Advancing Sustainable Decomposition of Biomass Tar Model Compound: Machine Learning, Kinetic Modeling, and Experimental Investigation in a Non-Thermal Plasma Dielectric Barrier Discharge Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Non-Thermal Plasma Kinetic Modeling with Machine Learning Algorithms
2.2. Working Cycle
2.3. Experimental Methodology and Materials
2.4. Kinetic Modeling and Reactor Performance Assessment
3. Results
3.1. Rate-Constant Calculation
3.2. Reactor Mathematical Model for Performance Assessment
3.3. Machine Learning Algorithms and Predictive Model
3.4. Mathematical Understanding Machine Learning Linear Regression Algorithm
3.5. Model Evaluation Metrics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yousaf, A.M.; Aqsa, R. Integrating Circular Economy, SBTI, Digital LCA, and ESG Benchmarks for Sustainable Textile Dyeing: A Critical Review of Industrial Textile Practices. Glob. NEST J. 2023. [Google Scholar] [CrossRef]
- Ryšavý, J.; Serenčíšová, J.; Horák, J.; Ochodek, T. The Co-Combustion of Pellets with Pistachio Shells in Residential Units Additionally Equipped by Pt-Based Catalyst. Biomass Convers. Biorefin. 2023, 1–17. [Google Scholar] [CrossRef]
- Abdelaziz, A.A.; Ishijima, T.; Seto, T. Humidity Effects on Surface Dielectric Barrier Discharge for Gaseous Naphthalene Decomposition. Phys. Plasmas 2018, 25, 043512. [Google Scholar] [CrossRef]
- Abdelaziz, A.A.; Seto, T.; Abdel-Salam, M.; Otani, Y. Performance of a Surface Dielectric Barrier Discharge Based Reactor for Destruction of Naphthalene in an Air Stream. J. Phys. D Appl. Phys. 2012, 45, 115201. [Google Scholar] [CrossRef] [Green Version]
- Affonso Nóbrega, P.H.; Rohani, V.; Fulcheri, L. Non-Thermal Plasma Treatment of Volatile Organic Compounds: A Predictive Model Based on Experimental Data Analysis. Chem. Eng. J. 2019, 364, 37–44. [Google Scholar] [CrossRef]
- Affonso Nobrega, P.; Gaunand, A.; Rohani, V.; Cauneau, F.; Fulcheri, L. Applying Chemical Engineering Concepts to Non-Thermal Plasma Reactors. Plasma Sci. Technol. 2018, 20, 065512. [Google Scholar] [CrossRef] [Green Version]
- Sieradzka, M.; Mlonka-Mędrala, A.; Kalemba-Rec, I.; Reinmöller, M.; Küster, F.; Kalawa, W.; Magdziarz, A. Evaluation of Physical and Chemical Properties of Residue from Gasification of Biomass Wastes. Energies 2022, 15, 3539. [Google Scholar] [CrossRef]
- Ziółkowski, P.; Madejski, P.; Amiri, M.; Kuś, T.; Stasiak, K.; Subramanian, N.; Pawlak-Kruczek, H.; Badur, J.; Niedźwiecki, Ł.; Mikielewicz, D. Thermodynamic Analysis of Negative CO2 Emission Power Plant Using Aspen Plus, Aspen Hysys, and Ebsilon Software. Energies 2021, 14, 6304. [Google Scholar] [CrossRef]
- Čespiva, J.; Skřínský, J.; Vereš, J.; Borovec, K.; Wnukowski, M. Solid-Recovered Fuel to Liquid Conversion Using Fixed Bed Gasification Technology and a Fischer–Tropsch Synthesis Unit–Case Study. Int. J. Energy Prod. Manag. 2020, 5, 212–222. [Google Scholar] [CrossRef]
