Experimental Investigation of Temperature Distribution in a Laminar Boundary Layer over a Heated Flat Plate with Localized Transverse Cold Air Injections
Abstract
:1. Introduction
2. Experimental Setup and Instrumentation
3. Results
3.1. Validation Study: Thermal Boundary Layer Thickness over a Regular Heated Flat Plate
3.2. Thermal Boundary Layer Thickness over a Heated Flat Plate with Localized Cold Air Injections
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Correction Statement
Abbreviations
RTD | Resistance Temperature Detectors |
Pr | Prandtl number |
Re | Reynolds number |
Nu | Nusselt number |
AC | Alternating Current |
DC | Direct Current |
PT | Platinum |
RPM | Revolutions Per Minute |
Appendix A. Python Script for Figure 5
import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit from sklearn.metrics import r2_score |
# Define the hyperbolic function for curve fitting def hyperbolic_function(T, a, b, c): return a + b / (T - c) |
# Given data y_data = np.array([0, 0.5, 1.0, 1.5, 2.0, 2.5]) T_data = np.array([71.5, 46.06, 34.88, 31.42, 30.61, 29.36]) |
# Perform the curve fit params, _ = curve_fit(hyperbolic_function, T_data, y_data) |
# Extract the optimized parameters a_opt, b_opt, c_opt = params |
# Generate points on the curve using the optimized parameters T_curve = np.linspace(min(T_data), max(T_data), 100) y_curve = hyperbolic_function(T_curve, a_opt, b_opt, c_opt) |
# Calculate R-squared y_predicted = hyperbolic_function(T_data, a_opt, b_opt, c_opt) r2 = r2_score(y_data, y_predicted) |
# Print the optimized parameters print("Optimized Parameters:") print("a =", a_opt) print("b =", b_opt) print("c =", c_opt) |
# Print R-squared print("R-squared:", r2) |
# Plot the data points and the curve fit plt.scatter(T_data, y_data, label=’No-Inj-Tf50’) plt.plot(T_curve, y_curve, ’r-’, label=’Curve Fit’) plt.xlabel(’T_data’) plt.ylabel(’y_data’) plt.legend() plt.title(’Hyperbolic Function Curve Fit (R-squared: {:.4f})’.format(r2)) plt.grid(True) plt.show() |
References
- Anderson, J.D. Fundamentals of Aerodynamics, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2010. [Google Scholar]
- White, F.M. Viscous Fluid Flow, 3rd ed.; McGraw-Hill Education: New York, NY, USA, 2006. [Google Scholar]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory, 9th ed.; Springer: Berlin, Germany, 2017. [Google Scholar]
- Panton, R.L. Incompressible Flow, 4th ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Lienhard, J.H. A Heat Transfer Textbook, 3rd ed.; Phlogiston Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Chedevergne, F.; Marchenay, Y. Transpired turbulent boundary layers: A general strategy for RANS turbulence models. J. Turbul. 2019, 11–12, 681–696. [Google Scholar] [CrossRef]
- Ganic, E.N. Transpired boundary layers: A review. Prog. Heat Mass Transf. 1990, 16, 1–53. [Google Scholar]
- Joshi, H.C. Transpiration Cooling; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Li, X.; Zhang, H. Transpired boundary layers: A review of recent progress. Prog. Aerosp. Sci. 2013, 64, 1–30. [Google Scholar]
- Lachmann, G.V. (Ed.) Boundary Layer Control, Vols. I and II; Pergamon Press: New York, NY, USA, 1961. [Google Scholar]
- Mickley, S.; Ross, R.C.; Squyers, A.C.; Stewart, W.E. Heat, Mass and Momentum Transfer for Flow over a Flat Plate with Blowing or Sunction; NACA Technical Report TN-3208; NACA: Sacramento, CA, USA, 1955. [Google Scholar]
- Brown, B.W.; Donoughe, P.L. Tables of Exact Laminar Boundary Layer Solutions When the Wall Is Porous and Fluid Properties are Variable; NACA Technical Report TN-2479; NACA: Sacramento, CA, USA, 1951. [Google Scholar]
- Dorrance, W. Viscous Hypersonic Flow; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1962. [Google Scholar]
