Pore Water and Its Multiple Controlling Effects on Natural Gas Enrichment of the Quaternary Shale in Qaidam Basin, China
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
4. Results
4.1. Basic Characteristics of Shale
4.1.1. Lithology Characteristics
4.1.2. Reservoir Characteristics
4.2. Pore Water Characteristics
4.2.1. Wettability Characteristics of Pore Water on Shale Surface
4.2.2. Distribution Characteristics of Pore Water in Shale
5. Discussion
5.1. Effect of Pore Water on Natural Gas Generation
5.2. Effect of Pore Water on Natural Gas Occurrence
5.3. Effect of Pore Water on Natural Gas Adsorption
5.4. Effect of Pore Water on Natural Gas Flow
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Land, L.S.; Mack, L.E.; Milliken, K.L.; Leo Lynch, F. Burial diagenesis of argillaceous sediment, south Texas Gulf of Mexico sedimentary basin: A reexamination. Geol. Soc. Am. Bull. 1997, 109, 2–15. [Google Scholar] [CrossRef]
- Rigsby, C.A.; Bradbury, J.P.; Baker, P.A.; Rollins, S.M.; Warren, M.R. Late Quaternary palaeolakes, rivers, and wetlands on the Bolivian Altiplano and their palaeoclimatic implications. J. Quat. Sci. 2005, 20, 671–691. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Chen, Y.; Li, X.; Li, Q. Magnetostratigraphy and sedimentologically derived geochronology of the Quaternary lacustrine deposits of a 3000 m thick sequence in the central Qaidam basin, western China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1998, 140, 459–473. [Google Scholar]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Shao, Z.; He, S.; Hou, L.; Wang, Y.; Tian, C.; Liu, X.; Zhou, Y.; Hao, M.; Lin, C. Dynamic accumulation of the Quaternary shale biogas in Sanhu Area of the Qaidam Basin, China. Energies 2022, 15, 4593. [Google Scholar] [CrossRef]
- Hui, Y.; Zhang, Y.; Dade, M.; Baihong, W.; Shiyong, Y.; Ziyuan, X.; Xiaoping, Q. Integrated geophysical studies on the distribution of Quaternary biogenic gases in the Qaidam Basin, NW China. Adv. Pet. Explor. Dev. 2012, 39, 33–42. [Google Scholar]
- Tian, H.; Wang, M.; Liu, S.; Zhang, S.; Zou, C. Influence of pore water on the gas storage of organic-rich shale. Energy Fuels 2020, 34, 5293–5306. [Google Scholar] [CrossRef]
- Schmidt, F.; Koch, B.P.; Goldhammer, T.; Elvert, M.; Witt, M.; Lin, Y.S.; Jenny, W.; Matthias, Z.; Verena, B.H.; Hinrichs, K.U. Unraveling signatures of biogeochemical processes and the depositional setting in the molecular composition of pore water DOM across different marine environments. Geochim. Cosmochim. Acta 2017, 207, 57–80. [Google Scholar] [CrossRef]
- Fan, Q.; Cheng, P.; Tian, H.; Gai, H.; Xiao, X. Distribution and occurrence of pore water and retained oil in nanopores of marine-terrestrial transitional shales during oil generation and expulsion: Implications from a thermal simulation experiment on shale plug samples. Mar. Pet. Geol. 2023, 150, 106125. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Lu, S.; Zhang, P.; Cai, J.; Zhao, J.; Li, W. Microdistribution and mobility of water in gas shale: A theoretical and experimental study. Mar. Pet. Geol. 2019, 102, 496–507. [Google Scholar] [CrossRef]
- Li, J.; Lu, S.; Zhang, P.; Li, W.; Jing, T.; Feng, W. Quantitative characterization and microscopic occurrence mechanism of pore water in shale matrix. Acta Pet. Sin. 2020, 41, 979–990. [Google Scholar]
- Li, X.; Chen, S.; Wu, J.; Zhang, J.; Zhao, S.; Xia, Z.; Wang, Y.; Zhang, S.; Zhang, J. Microscopic occurrence and movability mechanism of pore water in deep shale gas reservoirs: A typical case study of the Wufeng-Longmaxi Formation, Luzhou block, Sichuan Basin. Mar. Pet. Geol. 2023, 151, 106205. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Wang, Y.; Zhang, Y.; Wang, Y.; Wu, J.; Zhang, J.; Khan, J. Influence of pore structure particularity and pore water on the occurrence of deep shale gas: Wufeng–Longmaxi Formation, Luzhou Block, Sichuan Basin. Nat. Resour. Res. 2022, 31, 1403–1423. [Google Scholar] [CrossRef]