- Skřínský, J.; Vereš, J.; Čespiva, J.; Ochodek, T.; Borovec, K.; Koloničný, J. Explosion Characteristics of Syngas from Gasification Process. J. Pol. Miner. Eng. Soc. 2020, January-Ju, 195–200. [Google Scholar] [CrossRef]
- Carotenuto, A.; Di Fraia, S.; Massarotti, N.; Sobek, S.; Uddin, M.R.; Vanoli, L.; Werle, S. Predictive Modeling for Energy Recovery from Sewage Sludge Gasification. Energy 2023, 263, 125838. [Google Scholar] [CrossRef]
- Vishwajeet; Pawlak-Kruczek, H.; Baranowski, M.; Czerep, M.; Chorążyczewski, A.; Krochmalny, K.; Ostrycharczyk, M.; Ziółkowski, P.; Madejski, P.; Mączka, T.; et al. Entrained Flow Plasma Gasification of Sewage Sludge–Proof-of-Concept and Fate of Inorganics. Energies 2022, 15, 1948. [Google Scholar] [CrossRef]
- Werle, S.; Dudziak, M. Analysis of Organic and Inorganic Contaminants in Dried Sewage Sludge and By-Products of Dried Sewage Sludge Gasification. Energies 2014, 7, 462–476. [Google Scholar] [CrossRef] [Green Version]
- Čespiva, J.; Niedzwiecki, L.; Wnukowski, M.; Krochmalny, K.; Mularski, J.; Ochodek, T.; Pawlak-Kruczek, H. Torrefaction and Gasification of Biomass for Polygeneration: Production of Biochar and Producer Gas at Low Load Conditions. Energy Rep. 2022, 8, 134–144. [Google Scholar] [CrossRef]
- Čespiva, J.; Wnukowski, M.; Niedzwiecki, L.; Skřínský, J.; Vereš, J.; Ochodek, T.; Pawlak-Kruczek, H.; Borovec, K. Characterization of Tars from a Novel, Pilot Scale, Biomass Gasifier Working under Low Equivalence Ratio Regime. Renew. Energy 2020, 159, 775–785. [Google Scholar] [CrossRef]
- Peck, D.; Zappi, M.; Gang, D.; Guillory, J.; Hernandez, R.; Buchireddy, P. Review of Porous Ceramics for Hot Gas Cleanup of Biomass Syngas Using Catalytic Ceramic Filters to Produce Green Hydrogen/Fuels/Chemicals. Energies 2023, 16, 2334. [Google Scholar] [CrossRef]
- Anis, S.; Zainal, Z.A. Tar Reduction in Biomass Producer Gas via Mechanical, Catalytic and Thermal Methods: A Review. Renew. Sustain. Energy Rev. 2011, 15, 2355–2377. [Google Scholar] [CrossRef]
- Font Palma, C. Modelling of Tar Formation and Evolution for Biomass Gasification: A Review. Appl. Energy 2013, 111, 129–141. [Google Scholar] [CrossRef]
- Papa, A.A.; Savuto, E.; Di Carlo, A.; Tacconi, A.; Rapagnà, S. Synergic Effects of Bed Materials and Catalytic Filter Candle for the Conversion of Tar during Biomass Steam Gasification. Energies 2023, 16, 595. [Google Scholar] [CrossRef]
- Kochel, M.; Szul, M.; Iluk, T.; Najser, J. On the Possibility of Cleaning Producer Gas Laden with Large Quantities of Tars through Using a Simple Fixed-Bed Activated Carbon Adsorption Process. Energies 2022, 15, 7433. [Google Scholar] [CrossRef]
- Yang, C.; Ying, K.; Yang, F.; Peng, H.; Chen, Z. Simulation on the Electric and Thermal Fields of a Microwave Reactor for Ex Situ Biomass Tar Elimination. Energies 2022, 15, 4143. [Google Scholar] [CrossRef]
