Deformation-Failure Characteristics of Coal with Liquid CO2 Cryogenic-Freezing Process: An Experimental and Digital Study
Abstract
:1. Introduction
2. Experiment and Methodology
2.1. Coal Samples
2.2. Experimental System and Procedures
2.3. Three-Dimensional Visualization and Quantitative Description of Coal Microstructure
2.4. Analytical Methods of Deformation Failure Characteristics in Coal
3. Results and Discussion
3.1. Characteristics of Coal-Fracture Networks by Using CT Scanning
3.2. Three-Dimensional Variations in Coal Microstructure by Using LCO2 Cryogenic-Freezing
3.3. Mechanical Properties of Coal
3.4. Damage Degree of Coal Plug Measured by Fractal Box Dimension
3.5. Coal Deformation-Failure Mechanism by LCO2 Cryogenic Freezing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xia, T.; Zhou, F.; Liu, J.; Gao, F. Evaluation of the pre-drained coal seam gas quality. Fuel 2014, 130, 296–305. [Google Scholar]
- Shi, Y.; Lin, B.; Liu, T.; Zhao, Y.; Hao, Z. Synergistic ECBM extraction technology and engineering application based on hydraulic flushing combing gas injection displacement in low permeability coal seams. Fuel 2022, 318, 123688. [Google Scholar]
- Koroviaka, Y.; Pinka, J.; Tymchenko, S.; Rastsvietaiev, V.; Astakhov, V.; Dmytruk, O. Elaborating a scheme for mine methane capturing while developing coal gas seams. Min. Miner. Depos. 2020, 14, 21–27. [Google Scholar]
- Zhou, F.; Xia, T.; Wang, X. Recent developments in coal mine methane extraction and utilization in China: A review. J. Nat. Gas Sci. Eng. 2016, 31, 437–458. [Google Scholar]
- Bertrand, F.; Cerfontaine, B.; Collin, F. A fully coupled hydro-mechanical model for the modeling of coalbed methane recovery. J. Nat. Gas Sci. Eng. 2017, 46, 307–325. [Google Scholar]
- Lv, F.; Yang, R.; Yi, T.; Gao, W.; Wang, X.; Cheng, W.; Zhang, Y.; Li, R.; Yan, Z.; Liu, Y.; et al. Characteristics of in situ stress field of coalbed methane reservoir and its influence on permeability in western Guizhou coalfield, China. Front. Earth Sci. 2023, 10, 1110254. [Google Scholar]
- Zhao, J.; Tang, D.; Xu, H.; Li, Y.; Li, S.; Tao, S.; Lin, W.; Liu, Z. Characteristic of in situ stress and its control on the coalbed methane reservoir permeability in the eastern margin of the Ordos Basin, China. Rock Mech. Rock Eng. 2016, 49, 3307–3322. [Google Scholar]
- Ju, W.; Jiang, B.; Qin, Y.; Wu, C.; Wang, G.; Qu, Z.; Li, M. The present-day in-situ stress field within coalbed methane reservoirs, Yuwang Block, Laochang Basin, south China. Mar. Pet. Geol. 2019, 102, 61–73. [Google Scholar]
- Liu, D.; Shu, L.; Wang, Y.; Huo, Z.; Zhao, S.; Xiong, X. Optimal injection parameters for enhancing coalbed methane recovery: A simulation study from the Shizhuang Block, Qinshui Basin, China. Geofluids 2022, 2022, 3311827. [Google Scholar]
- Zhang, J.; Si, L.; Chen, J.; Kizil, M.; Wang, C.; Chen, Z. Stimulation techniques of coalbed methane reservoirs. Geofluids 2020, 2020, 5152646. [Google Scholar]
- Wen, H.; Li, Z.; Deng, J.; Shu, C.-M.; Laiwang, B.; Wang, Q.; Ma, L. Influence on coal pore structure during liquid CO2-ECBM process for CO2 utilization. J. CO2 Util. 2017, 21, 543–552. [Google Scholar]