- Ma, X.; Wang, H.; Zhou, S.; Feng, Z.; Liu, H.; Guo, W. Insights into NMR response characteristics of shales and its application in shale gas reservoir evaluation. J. Nat. Gas Sci. Eng. 2020, 84, 103674. [Google Scholar] [CrossRef]
- Hanson, A.D.; Ritts, B.D.; Zinniker, D.; Moldowan, J.M.; Biffi, U. Upper Oligocene lacustrine source rocks and petroleum systems of the northern Qaidam basin, northwest China. AAPG Bull. 2001, 85, 601–619. [Google Scholar]
- Dang, Y.; Zhao, W.; Su, A.; Zhang, S.; Li, M.; Guan, Z.; Ma, D.; Chen, X.; Shuai, Y.; Wang, H.; et al. Biogenic gas systems in eastern Qaidam Basin. Mar. Pet. Geol. 2008, 25, 344–356. [Google Scholar] [CrossRef]
- Guo, Y.; Cao, J.; Liu, R.; Wang, H.; Zhang, H. Hydrocarbon accumulation and alteration of the Upper Carboniferous Keluke Formation in the eastern Qaidam Basin: Insights from fluid inclusion and basin modeling. J. Pet. Sci. Eng. 2022, 211, 110116. [Google Scholar] [CrossRef]
- Wu, C.; Wu, D.; Mattinson, C.; Lei, M.; Chen, H. Petrogenesis of granitoids in the Wulan area: Magmatic activity and tectonic evolution in the North Qaidam, NW China. Gondwana Res. 2019, 67, 147–171. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, C.; Liu, Y.; Gong, H.; Awan, R.S.; Li, G.; Zang, Q. Geochemical characteristics and the organic matter enrichment of the Upper Ordovician Tanjianshan Group, Qaidam Basin, China. J. Pet. Sci. Eng. 2022, 208, 109383. [Google Scholar] [CrossRef]
- Heermance, R.V.; Pullen, A.; Kapp, P.; Garzione, C.N.; Bogue, S.; Ding, L.; Song, P. Climatic and tectonic controls on sedimentation and erosion during the Pliocene–Quaternary in the Qaidam Basin (China). GSA Bull. 2013, 125, 833–856. [Google Scholar] [CrossRef]
- Owen, L.A.; Finkel, R.C.; Haizhou, M.; Barnard, P.L. Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin, Northern Tibet: A framework for examining the links between glaciation, lake level changes and alluvial fan formation. Quatern. Int. 2006, 154, 73–86. [Google Scholar] [CrossRef]
- Kezao, C.; Bowler, J.M. Late Pleistocene evolution of salt lakes in the Qaidam basin, Qinghai province, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1986, 54, 87–104. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, Z.; Chen, F.; Ito, E.; Zhao, C. Holocene vegetation and climate history at Hurleg Lake in the Qaidam Basin, northwest China. Rev. Palaeobot. Palynol. 2007, 145, 275–288. [Google Scholar] [CrossRef]
- He, S.; Tang, X.; Shao, Z.; Jiang, Z.; Wang, B.; Liu, X.; Wang, Y.; Xu, M. Pore Structure Characteristics, Genesis, and Its Controlling Effect on Gas Migration of Quaternary Mudstone Reservoir in Qaidam Basin. Geofluids 2022, 2022, 7098409. [Google Scholar] [CrossRef]
- Zhang, M.; Dai, S.; Pan, S.; Jing, Z.; Wu, Z.; Chen, Y.; Du, B.; Zhang, J.; Liu, G.; Jiaoba, D.; et al. Deciphering the laminated botryococcus-dominated shales in saline lacustrine basin, Western Qaidam Basin, NW China: Implications for shale oil potential. Mar. Pet. Geol. 2023, 155, 106397. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Wang, Y.; Yu, Q. Effects of composition and pore structure on the reservoir gas capacity of Carboniferous shale from Qaidam Basin, China. Mar. Pet. Geol. 2015, 62, 44–57. [Google Scholar]
- Visco, G.; Campanella, L.; Nobili, V. Organic carbons and TOC in waters: An overview of the international norm for its measurements. Microchem. J. 2005, 79, 185–191. [Google Scholar] [CrossRef]