- Wnukowski, M.; Kordylewski, W.; Łuszkiewicz, D.; Leśniewicz, A.; Ociepa, M.; Michalski, J. Sewage Sludge-Derived Producer Gas Valorization with the Use of Atmospheric Microwave Plasma. Waste Biomass Valorization 2020, 11, 4289–4303. [Google Scholar] [CrossRef] [Green Version]
- Wnukowski, M.; Moroń, W. Warm Plasma Application in Tar Conversion and Syngas Valorization: The Fate of Hydrogen Sulfide. Energies 2021, 14, 7383. [Google Scholar] [CrossRef]
- Dors, M.; Kurzyńska, D. Tar Removal by Nanosecond Pulsed Dielectric Barrier Discharge. Appl. Sci. 2020, 10, 991. [Google Scholar] [CrossRef] [Green Version]
- Valderrama Rios, M.L.; González, A.M.; Lora, E.E.S.; Almazán del Olmo, O.A. Reduction of Tar Generated during Biomass Gasification: A Review. Biomass Bioenergy 2018, 108, 345–370. [Google Scholar] [CrossRef]
- Fourcault, A.; Marias, F.; Michon, U. Modelling of Thermal Removal of Tars in a High Temperature Stage Fed by a Plasma Torch. Biomass Bioenergy 2010, 34, 1363–1374. [Google Scholar] [CrossRef]
- Fuentes-Cano, D.; Gómez-Barea, A.; Nilsson, S.; Ollero, P. Decomposition Kinetics of Model Tar Compounds over Chars with Different Internal Structure to Model Hot Tar Removal in Biomass Gasification. Chem. Eng. J. 2013, 228, 1223–1233. [Google Scholar] [CrossRef]
- Gadkari, S.; Gu, S. Numerical Investigation of Co-Axial DBD: Influence of Relative Permittivity of the Dielectric Barrier, Applied Voltage Amplitude, and Frequency. Phys. Plasmas 2017, 24, 053517. [Google Scholar] [CrossRef]
- Harling, A.M.; Glover, D.J.; Whitehead, J.C.; Zhang, K. Novel Method for Enhancing the Destruction of Environmental Pollutants by the Combination of Multiple Plasma Discharges. Environ. Sci. Technol. 2008, 42, 4546–4550. [Google Scholar] [CrossRef]
- Jiang, N.; Lu, N.; Li, J.; Wu, Y. Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Reactor. Plasma Sci. Technol. 2012, 14, 140–146. [Google Scholar] [CrossRef]
- Karatum, O.; Deshusses, M.A. A Comparative Study of Dilute VOCs Treatment in a Non-Thermal Plasma Reactor. Chem. Eng. J. 2016, 294, 308–315. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, H.; Li, X.; Xu, R.; Mubeen, I.; Li, L.; Yan, J. Destruction of Toluene, Naphthalene and Phenanthrene as Model Tar Compounds in a Modified Rotating Gliding Arc Discharge Reactor. Catalysts 2018, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Saleem, F.; Khoja, A.H.; Umer, J.; Ahmad, F.; Abbas, S.Z.; Zhang, K.; Harvey, A. Removal of Benzene as a Tar Model Compound from a Gas Mixture Using Non-Thermal Plasma Dielectric Barrier Discharge Reactor. J. Energy Inst. 2021, 96, 97–105. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Y.; Dong, N.; Song, D.; Lin, Y.; Deng, L.; Huang, H. In Situ Removal of Benzene as a Biomass Tar Model Compound Employing Hematite Oxygen Carrier. Catalysts 2022, 12, 1088. [Google Scholar] [CrossRef]
- Park, H.J.; Park, S.H.; Sohn, J.M.; Park, J.; Jeon, J.-K.; Kim, S.-S.; Park, Y.-K. Steam Reforming of Biomass Gasification Tar Using Benzene as a Model Compound over Various Ni Supported Metal Oxide Catalysts. Bioresour. Technol. 2010, 101, S101–S103. [Google Scholar] [CrossRef]
