, C.L.; Gorman, B.P.; Mehta, A.; Persson, K.A.; Zakutayev, A. Combinatorial Tuning of Structural and Optoelectronic Properties in CuxZn1−xS. Matter 2019, 1, 862–880. [Google Scholar] [CrossRef] [Green Version]
- Zakutayev, A.; Perkins, J.D.; Parilla, P.A.; Widjonarko, N.E.; Sigdel, A.K.; Berry, J.J.; Ginley, D.S. Zn-Ni-Co-O wide-band-gap p-type conductive oxides with high work functions. MRS Commun. 2011, 1, 23–26. [Google Scholar] [CrossRef]
- Rodríguez Martínez, X. Development of Organic Solar Cells by Combinatorial Methods. 2020. Available online: https://ddd.uab.cat/record/240960 (accessed on 22 March 2023).
- Minemoto, T.; Murata, M. Theoretical Analysis on Effect of Band Offsets in Perovskite Solar Cells. In Solar Energy Materials and Solar Cells; Elsevier: Amsterdam, The Netherlands, 2015; Available online: https://www.sciencedirect.com/science/article/pii/S0927024814005674 (accessed on 1 January 2023).
- Shockley, W.; Queisser, H.J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Chen, J.; Ge, L.; Li, Y.; Zhao, Y.; Wang, C. Synthesis of CdZnS buffer layer and its impact on Cu2ZnSn(S, Se)4 thin film solar cells. J. Mater. Sci. Mater. Electron. 2022, 33, 2399–2405. [Google Scholar] [CrossRef]
- Jhuma, F.A.; Shaily, M.Z.; Rashid, M.J. Towards high-efficiency CZTS solar cell through buffer layer optimization. Mater. Renew. Sustain. Energy 2019, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Benabbas, S.; Er, Z.; Bouchama, I.; Rouabah, Z.; Bouarissa, N.; Boudour, S.; Saeed, M.A. Optimization of Chalcogenide CdTe, CZTS and CZTSe Solar Cells PerformancesUsing Cd1-xZnxS Buffer Layer Dilute magnetic semiconductors View project Defect Analysis & computational physics View project Zahir Rouabah. Iran. J. Chem. Chem. Eng. Int. 2022, 41, 1360–1369. [Google Scholar] [CrossRef]
- Sun, S.; Guo, J.; Hao, R.; Aierken, A.; Liu, B.; Gu, K.; Wang, L.; Ma, X.; Wei, G.; Cai, J.; et al. Influence of Cd0.6Zn0.4S buffer layer on the band alignment and the performance of CZTS thin film solar cells. Opt. Mater. 2020, 112, 110666. [Google Scholar] [CrossRef]
- Khan, I.S.; Ablekim, T.; McGott, D.L.; Good, B.; Perkins, C.L.; Metzger, W.K.; Zakutayev, A. Codesigning Alloy Compositions of CdSeyTe1−y Absorbers and MgxZn1−xO Contacts to Increase Solar Cell Efficiency. Sol. RRL 2022, 6, 2200394. [Google Scholar] [CrossRef]
Parameter | Material | Unit | |||||
---|---|---|---|---|---|---|---|
AZO | ZnO(i) | CdS | MoSSe | CZTSSe | CdZnS | ||
Thickness | 300 | 50 | 50 | 350 | 1800 | 50 | nm |
Electron affinity | 4.40 | 4.40 | 4.2 | 4.14 | Var | 4.3–3.18 | eV |
Bandgap | 3.3 | 3.3 | 2.4 | 1.1 | Var | 2.42–3.54 | eV |
dielectric permittivity | 9.000 | 9.000 | 10.000 | 13.6 | 10 | 9 | relative |
CB effective density of states | 1 × 1018 | 1 × 1018 | 1 × 1018 | 2.2 × 1018 | 2.2 × 1018 | 2.2 × 1018 | cm−3 |
VB effective density of states | 1 × 1019 | 1 × 1019 | 1 × 1019 | 1.8 × 1019 | 1.8 × 1019 | 1.8 × 1019 | cm−3 |