- Eckert, E.R.G.; Hayday, A.A.; Minkowycz, W.J. Heat Transfer, Temperature Recovery, and Skin Friction on a Flat Plate Surface with Hydrogen Release into a Laminar Boundary Layer; University of Minnesota Heat Transfer Laboratory Technical Report 27; University of Minnesota Heat Transfer Laboratory: St. Paul, MN, USA, 1961. [Google Scholar]
- Sparrow, E.M.; Stan, J.B. The Transpiration Cooled Flat Plate with Various Thermal and Velocity Boundary Conditions. Int. J. Heat Mass Transf. 1966, 9, 508. [Google Scholar] [CrossRef]
- Kubata, T.; Fernandez, F.L. Boundary Layer Flows with Large Injection and Heat Transfer. AIAA J. 1968, 6, 22–28. [Google Scholar] [CrossRef]
- Gupta, P.S.; Gupta, A.S. Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 1977, 55, 744–746. [Google Scholar] [CrossRef]
- Dutta, B.K.; Roy, P.; Gupta, A.S. Temperature field in flow over a stretching sheet with uniform heat flux. Int. Commun. Heat Mass Transf. 1985, 12, 89–94. [Google Scholar] [CrossRef]
- Özisik, M.N. Heat Transfer: A Basic Approach; McGraw-Hill: New York, NY, USA, 1985. [Google Scholar]
- Char, M.I. Heat transfer of a continuous, stretching surface with suction or blowing. J. Math. Anal. Appl. 1988, 135, 568–580. [Google Scholar] [CrossRef]
- Kays, W.M.; Crawford, M.E. Convective Heat and Mass Transfer; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Elhadidy, M.A.; Sabry, M. Experimental and numerical analysis of a solar air heater with transpired absorber. Appl. Energy 2009, 86, 1118–1127. [Google Scholar] [CrossRef]
- Singh, R.; Saini, J.S. Performance evaluation of transpired solar collector: An experimental study. Renew. Energy 2013, 60, 586–592. [Google Scholar] [CrossRef]
- Abdul-Aziz, A.R.; Sopian, K. A review on recent patents in transpired solar collector. Recent Patents Mech. Eng. 2015, 8, 203–214. [Google Scholar]
- Dong, H.; Zhao, X.; Li, Z.; Chen, Z. Experimental study on the effect of hole diameter on transpired solar collector performance. Energy Procedia 2016, 88, 37–42. [Google Scholar] [CrossRef]
- Yuan, W.; Zhao, J.; Liu, W.; Du, J.; Zhang, Z. Experimental investigation on the thermal performance of the transpired solar collector with oblique v-groove. Energy Convers. Manag. 2017, 135, 153–160. [Google Scholar] [CrossRef]
- Wu, X.; Song, B.; Li, Y.; Cai, Z.; Wang, R. Numerical simulation and optimization of heat transfer in transpired solar collector using the lattice Boltzmann method. Energy Convers. Manag. 2018, 166, 1–10. [Google Scholar] [CrossRef]
- Forsberg, C.H. (Ed.) Chapter 6-Forced convection. In Heat Transfer Principles and Applications; Academic Press: Boca Raton, FL, USA, 2021; pp. 211–266. ISBN 978-0-12-802296-2. [Google Scholar] [CrossRef]
- Tomić, M.A.; Ayed, S.K.; Stevanović, Ž.Ž.; Đekić, P.S.; Živković, P.M.; Vukić, M.V. Perforated plate convective heat transfer analysis. Int. J. Therm. Sci. 2018, 124, 300–306. [Google Scholar] [CrossRef]
Case-Study | U∞ (m/s) | T∞ (°C) | Tp (°C) | Tpw (°C) | Tf (°C) | (m2/s) | Pr |
---|---|---|---|---|---|---|---|
No-Inj-Tf50 | 0.5 | 29.38 | 133.5 | 71.5 | 50.44 | 1.95 × 10−5 | 0.718 |
No-Inj-Tf42 | 0.5 | 30.09 | 103.5 | 55.5 | 42.79 | 1.92 × 10−5 | 0.716 |
Case Study | x1 (cm) | x2 (cm) | x3 (cm) | x4 (cm) | Rex1 | Rex2 | Rex3 | Rex4 |
---|---|---|---|---|---|---|---|---|
No-Inj-Tf50 | 43.20 | 40.10 | 37 | 33.90 | 11,045 | 10,253 | 9460 | 8668 |
No-Inj-Tf42 | 43.20 | 40.10 | 37 | 33.90 | 11,247 | 10,440 | 9633 | 8826 |
Station | Ta(0) U∞ = 0.5 m/s | Ta(0.5) U∞ = 0.5 m/s | Ta(1) U∞ = 0.5 m/s | Ta(1.5) U∞ = 0.5 m/s | Ta(2) U∞ = 0.5 m/s | Ta(2.5) U∞ = 0.5 m/s | Ta(3) U∞ = 0.5 m/s |
---|---|---|---|---|---|---|---|
x1 | 71.50 | 46.06 | 34.88 | 31.42 | 30.61 | 29.36 | 29.36 |