- Xu, J.; Zhai, C.; Liu, S.; Qin, L.; Wu, S. Pore variation of three different metamorphic coals by multiple freezing-thawing cycles of liquid CO2 injection for coalbed methane recovery. Fuel 2017, 208, 41–51. [Google Scholar]
- Shang, Z.; Wang, H.; Li, B.; Cheng, Y.; Zhang, X.; Wang, Z.; Geng, S.; Wang, Z.; Chen, P.; Lv, P.; et al. The effect of leakage characteristics of liquid CO2 phase-transition on fracturing coal seam: Applications for enhancing coalbed methane recovery. Fuel 2022, 308, 122044. [Google Scholar]
- Liu, Y.; Yin, G.; Zhang, D.; Li, M.; Deng, B.; Liu, C.; Zhao, H.; Yin, S. Directional permeability evolution in intact and fractured coal subjected to true-triaxial stresses under dry and water-saturated conditions. Int. J. Rock Mech. Min. Sci. 2019, 119, 22–34. [Google Scholar]
- Zhang, L.; Chen, S.; Zhang, C.; Fang, X.; Li, S. The characterization of bituminous coal microstructure and permeability by liquid nitrogen fracturing based on μCT technology. Fuel 2020, 262, 116635. [Google Scholar]
- Kalam, S.; Afagwu, C.; Al Jaberi, J.; Siddig, O.M.; Tariq, Z.; Mahmoud, M.; Abdulraheem, A. A review on non-aqueous fracturing techniques in unconventional reservoirs. J. Nat. Gas Sci. Eng. 2021, 95, 104223. [Google Scholar]
- Liu, T.; Lin, B.; Yang, W. Impact of matrix–fracture interactions on coal permeability: Model development and analysis. Fuel 2017, 207, 522–532. [Google Scholar]
- Vishal, V. In-situ disposal of CO2: Liquid and supercritical CO2 permeability in coal at multiple down-hole stress conditions. J. CO2 Util. 2017, 17, 235–242. [Google Scholar]
- Xu, J.; Zhai, C.; Liu, S.; Qin, L.; Sun, Y. Feasibility investigation of cryogenic effect from liquid carbon dioxide multi cycle fracturing technology in coal-bed methane recovery. Fuel 2017, 206, 371–380. [Google Scholar]
- Wang, H.; Wen, H.; Li, Z.; Liang, R.; Wang, F.; Fan, S.; Li, R. Experimental study on microstructural modification of coal by liquid CO2 extraction. Fuel 2023, 348, 128631. [Google Scholar]
- Liu, X.; Nie, B.; Guo, K.; Zhang, C.; Wang, Z.; Wang, L. Permeability enhancement and porosity change of coal by liquid carbon dioxide phase change fracturing. Eng. Geol. 2021, 287, 106106. [Google Scholar]
- Daniliev, S.; Danilieva, N.; Mulev, S.; Frid, V. Integration of seismic refraction and fracture-induced electromagnetic radiation methods to assess the stability of the roof in mine-workings. Minerals 2022, 12, 609. [Google Scholar]
- Yang, W.; Wang, Y.; Yan, F.; Si, G.; Lin, B. Evolution characteristics of coal microstructure and its influence on methane adsorption capacity under high temperature pyrolysis. Energy 2022, 254, 124262. [Google Scholar]
- Ghosh, S.; Ojha, A.; Varma, A.K. Spectral manifestations of coal metamorphism: Insights from coal microstructural framework. Int. J. Coal Geol. 2020, 228, 103549. [Google Scholar]
- Vikram, V. Saturation time dependency of liquid and supercritical CO2 permeability of bituminous coals: Implications for carbon storage. Fuel 2017, 192, 201–207. [Google Scholar]
- Chen, H.; Wang, Z.; Chen, X.; Chen, X.; Wang, L. Increasing permeability of coal seams using the phase energy of liquid carbon dioxide. J. CO2 Util. 2017, 19, 112–119. [Google Scholar]
- Fan, S.; Zhang, D.; Wen, H.; Cheng, X.; Liu, X.; Yu, Z.; Hu, B. Enhancing coalbed methane recovery with liquid CO2 fracturing in underground coal mine: From experiment to field application. Fuel 2021, 290, 119793. [Google Scholar]
