Phenomenological Material Model for First-Order Electrocaloric Material
Abstract
:1. Introduction
2. Methods and Material
2.1. Methods
2.2. Material
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
COP | Coefficient of Performance |
DSC | Differential Scanning Calorimetry |
FOM | Figure of Merit |
PST | Lead Scandium Tantalate |
References
- IEA (International Energy Agency). World Energy Outlook 2022; IEA: Paris, France, 2022.
- Goetzler, W.; Zogg, R.; Young, J.; Johnson, C. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies; Prepared for US Department of Energy; Navigant Consulting Inc.: Chicago, IL, USA, 2014. [Google Scholar]
- McLinden, M.O.; Brown, J.S.; Brignoli, R.; Kazakov, A.F.; Domanski, P.A. Limited options for low-global-warming-potential refrigerants. Nat. Commun. 2017, 8, 14476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umweltbundesamt. Fluorinated Greenhouse Gases and Fully Halogenated CFCs. Available online: https://www.umweltbundesamt.de/en/topics/climate-energy/fluorinated-greenhouse-gases-fully-halogenated-cfcs (accessed on 22 March 2022).
- Takeuchi, I.; Sandeman, K. Solid-state cooling with caloric materials. Phys. Today 2015, 68, 48–54. [Google Scholar] [CrossRef]
- Fähler, S.; Pecharsky, V.K. Caloric effects in ferroic materials. MRS Bull. 2018, 43, 264–268. [Google Scholar] [CrossRef] [Green Version]
- Raveendran, P.S.; Sekhar, S.J. Exergy analysis of a domestic refrigerator with brazed plate heat exchanger as condenser. J. Therm. Anal. Calorim. 2017, 127, 2439–2446. [Google Scholar] [CrossRef]
- Chaudron, J.B.; Muller, C.; Hittinger, M.; Risser, M.; Lionte, S. Performance measurements on a large-scale magnetocaloric cooling application at room temperature. In Proceedings of the Thermag VIII International Conference on Caloric Cooling, Darmstadt, Germany, 16–20 September 2018. [Google Scholar] [CrossRef]
- Kitanovski, A.; Tušek, J.; Tomc, U.; Plaznik, U.; Ožbolt, M.; Poredoš, A. Magnetocaloric Energy Conversion: From Theory to Applications; Green Energy and Technology; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Torelló, A.; Lheritier, P.; Usui, T.; Nouchokgwe, Y.; Gérard, M.; Bouton, O.; Hirose, S.; Defay, E. Giant temperature span in electrocaloric regenerator. Science 2020, 370, 125–129. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Usui, T.; Benedict, M.; Hirose, S.; Lee, J.; Kalb, J.; Schwartz, D. A high-performance solid-state electrocaloric cooling system. Science 2020, 370, 129–133. [Google Scholar] [CrossRef]
- Bachmann, N.; Schwarz, D.; Bach, D.; Schäfer-Welsen, O.; Koch, T.; Bartholomé, K. Modeling of an Elastocaloric Cooling System for Determining Efficiency. Energies 2022, 15, 5089. [Google Scholar] [CrossRef]
- Bonnot, E.; Romero, R.; Mañosa, L.; Vives, E.; Planes, A. Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys. Rev. Lett. 2008, 100, 125901. [Google Scholar] [CrossRef] [Green Version]
- Grácia-Condal, A.; Stern-Taulats, E.; Planes, A.; Vives, E.; Mañosa, L. The Giant Elastocaloric Effect in a Cu-Zn-Al Shape-Memory Alloy: A Calorimetric Study. Phys. Status Solidi (b) 2018, 255, 1700422. [Google Scholar] [CrossRef]
- Pataky, G.J.; Ertekin, E.; Sehitoglu, H. Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl. Acta Mater. 2015, 96, 420–427. [Google Scholar] [CrossRef]
- Xiao, F.; Fukuda, T.; Kakeshita, T. Significant elastocaloric effect in a Fe-31.2Pd (at. %) single crystal. Appl. Phys. Lett. 2013, 102, 161914. [Google Scholar] [CrossRef]