- Saleem, F.; Abbas, A.; Rehman, A.; Khoja, A.H.; Naqvi, S.R.; Arshad, M.Y.; Zhang, K.; Harvey, A. Decomposition of Benzene as a Biomass Gasification Tar in CH4 Carrier Gas Using Non-Thermal Plasma: Parametric and Kinetic Study. J. Energy Inst. 2022, 102, 190–195. [Google Scholar] [CrossRef]
- Liang, W.; Sun, H.; Shi, X.; Zhu, Y. Abatement of Toluene by Reverse-Flow Nonthermal Plasma Reactor Coupled with Catalyst. Catalysts 2020, 10, 511. [Google Scholar] [CrossRef]
- Saleem, F.; Umer, J.; Rehman, A.; Zhang, K.; Harvey, A. Effect of Methane as an Additive in the Product Gas toward the Formation of Lower Hydrocarbons during the Decomposition of a Tar Analogue. Energy Fuels 2020, 34, 1744–1749. [Google Scholar] [CrossRef]
- Saleem, F.; Zhang, K.; Harvey, A. Role of CO2 in the Conversion of Toluene as a Tar Surrogate in a Nonthermal Plasma Dielectric Barrier Discharge Reactor. Energy Fuels 2018, 32, 5164–5170. [Google Scholar] [CrossRef] [Green Version]
- Tay, W.H.; Kausik, S.S.; Wong, C.S.; Yap, S.L.; Muniandy, S.V. Statistical Modelling of Discharge Behavior of Atmospheric Pressure Dielectric Barrier Discharge. Phys. Plasmas 2014, 21, 113502. [Google Scholar] [CrossRef]
- Liu, S.Y.; Mei, D.H.; Shen, Z.; Tu, X. Nonoxidative Conversion of Methane in a Dielectric Barrier Discharge Reactor: Prediction of Reaction Performance Based on Neural Network Model. J. Phys. Chem. C 2014, 118, 10686–10693. [Google Scholar] [CrossRef]
- Wang, D.; Yuan, W.; Ji, W. Char and Char-Supported Nickel Catalysts for Secondary Syngas Cleanup and Conditioning. Appl. Energy 2011, 88, 1656–1663. [Google Scholar] [CrossRef]
- Wang, T.C.; Lu, N.; Li, J.; Wu, Y. Degradation of Pentachlorophenol in Soil by Pulsed Corona Discharge Plasma. J. Hazard. Mater. 2010, 180, 436–441. [Google Scholar] [CrossRef]
- Jamróz, P.; Kordylewski, W.; Wnukowski, M. Microwave Plasma Application in Decomposition and Steam Reforming of Model Tar Compounds. Fuel Process. Technol. 2018, 169, 1–14. [Google Scholar] [CrossRef]
- Saleem, F.; Harris, J.; Zhang, K.; Harvey, A. Non-Thermal Plasma as a Promising Route for the Removal of Tar from the Product Gas of Biomass Gasification–A Critical Review. Chem. Eng. J. 2020, 382, 122761. [Google Scholar] [CrossRef]
- Saleem, F.; Harvey, A.; Zhang, K. Low Temperature Conversion of Toluene to Methane Using Dielectric Barrier Discharge Reactor. Fuel 2019, 248, 258–261. [Google Scholar] [CrossRef]
- Saleem, F.; Zhang, K.; Harvey, A. Plasma-Assisted Decomposition of a Biomass Gasification Tar Analogue into Lower Hydrocarbons in a Synthetic Product Gas Using a Dielectric Barrier Discharge Reactor. Fuel 2019, 235, 1412–1419. [Google Scholar] [CrossRef] [Green Version]
- Saleem, F.; Zhang, K.; Harvey, A. Temperature Dependence of Non-Thermal Plasma Assisted Hydrocracking of Toluene to Lower Hydrocarbons in a Dielectric Barrier Discharge Reactor. Chem. Eng. J. 2019, 356, 1062–1069. [Google Scholar] [CrossRef] [Green Version]