- Wen, H.; Wei, G.; Ma, L.; Li, Z.; Lei, C.; Hao, J. Damage characteristics of coal microstructure with liquid CO2 freezing–thawing. Fuel 2019, 249, 169–177. [Google Scholar]
- Vishal, V.; Chandra, D. Mechanical response and strain localization in coal under uniaxial loading, using digital volume correlation on X-ray tomography images. Int. J. Rock Mech. Min. Sci. 2022, 154, 105103. [Google Scholar]
- Zakrzewski, M.; Schertel, A.; Brus, G.; Wagner, M.; Sciazko, A.; Komatsu, Y.; Kimijima, S.; Kaneko, S.; Szmyd, J.S. A three-dimensional reconstruction of coal microstructure using the Cryo-FIB-SEM technique. Fuel 2020, 275, 117919. [Google Scholar]
- Mi, W.; Wen, H.; Fan, S.; Wang, S.; Wu, X.; Wei, G.; Liu, B.; Li, R.; Cheng, X.; Liu, M. Correlation analysis of injection parameters for low-medium pressure injection of liquid CO2 for CH4 displacement in coal seams. Energy 2023, 278, 127760. [Google Scholar]
- He, M.; Li, T.; Huang, X.; Dou, L.; Zhou, Z.; Wu, K. Experimental study on changes in pore throat systems owing to liquid CO2 cooling in shale oil reservoirs. Energy Fuels 2021, 35, 13633–13643. [Google Scholar]
- Xu, J.; Zhai, C.; Ranjith, P.; Sang, S.; Yu, X.; Sun, Y.; Cong, Y.; Zheng, Y.; Tang, W. Mechanical responses of coals under the effects of cyclical liquid CO2 during coalbed methane recovery process. Fuel 2022, 308, 121890. [Google Scholar]
- ISO 7404–2: 1985; Methods for the Petrographic Analysis of Bituminous Coal and Anthracite—Part 2: Preparation of Coal Samples. Revised by ISO 7404-2:2009. ISO: Geneva, Switzerland, 1985.
- GB/T 6948–1998; Microscopical Determination of the Reflectance of Vitrinite in Coal. National Quality Inspection Administration: Beijing, China, 1998.
- GB/T 212–2008; Proximate Analysis of Coal. China National Standardization Administration: Beijing, China, 2009.
- Hazra, B.; Vishal, V.; Sethi, C.; Chandra, D. Impact of supercritical CO2 on shale reservoirs and its implication for CO2 sequestration. Energy Fuels 2022, 36, 9882–9903. [Google Scholar]
- Nie, B.; Fan, P.; Li, X. Quantitative investigation of anisotropic characteristics of methane-induced strain in coal based on coal particle tracking method with X-ray computer tomography. Fuel 2018, 214, 272–284. [Google Scholar]
- Mathews, J.P.; Campbell, Q.P.; Xu, H.; Halleck, P. A review of the application of X-ray computed tomography to the study of coal. Fuel 2017, 209, 10–24. [Google Scholar]
- Xin, H.; Tian, W.; Zhou, B.; Qi, X.-Y.; Li, J.; Wu, J.; Wang, D.-M. Pore structure evolution and oxidation characteristic change of coal treated with liquid carbon dioxide and liquid nitrogen. Energy 2023, 268, 126674. [Google Scholar]
- Arif, M.; Mahmoud, M.; Zhang, Y.; Iglauer, S. X-ray tomography imaging of shale microstructures: A review in the context of multiscale correlative imaging. Int. J. Coal Geol. 2021, 233, 103641. [Google Scholar]
- Li, Y.; Chi, Y.; Han, S.; Zhao, C.; Miao, Y. Pore-throat structure characterization of carbon fiber reinforced resin matrix composites: Employing Micro-CT and Avizo technique. PLoS ONE 2021, 16, e0257640. [Google Scholar]