- Bhargava, S.; Awaja, F.; Subasinghe, N.D. Characterisation of some Australian oil shale using thermal, X-ray and IR techniques. Fuel 2005, 84, 707–715. [Google Scholar] [CrossRef]
- Zhou, S.; Dong, D.; Zhang, J.; Zou, C.; Tian, C.; Rui, Y.; Liu, D.; Jiao, P. Optimization of key parameters for porosity measurement of shale gas reservoirs. Nat. Gas Ind. B 2021, 8, 455–463. [Google Scholar] [CrossRef]
- Siddiqui, M.A.Q.; Ali, S.; Fei, H.; Roshan, H. Current understanding of shale wettability: A review on contact angle measurements. Earth-Sci. Rev. 2018, 181, 1–11. [Google Scholar] [CrossRef]
- Yang, R.; Liu, W.; Meng, L. Multifractal Analysis of the Structure of Organic and Inorganic Shale Pores Using Nuclear Magnetic Resonance (NMR) Measurement. J. Mar. Sci. Eng. 2023, 11, 752. [Google Scholar] [CrossRef]
- Miao, F.; Wu, D.; Liu, X.; Xiao, X.; Zhai, W.; Geng, Y. Methane adsorption on shale under in situ conditions: Gas-in-place estimation considering in situ stress. Fuel 2022, 308, 121991. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Song, G.; Liu, H.; Zhu, D.; Zhu, D.; Ding, J.; Yang, W.; Yin, Y.; Zhang, S.; et al. Genetic connection between mud shale lithofacies and shale oil enrichment in Jiyang Depression, Bohai Bay Basin. Petrol. Explor. Dev. 2016, 43, 759–768. [Google Scholar] [CrossRef]
- Bradshaw, M.J.; Penney, S.R. A cored Jurassic sequence from north Lincolnshire, England: Stratigraphy, facies analysis and regional context. Geol. Mag. 1982, 119, 113–134. [Google Scholar] [CrossRef]
- Jiang, Z.; Tang, X.; Cheng, L.; Li, Z.; Zhang, Y.; Bai, Y.; Yuan, Y.; Hao, J. Characterization and origin of the Silurian Wufeng-Longmaxi Formation shale multiscale heterogeneity in southeastern Sichuan Basin, China. Interpretation 2015, 3, SJ61–SJ74. [Google Scholar] [CrossRef]
- Zou, C.; Dong, D.; Wang, Y.; Li, X.; Huang, J.; Wang, S.; Guan, Q.; Zhang, C.; Wang, H.; Liu, H.; et al. Shale gas in China: Characteristics, challenges and prospects (I). Petrol. Explor. Dev. 2015, 42, 753–767. [Google Scholar] [CrossRef]
- AlRatrout, A.; Blunt, M.J.; Bijeljic, B. Wettability in complex porous materials, the mixed-wet state, and its relationship to surface roughness. Proc. Natl. Acad. Sci. USA 2018, 115, 8901–8906. [Google Scholar] [CrossRef]
- Zhao, T.; Jiang, L. Contact angle measurement of natural materials. Colloids Surface. B 2018, 161, 324–330. [Google Scholar] [CrossRef]
- Schrader, M.E.; Yariv, S. Wettability of clay minerals. J. Colloid Interf. Sci. 1990, 136, 85–94. [Google Scholar] [CrossRef]
- Yang, S.; Yu, Q. Experimental investigation on the movability of water in shale nanopores: A case study of Carboniferous shale from the Qaidam Basin, China. Water. Resour. Res. 2020, 56, e2019WR026973. [Google Scholar] [CrossRef]
- Gao, H.; Cheng, P.; Wu, W.; Liu, S.; Luo, C.; Li, T.; Zhong, K.; Tian, H. Pore water and its influences on the nanopore structures of deep Longmaxi shales in the Luzhou block of the southern Sichuan Basin, China. Energies 2022, 15, 4053. [Google Scholar] [CrossRef]
- Feng, D.; Li, X.; Wang, X.; Li, J.; Sun, F.; Sun, Z.; Zhang, T.; Li, P.; Chen, Y.; Zhang, X. Water adsorption and its impact on the pore structure characteristics of shale clay. Appl. Clay. Sci. 2018, 155, 126–138. [Google Scholar] [CrossRef]
- Ning, Z.; Xu, B.; Zhong, W.; Liu, C.; Qin, X.; Feng, W.; Zhu, L. Preparation of phosphoric acid modified antibiotic mycelial residues biochar: Loading of nano zero-valent iron and promotion on biogas production. Bioresour. Technol. 2022, 348, 126801. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhu, T.; He, Z. Minimizing effects of chloride and calcium towards enhanced nutrient recovery from sidestream centrate in a decoupled electrodialysis driven by solar energy. J. Clean. Prod. 2020, 263, 121419. [Google Scholar] [CrossRef]