electron mobility | 1 × 102 | cm2/Vs | |||||
hole mobility | 25 | cm2/Vs | |||||
shallow uniform donor density ND | 1 × 1018 | 1 × 1017 | 1 × 1018 | 0 | 0 | 1.5 × 1018 | cm−3 |
shallow uniform acceptor density NA | 0 | 0 | 0 | 1 × 1016 | 9.16 × 1016 | 0 | cm−3 |
Parameter | AZO | ZnO (i) | CdS | MoSSe | CZTSSe | Unit |
---|---|---|---|---|---|---|
defect type | Donor(0/+) | Donor(0/+) | Acceptor(−/0) | Donor(0/+) | (A)/(D) | |
capture cross section electrons | 5.0 × 10−13 | 5.0 × 10−15 | 1.0 × 10−13 | 1.0 × 10−13 | 1 × 10−13/1 × 10−14 | cm2 |
capture cross-section holes | 1.0 × 10−15 | 1.0 × 10−13 | 1.0 × 10−15 | 1.0 × 10−15 | 1 × 10−12/9 × 10−17 | cm2 |
energetic distribution | Single | |||||
reference for defect energy level Et | Above Ev | |||||
energy level with respect to Reference | 1.650 | 1.650 | 1.200 | 0.8 | 0.185, 0.85 | eV |
Deep Defect Density | 1.8 × 1016 | 5.0 × 1014 | 6.0 × 1017 | 4.0 × 1014 | 2.27 × 1016, 9.7 × 1016 | cm−3 |
Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) | |
---|---|---|---|---|
Measurement | 0.521 | 34.98 | 67.20 | 12.30 |
Simulation | 0.524 | 35.25 | 67.11 | 12.41 |
Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) | |
---|---|---|---|---|
Initial design | 0.524 | 35.25 | 67.11 | 12.41 |
Case 1 Cd0.86Zn0.14S (x = 0.7) | 0.738 | 26.98 | 70.64 | 14.06 |
Case 2 Cd0.48Zn0.52S (x = 0.8) | 0.789 | 25.01 | 71.95 | 14.21 |
Eg (ETL) | Eg (Absorber) | CBO (eV) | |||
---|---|---|---|---|---|
Initial design | 4.300 | 2.420 | 4.462 | 1.097 | 0.162 |
Case 1 Cd0.86Zn0.14S (x = 0.7) | 4.253 | 2.467 | 4.180 | 1.329 | −0.073 |
Case 2 Cd0.48Zn0.52S (x = 0.8) | 3.945 | 2.78 | 4.120 | 1.384 | 0.175 |
ETL Thickness (µm) | ETL Doping (cm−3) | Absorber Thickness (µm) | Absorber Doping (cm−3) | Absorber Defects (cm−3) |
---|---|---|---|---|
0.02 | 3.8 × 1019 | 2.420 | 2.8 × 1015 | 1014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zein, W.; Alanazi, T.I.; Salah, M.M.; Saeed, A. Concurrent Design of Alloy Compositions of CZTSSe and CdZnS Using SCAPS Simulation: Potential Routes to Overcoming VOC Deficit. Energies 2023, 16, 5754. https://doi.org/10.3390/en16155754
Zein W, Alanazi TI, Salah MM, Saeed A. Concurrent Design of Alloy Compositions of CZTSSe and CdZnS Using SCAPS Simulation: Potential Routes to Overcoming VOC Deficit. Energies. 2023; 16(15):5754. https://doi.org/10.3390/en16155754
Chicago/Turabian StyleZein, Walid, Tarek I. Alanazi, Mostafa M. Salah, and Ahmed Saeed. 2023. "Concurrent Design of Alloy Compositions of CZTSSe and CdZnS Using SCAPS Simulation: Potential Routes to Overcoming VOC Deficit" Energies 16, no. 15: 5754. https://doi.org/10.3390/en16155754
APA StyleZein, W., Alanazi, T. I., Salah, M. M., & Saeed, A. (2023). Concurrent Design of Alloy Compositions of CZTSSe and CdZnS Using SCAPS Simulation: Potential Routes to Overcoming VOC Deficit. Energies, 16(15), 5754. https://doi.org/10.3390/en16155754