- Luo, P.; Zhang, Z.; Geng, X.; Xue, K.; Guang, W. Evaluation of ScCO2-water performance on bituminous coal: Insights from experiments and 3D CT image reconstruction. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 118. [Google Scholar]
- Armstrong, R.T.; McClure, J.E.; Robins, V.; Liu, Z.; Arns, C.H.; Schlüter, S.; Berg, S. Porous media characterization using Minkowski functionals: Theories, applications and future directions. Transp. Porous Media 2019, 130, 305–335. [Google Scholar]
- Wang, G.; Shen, J.; Liu, S.; Jiang, C.; Qin, X. Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory. Int. J. Rock Mech. Min. Sci. 2019, 123, 104082. [Google Scholar]
- Ali, M.; Wang, E.; Li, Z.; Khan, N.M.; Sabri, M.M.S.; Ullah, B. Investigation of the acoustic emission and fractal characteristics of coal with varying water contents during uniaxial compression failure. Sci. Rep. 2023, 13, 2238. [Google Scholar]
- Wang, G.; Qin, X.; Han, D.; Liu, Z. Study on seepage and deformation characteristics of coal microstructure by 3D reconstruction of CT images at high temperatures. Int. J. Min. Sci. Technol. 2021, 31, 175–185. [Google Scholar]
- Li, Z.; Wei, G.; Liang, R.; Shi, P.; Wen, H.; Zhou, W. LCO2-ECBM technology for preventing coal and gas outburst: Integrated effect of permeability improvement and gas displacement. Fuel 2021, 285, 119219. [Google Scholar]
- Li, Z.; Wang, F.; Shu, C.-M.; Wen, H.; Wei, G.; Liang, R. Damage effects on coal mechanical properties and micro-scale structures during liquid CO2-ECBM process. J. Nat. Gas Sci. Eng. 2020, 83, 103579. [Google Scholar]
- Ma, L.; Wei, G.; Li, Z.; Wang, Q.; Wang, W. Damage effects and fractal characteristics of coal pore structure during liquid CO2 injection into a coal bed for E-CBM. Resources 2018, 7, 30. [Google Scholar]
- Lu, S.; Li, M.; Ma, Y.; Wang, S.; Zhao, W. Permeability changes in mining-damaged coal: A review of mathematical models. J. Nat. Gas Sci. Eng. 2022, 106, 104739. [Google Scholar]
- Wei, G.; Wen, H.; Deng, J.; Ma, L.; Li, Z.; Lei, C.; Fan, S.; Liu, Y. Liquid CO2 injection to enhance coalbed methane recovery: An experiment and in-situ application test. Fuel 2021, 284, 119043. [Google Scholar]
- Zhou, H.; Zhong, J.; Ren, W.; Wang, X.; Yi, H. Characterization of pore-fracture networks and their evolution at various measurement scales in coal samples using X-ray μCT and a fractal method. Int. J. Coal Geol. 2018, 189, 35–49. [Google Scholar]
- Wen, H.; Wang, H.; Fan, S.; Li, Z.; Chen, J.; Cheng, X.; Cheng, B.; Yu, Z. Improving coal seam permeability and displacing methane by injecting liquid CO2: An experimental study. Fuel 2020, 281, 118747. [Google Scholar]
- Wang, D.; Zhang, P.; Liu, S.; Wei, J.; Sun, L. Experimental study on evolutionary characteristics of pore-fissure structure in coal seam under temperature impact. J. China Coal Soc. 2018, 43, 3395–3403. [Google Scholar]
- Yan, M.; Zhang, Y.; Lin, H.; Li, J.; Qin, L. Effect on liquid nitrogen impregnation of pore damage characteristics of coal at different temperatures. J. China Coal Soc. 2020, 45, 2813–2823. [Google Scholar]
- Akhondzadeh, H.; Keshavarz, A.; Al-Yaseri, A.Z.; Ali, M.; Awan, F.U.R.; Wang, X.; Yang, Y.; Iglauer, S.; Lebedev, M. Pore-scale analysis of coal cleat network evolution through liquid nitrogen treatment: A micro-computed tomography investigation. Int. J. Coal Geol. 2020, 219, 103370. [Google Scholar]