- McLatchey, G.P.; Reddy, K.R. Regulation of organic matter decomposition and nutrient release in a wetland soil. J. Environ. Qual. 1998, 27, 1268–1274. [Google Scholar] [CrossRef]
- Hu, C.; Wang, F.; Liu, Y.; Zhi, J. Three-dimensional Lattice Boltzmann simulation of gas-water transport in tight sandstone porous media: Influence of microscopic surface forces. Energy Sci. Eng. 2020, 8, 1924–1940. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, X.; Xiao, H.; Zhang, F.; Jiang, Z.; Liu, G. Water film thickness of tight reservoir in Fuyu oil layer of Cretaceous Quantou Formation in Songliao Basin and its influence on the lower limit of seepage. Mar. Pet. Geol. 2022, 139, 105592. [Google Scholar] [CrossRef]
- Liu, H.; Guo, W.; Fang, C.; Wang, H. A study on geological characteristics of marine shale gas reservoir in Southern China. Energ. Explor. Exploit. 2015, 33, 299–308. [Google Scholar] [CrossRef]
- Zhang, T.; Ellis, G.S.; Ruppel, S.C.; Milliken, K.; Yang, R. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org. Geochem. 2012, 47, 120–131. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Z.; Jiang, S.; Guo, S.; Tan, J. Effect of pre-adsorbed water on methane adsorption capacity in shale-gas systems. Front. Earth Sci. 2021, 9, 757705. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, Z.; McPherson, B.J.; McLennan, J.D. Modeling competitive adsorption between methane and water on coals. Energy Fuel 2017, 31, 10775–10786. [Google Scholar] [CrossRef]
- Tian, H.; Wei, C.; Lai, Y.; Chen, P. Quantification of water content during freeze–thaw cycles: A nuclear magnetic resonance based method. Vadose Zone J. 2018, 17, 1–12. [Google Scholar] [CrossRef]
- Eveline, V.F.; Akkutlu, I.Y.; Moridis, G.J. Numerical simulation of hydraulic fracturing water effects on shale gas permeability alteration. Transp. Porous Med. 2017, 116, 727–752. [Google Scholar] [CrossRef]
Lithology | Porosity (%) | Water Saturation (%) | TOC (%) | Mineral Composition (%) | |||
---|---|---|---|---|---|---|---|
Quartz | Feldspar | Carbonate Minerals | Clay Minerals | ||||
Clay shale | 12–18 | 40–76 | 0.5–1.5 | 15–24 | 5–17 | 7–21 | 35–58 |
Silty shale | 16–25 | 57–90 | 0.3–0.8 | 32–49 | 7–22 | 8–24 | 13–35 |
Lithology | K+ + Na+ (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | CL− (mg/L) | SO42− (mg/L) | HCO3− (mg/L) | Total Mineralization (mg/L) |
---|---|---|---|---|---|---|---|
Clay shale | 57,145–66,317 | 2839–3249 | 497–2661 | 100,015–110,471 | 429–11,445 | 942–1131 | 164,101–182,922 |
Silty shale | 36,906–55,074 | 2129–2657 | 861–1233 | 63,853–90,425 | 309–1311 | 660–942 | 106,620–149,740 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Jiang, Z.; Yuan, Z.; Jiao, Y.; Lin, C.; Liu, X. Pore Water and Its Multiple Controlling Effects on Natural Gas Enrichment of the Quaternary Shale in Qaidam Basin, China. Energies 2023, 16, 6170. https://doi.org/10.3390/en16176170
Tang X, Jiang Z, Yuan Z, Jiao Y, Lin C, Liu X. Pore Water and Its Multiple Controlling Effects on Natural Gas Enrichment of the Quaternary Shale in Qaidam Basin, China. Energies. 2023; 16(17):6170. https://doi.org/10.3390/en16176170
Chicago/Turabian StyleTang, Xianglu, Zhenxue Jiang, Zhenglian Yuan, Yifan Jiao, Caihua Lin, and Xiaoxue Liu. 2023. "Pore Water and Its Multiple Controlling Effects on Natural Gas Enrichment of the Quaternary Shale in Qaidam Basin, China" Energies 16, no. 17: 6170. https://doi.org/10.3390/en16176170
APA StyleTang, X., Jiang, Z., Yuan, Z., Jiao, Y., Lin, C., & Liu, X. (2023). Pore Water and Its Multiple Controlling Effects on Natural Gas Enrichment of the Quaternary Shale in Qaidam Basin, China. Energies, 16(17), 6170. https://doi.org/10.3390/en16176170