- Pineau, A.; Chimier, B.; Hu, S.X.; Duchateau, G. Modeling the Electron Collision Frequency during Solid-to-Plasma Transition of Polystyrene Ablator for Direct-Drive Inertial Confinement Fusion Applications. Phys. Plasmas 2020, 27, 092703. [Google Scholar] [CrossRef]
- Ratkiewicz, A.; Truong, T.N. A Canonical Form of the Complex Reaction Mechanism. Energy 2012, 43, 64–72. [Google Scholar] [CrossRef]
- Robicheaux, F.; Hanson, J.D. Simulated Expansion of an Ultra-Cold, Neutral Plasma. Phys. Plasmas 2003, 10, 2217–2229. [Google Scholar] [CrossRef]
- Rostami, R.; Moussavi, G.; Jafari, A.J.; Darbari, S. Abatement of Benzene in Sequential NTP -Influence of Operational Factors. Int. J. Plasma Environ. Sci. Technol. 2019, 13, 26–31. [Google Scholar] [CrossRef]
- Filimonova, E.A.; Naidis, G. V Effect of Gas Mixture Composition on Tar Removal Process in a Pulsed Corona Discharge Reactor. J. Phys. Conf. Ser. 2010, 257, 012018. [Google Scholar] [CrossRef]
- Filimonova, E.A.; Amirov, R.H.; Kim, H.T.; Park, I.H. Comparative Modelling of NO x and SO 2 Removal from Pollutant Gases Using Pulsed-Corona and Silent Discharges. J. Phys. D Appl. Phys. 2000, 33, 1716–1727. [Google Scholar] [CrossRef]
- Ma, P. A New Partially-Coupled Recursive Least Squares Algorithm for Multivariate Equation-Error Systems. Int. J. Control Autom. Syst. 2023, 21, 1828–1839. [Google Scholar] [CrossRef]
- Voigt, T.; Kohlhase, M.; Nelles, O. Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge. Mathematics 2021, 9, 2479. [Google Scholar] [CrossRef]
- Yar, A.; Arshad, M.Y.; Asghar, F.; Amjad, W.; Asghar, F.; Hussain, M.I.; Lee, G.H.; Mahmood, F. Machine Learning-Based Relative Performance Analysis of Monocrystalline and Polycrystalline Grid-Tied PV Systems. Int. J. Photoenergy 2022, 2022, 3186378. [Google Scholar] [CrossRef]
- Yousaf, M.A.; Rashid, A.; Gul, H.; Ahmad, A.S.; Jabbar, F. Optimization of Acid-Assisted Extraction of Pectin from Banana (Musa Acuminata) Peels by Central Composite Design. Glob. NEST J. 2022, 24, 752–756. [Google Scholar] [CrossRef]
- Cebekhulu, E.; Onumanyi, A.J.; Isaac, S.J. Performance Analysis of Machine Learning Algorithms for Energy Demand–Supply Prediction in Smart Grids. Sustainability 2022, 14, 2546. [Google Scholar] [CrossRef]
- Yang, X.; Guo, X.; Ouyang, H.; Li, D. A Kriging Model Based Finite Element Model Updating Method for Damage Detection. Appl. Sci. 2017, 7, 1039. [Google Scholar] [CrossRef] [Green Version]
- Gul, H.; Arshad, M.Y.; Tahir, M.W. Production of H2 via Sorption Enhanced Auto-Thermal Reforming for Small Scale Applications-A Process Modeling and Machine Learning Study. Int. J. Hydrogen Energy 2023, 48, 12622–12635. [Google Scholar] [CrossRef]
- Arshad, M.Y.; Rashid, A.; Mahmood, F.; Saeed, S.; Ahmed, A.S. Metal(II) Triazole Complexes: Synthesis, Biological Evaluation, and Analytical Characterization Using Machine Learning-Based Validation. Eur. J. Chem. 2023, 14, 155–164. [Google Scholar] [CrossRef]