- Tušek, J.; Engelbrecht, K.; Mañosa, L.; Vives, E.; Pryds, N. Understanding the Thermodynamic Properties of the Elastocaloric Effect Through Experimentation and Modelling. Shape Mem. Superelast. 2016, 2, 317–329. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Xiao, F.; Liang, X.; Li, Z.; Li, Z.; Jin, X.; Fukuda, T. Giant elastocaloric effect with wide temperature window in an Al-doped nanocrystalline Ti–Ni–Cu shape memory alloy. Acta Mater. 2019, 177, 169–177. [Google Scholar] [CrossRef]
- Franco, V.; Blázquez, J.S.; Conde, A. Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change. Appl. Phys. Lett. 2006, 89, 222512. [Google Scholar] [CrossRef]
- Lei, T.; Engelbrecht, K.; Nielsen, K.K.; Neves Bez, H.; Bahl, C.R.H. Study of multi-layer active magnetic regenerators using magnetocaloric materials with first and second order phase transition. J. Phys. D Appl. Phys. 2016, 49, 345001. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.; Shi, X.; Wang, J.; Huang, H. Understanding electrocaloric cooling of ferroelectrics guided by phase–field modeling. J. Am. Ceram. Soc. 2022, 105, 3689–3714. [Google Scholar] [CrossRef]
- Gong, J.; McGaughey, A.J.H. Device–level thermodynamic model for an electrocaloric cooler. Int. J. Energy Res. 2020, 44, 5343–5359. [Google Scholar] [CrossRef]
- Hess, T.; Vogel, C.; Maier, L.M.; Barcza, A.; Vieyra, H.P.; Schäfer-Welsen, O.; Wöllenstein, J.; Bartholomé, K. Phenomenological model for a first-order magnetocaloric material. Int. J. Refrig. 2020, 109, 128–134. [Google Scholar] [CrossRef]
- Hess, T.; Maier, L.M.; Bachmann, N.; Corhan, P.; Schäfer-Welsen, O.; Wöllenstein, J.; Bartholomé, K. Thermal hysteresis and its impact on the efficiency of first-order caloric materials. J. Appl. Phys. 2020, 127, 075103. [Google Scholar] [CrossRef]
- Bachmann, N.; Fitger, A.; Unmüßig, S.; Bach, D.; Schäfer-Welsen, O.; Koch, T.; Bartholomé, K. Phenomenological model for first-order elastocaloric materials. Int. J. Refrig. 2022, 136, 245–253. [Google Scholar] [CrossRef]
- Moya, X.; Kar-Narayan, S.; Mathur, N.D. Caloric materials near ferroic phase transitions. Nat. Mater. 2014, 13, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Nouchokgwe, Y.; Lheritier, P.; Hong, C.H.; Torelló, A.; Faye, R.; Jo, W.; Bahl, C.R.H.; Defay, E. Giant electrocaloric materials energy efficiency in highly ordered lead scandium tantalate. Nat. Commun. 2021, 12, 3298. [Google Scholar] [CrossRef] [PubMed]
- Zarnetta, R.; Takahashi, R.; Young, M.L.; Savan, A.; Furuya, Y.; Thienhaus, S.; Maaß, B.; Rahim, M.; Frenzel, J.; Brunken, H.; et al. Identification of Quaternary Shape Memory Alloys with Near-Zero Thermal Hysteresis and Unprecedented Functional Stability. Adv. Funct. Mater. 2010, 20, 1917–1923. [Google Scholar] [CrossRef]
Model Parameter | Value ± Error | Parameter Unit |
---|---|---|
K | ||
J/kg/K | ||
J/kg/K | ||
K | ||
Kµm/V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unmüßig, S.; Bach, D.; Nouchokgwe, Y.; Defay, E.; Bartholomé, K. Phenomenological Material Model for First-Order Electrocaloric Material. Energies 2023, 16, 5837. https://doi.org/10.3390/en16155837
Unmüßig S, Bach D, Nouchokgwe Y, Defay E, Bartholomé K. Phenomenological Material Model for First-Order Electrocaloric Material. Energies. 2023; 16(15):5837. https://doi.org/10.3390/en16155837
Chicago/Turabian StyleUnmüßig, Sabrina, David Bach, Youri Nouchokgwe, Emmanuel Defay, and Kilian Bartholomé. 2023. "Phenomenological Material Model for First-Order Electrocaloric Material" Energies 16, no. 15: 5837. https://doi.org/10.3390/en16155837
APA StyleUnmüßig, S., Bach, D., Nouchokgwe, Y., Defay, E., & Bartholomé, K. (2023). Phenomenological Material Model for First-Order Electrocaloric Material. Energies, 16(15), 5837. https://doi.org/10.3390/en16155837