- Xu, J.; Zhai, C.; Ranjith, P.G.; Sang, S.; Sun, Y.; Cong, Y.; Tang, W.; Zheng, Y. Investigation of the mechanical damage of low rank coals under the impacts of cyclical liquid CO2 for coalbed methane recovery. Energy 2022, 239, 122145. [Google Scholar]
Sample No. | Proximate Analysis (%) | fx | ρ (g/cm3) | Φ (%) | Metamorphic Grade | |||
---|---|---|---|---|---|---|---|---|
Mad (%) | Vdaf (%) | Aad (%) | FCad (%) | |||||
YQ | 1.91 | 13.72 | 14.22 | 70.15 | 0.74 | 1.62 | 2.34 | Anthracite coal |
LSD | 4.06 | 30.97 | 7.75 | 57.22 | 0.65 | 1.68 | 6.37 | Gas-fat coal |
LHG | 4.58 | 39.79 | 18.86 | 36.82 | 2.51 | 1.74 | 5.38 | Long-flame coal |
Sample No. | Type | n0 | l0 | w0 | S0 | μ0 |
---|---|---|---|---|---|---|
YQ-anthracite | Original | 3.0 | 31.75 | 0.13 | 18.26 | 0.93 × 10−5 |
Treated | 26.0 | 32.22 | 0.24 | 198.12 | 9.46 × 10−5 | |
LSD-gas fat | Original | 2.0 | 26.37 | 0.14 | 13.08 | 0.67 × 10−5 |
Treated | 19.0 | 46.74 | 0.15 | 75.15 | 3.89 × 10−5 | |
LHG-long flame | Original | 1.0 | 26.20 | 0.14 | 3.69 | 0.18 × 10−5 |
Treated | 2.0 | 40.46 | 0.17 | 13.76 | 0.71 × 10−5 |
Sample No. | YQ anthracite Coal | LSD Gas-Fat Coal | LHG Long-Flame Coal | ||||||
---|---|---|---|---|---|---|---|---|---|
Vt/mm3 | V0/mm3 | μ0/% | Vt/mm3 | V0/mm3 | μ0/% | Vt/mm3 | V0/mm3 | μ0/% | |
Original | 42,796.11 | 202.73 | 0.48 | 41,837.59 | 210.86 | 0.44 | 47,450.09 | 161.21 | 0.34 |
Treated | 54,103.05 | 517.87 | 1.06 | 50,438.24 | 498.79 | 0.98 | 54,792.69 | 329.89 | 0.79 |
Sample No. | Type | σmax/MPa | εmax/% | AEmax/ms × mV | E/GPa | fx |
---|---|---|---|---|---|---|
YQ | original | 43.43 | 1.95 | 171,315.8 | 2.23 | 1.62 |
treated | 38.36 | 1.91 | 43,617.0 | 2.01 | 1.53 | |
LSD | original | 45.98 | 2.38 | 34,934.0 | 1.93 | 1.68 |
treated | 36.07 | 2.26 | 28,993.2 | 1.59 | 1.49 | |
LHG | original | 58.93 | 2.49 | 171,513.1 | 2.37 | 2.14 |
treated | 52.53 | 2.43 | 23,315.2 | 2.16 | 1.98 |
Sample No. | YQ Anthracite Coal | LSD Gas-Fat Coal | LHG Long-Flame Coal | |||
---|---|---|---|---|---|---|
D1 | D2 | D1 | D2 | D1 | D2 | |
Original | 2.93 | 1.83 | 2.77 | 1.86 | 3.19 | 1.53 |
Treated | 2.98 | 1.98 | 2.94 | 2.21 | 3.23 | 1.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, G.; Ma, L.; Wen, H.; Yi, X.; Deng, J.; Liu, S.; Li, Z.; Zhang, D. Deformation-Failure Characteristics of Coal with Liquid CO2 Cryogenic-Freezing Process: An Experimental and Digital Study. Energies 2023, 16, 6126. https://doi.org/10.3390/en16176126
Wei G, Ma L, Wen H, Yi X, Deng J, Liu S, Li Z, Zhang D. Deformation-Failure Characteristics of Coal with Liquid CO2 Cryogenic-Freezing Process: An Experimental and Digital Study. Energies. 2023; 16(17):6126. https://doi.org/10.3390/en16176126
Chicago/Turabian StyleWei, Gaoming, Li Ma, Hu Wen, Xin Yi, Jun Deng, Shangming Liu, Zhenbao Li, and Duo Zhang. 2023. "Deformation-Failure Characteristics of Coal with Liquid CO2 Cryogenic-Freezing Process: An Experimental and Digital Study" Energies 16, no. 17: 6126. https://doi.org/10.3390/en16176126
APA StyleWei, G., Ma, L., Wen, H., Yi, X., Deng, J., Liu, S., Li, Z., & Zhang, D. (2023). Deformation-Failure Characteristics of Coal with Liquid CO2 Cryogenic-Freezing Process: An Experimental and Digital Study. Energies, 16(17), 6126. https://doi.org/10.3390/en16176126