Metrics | ML-Experiment Results | ML-Reactor Model and Simulations | Overall- Machine Learning Predictions |
---|---|---|---|
Intercept | 2.16 | 1.95795433 | 1.91 |
Linear Coefficient | 14.2 | 21.74562448 | 23.1 |
Training Set | 45% | 45% | 45% |
Testing Sets | 55% | 55% | 55% |
R2 Value | 0.86 | 0.88 | 0.998 |
Mean Absolute Error (MAE) | 0.0978 | 0.032 | 0.008 |
Mean Squared Error (MSE) | 0.0024 | 0.001 | 0.00001 |
Root Mean Square Error (RMSE) | 0.042 | 0.034 | 0.019 |
Adjusted R2 | 0.865 | 0.8891 | 0.9984 |
Accuracy of Model | 0.923545907 | 0.98876584 | 0.99918729 |
OLS Regression Results | ||||||
---|---|---|---|---|---|---|
Dependent Variable: | Y | R-squared: | 0.890 | |||
Model: | OLS | Adj. R-squared: | 0.887 | |||
Method | Least Squares | F-statistic: | 347.9 | |||
Number of Observation | 60 | Prob (F-statistic): | 3.14 × 10−22 | |||
Df Residuals | 43 | Log-likelihood | 75.111 | |||
Df Model: | 1 | AIC | −146.2 | |||
Covariance Type: | robust | BIC | −142.6 | |||
Omnibus: | 4.279 | Durbin–Watson | 0.028 | |||
Prob (Omnibus): | 0.118 | Jarque–Bera (JB): | 3.665 | |||
Skew: | −0.63 | Prob (JB) | 0.160 | |||
Kurtosis: | 2.293 | Cond. No | 37.5 | |||
Coif | Standard error | T | p > |t| | p < 2.5% | p < 97.5% | |
Const | 0.4420 | 0.022 | 20.27 | 0.00 | 0.398 | 0.486 |
×1 | 0.0342 | 0.002 | 18.64 | 0.00 | 0.031 | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arshad, M.Y.; Saeed, M.A.; Tahir, M.W.; Pawlak-Kruczek, H.; Ahmad, A.S.; Niedzwiecki, L. Advancing Sustainable Decomposition of Biomass Tar Model Compound: Machine Learning, Kinetic Modeling, and Experimental Investigation in a Non-Thermal Plasma Dielectric Barrier Discharge Reactor. Energies 2023, 16, 5835. https://doi.org/10.3390/en16155835
Arshad MY, Saeed MA, Tahir MW, Pawlak-Kruczek H, Ahmad AS, Niedzwiecki L. Advancing Sustainable Decomposition of Biomass Tar Model Compound: Machine Learning, Kinetic Modeling, and Experimental Investigation in a Non-Thermal Plasma Dielectric Barrier Discharge Reactor. Energies. 2023; 16(15):5835. https://doi.org/10.3390/en16155835
Chicago/Turabian StyleArshad, Muhammad Yousaf, Muhammad Azam Saeed, Muhammad Wasim Tahir, Halina Pawlak-Kruczek, Anam Suhail Ahmad, and Lukasz Niedzwiecki. 2023. "Advancing Sustainable Decomposition of Biomass Tar Model Compound: Machine Learning, Kinetic Modeling, and Experimental Investigation in a Non-Thermal Plasma Dielectric Barrier Discharge Reactor" Energies 16, no. 15: 5835. https://doi.org/10.3390/en16155835
APA StyleArshad, M. Y., Saeed, M. A., Tahir, M. W., Pawlak-Kruczek, H., Ahmad, A. S., & Niedzwiecki, L. (2023). Advancing Sustainable Decomposition of Biomass Tar Model Compound: Machine Learning, Kinetic Modeling, and Experimental Investigation in a Non-Thermal Plasma Dielectric Barrier Discharge Reactor. Energies, 16(15), 5835. https://doi.org/10.3390/en16155835