x2 | 71.50 | 45.73 | 34.63 | 31.20 | 30.30 | 29.36 | 29.36 |
x3 | 71.50 | 45.27 | 34.28 | 30.89 | 30.01 | 29.36 | 29.36 |
x4 | 71.50 | 44.82 | 33.94 | 30.58 | 29.70 | 29.36 | 29.36 |
Station | Ta(0) U∞ = 0.5 m/s | Ta(0.5) U∞ = 0.5 m/s | Ta(1) U∞ = 0.5 m/s | Ta(1.5) U∞ = 0.5 m/s | Ta(2) U∞ = 0.5 m/s | Ta(2.5) U∞ = 0.5 m/s | Ta(3) U∞ = 0.5 m/s |
---|---|---|---|---|---|---|---|
x1 | 55.50 | 42.17 | 34.17 | 31.90 | 30.44 | 30.07 | 30.07 |
x2 | 55.50 | 41.75 | 33.93 | 31.88 | 30.24 | 30.07 | 30.07 |
x3 | 55.50 | 41.33 | 33.59 | 31.30 | 30.16 | 30.07 | 30.07 |
x4 | 55.50 | 40.92 | 33.26 | 30.96 | 30.10 | 30.07 | 30.07 |
Case Study | at x1 (cm) | at x2 (cm) | at x3 (cm) | at x4 (cm) |
---|---|---|---|---|
No-Inj-Tf50 | 2.37 | 2.33 | 2.26 | 2.04 |
No-Inj-Tf42 | 2.07 | 1.95 | 1.92 | 1.83 |
Stations | Analytical Based on | Experimental | Relative Error % |
---|---|---|---|
2.28 | 2.37 | 3.95% | |
2.20 | 2.33 | 5.91% | |
2.11 | 2.26 | 7.11% | |
2.02 | 2.04 | 0.99% |
Stations | Analytical Based on | Experimental | Relative Error % |
---|---|---|---|
2.26 | 2.07 | 8.41% | |
2.18 | 1.95 | 10.55% | |
2.09 | 1.92 | 8.13% | |
2.01 | 1.83 | 9.00% |
Station | Ta(0) U∞ = 0.5 m/s | Ta(0.5) U∞ = 0.5 m/s | Ta(1) U∞ = 0.5 m/s | Ta(1.5) U∞ = 0.5 m/s | Ta(2) U∞ = 0.5 m/s | Ta(2.5) U∞ = 0.5 m/s | Ta(3) U∞ = 0.5 m/s |
---|---|---|---|---|---|---|---|
x1 | 58.76 | 47.75 | 38.50 | 35.25 | 33.76 | 32.80 | 32.49 |
x2 | 58.76 | 43.15 | 37.65 | 34.50 | 33.25 | 32.49 | 32.49 |
x3 | 58.76 | 39.35 | 36.45 | 33.55 | 33.03 | 32.49 | 32.49 |
x4 | 58.76 | 35.51 | 35.35 | 33.04 | 32.90 | 32.49 | 32.49 |
Station | Ta(0) U∞ = 0.5 m/s | Ta(0.5) U∞ = 0.5 m/s | Ta(1) U∞ = 0.5 m/s | Ta(1.5) U∞ = 0.5 m/s | Ta(2) U∞ = 0.5 m/s | Ta(2.5) U∞ = 0.5 m/s | Ta(3) U∞ = 0.5 m/s |
---|---|---|---|---|---|---|---|
x1 | 55.50 | 43.85 | 37.59 | 35.34 | 33.57 | 32.67 | 32.49 |
x2 | 55.50 | 39.64 | 36.78 | 34.31 | 33.13 | 32.49 | 32.49 |
x3 | 55.50 | 36.84 | 35.98 | 33.31 | 32.91 | 32.49 | 32.49 |
x4 | 55.50 | 34.40 | 33.20 | 32.98 | 32.58 | 32.49 | 32.49 |
Case Study | (x1) | (x2) | (x3) | (x4) |
---|---|---|---|---|
Inj-Tf45 | 2.51 | 2.26 | 2.17 | 2.06 |
Inj-Tf39 | 2.41 | 2.24 | 2.10 | 1.70 |
No-Inj-Tf50 | 2.37 | 2.33 | 2.26 | 2.04 |
No-Inj-Tf42 | 2.07 | 1.95 | 1.92 | 1.83 |
Stations | (x) Analytical Based on Tf | (x) Experimental |
---|---|---|
x1 | 2.28 | 2.51 |
x2 | 2.20 | 2.26 |
x3 | 2.11 | 2.17 |
x4 | 2.02 | 2.06 |
Stations | (x) Analytical Based on Tf | (x) Experimental |
---|---|---|
x1 | 2.26 | 2.41 |
x2 | 2.18 | 2.24 |
x3 | 2.09 | 2.10 |
x4 | 2.01 | 1.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddiqui, M.E.; Melaibari, A.A.; Butt, F.S. Experimental Investigation of Temperature Distribution in a Laminar Boundary Layer over a Heated Flat Plate with Localized Transverse Cold Air Injections. Energies 2023, 16, 6171. https://doi.org/10.3390/en16176171
Siddiqui ME, Melaibari AA, Butt FS. Experimental Investigation of Temperature Distribution in a Laminar Boundary Layer over a Heated Flat Plate with Localized Transverse Cold Air Injections. Energies. 2023; 16(17):6171. https://doi.org/10.3390/en16176171
Chicago/Turabian StyleSiddiqui, Muhammad Ehtisham, Ammar A. Melaibari, and Fahad Sarfraz Butt. 2023. "Experimental Investigation of Temperature Distribution in a Laminar Boundary Layer over a Heated Flat Plate with Localized Transverse Cold Air Injections" Energies 16, no. 17: 6171. https://doi.org/10.3390/en16176171
APA StyleSiddiqui, M. E., Melaibari, A. A., & Butt, F. S. (2023). Experimental Investigation of Temperature Distribution in a Laminar Boundary Layer over a Heated Flat Plate with Localized Transverse Cold Air Injections. Energies, 16(17), 6171. https://doi.org/10.3390/en16176171