Characteristics and Key Controlling Factors of the Interbedded-Type Shale-Oil Sweet Spots of Qingshankou Formation in Changling Depression
Abstract
:1. Introduction
2. Basic Geological Features and Experimental Methods
2.1. Basic Geologic Features
2.2. Samples and Experimental Methods
2.2.1. TOC, Pyrolysis, and XRD Tests
2.2.2. Physical Properties and Pore-Structure-Related Experiments
2.2.3. Other Experiments
3. Characterization of the Shale-Oil Sweet-Spot Elements
3.1. Petrography
3.2. Physical Properties of Shale-Oil Sweet Spots
3.3. Oil-Bearing Characteristics of the Shale-Oil Sweet Spots
4. Main Controlling Factors of the Shale-Oil Sweet-Spot Enrichment of the Qingshankou I Member in the Changling Depression
4.1. Favorable Shale Lithofacies
4.2. The Control of the Sedimentary Environment on the Favorable Shale Lithofacies
4.3. The Key Control of High Maturity on the Enrichment and High Yield of Shale Oil
4.4. A Good Combination of Sand–Shale Is Conducive to Efficient Development
5. Interbedded-Type Shale-Oil Enrichment Laws and Its Exploration Direction of the Qingshankou I Member in the Changling Formation
6. Conclusions
- (1)
- For the Qingshankou shale in the Changling Depression, the siltstone, argillaceous-laminated felsic shale, and the silty-laminated felsic shale have excellent physical properties, mobility, and fracturability, which are the most favorable lithofacies.
- (2)
- The Qingshankou shale in the Changling Depression has a relatively high maturity, and the reservoir space is dominated by intergranular pores, solution pores, intercrystalline pores, and micro-cracks, and there is also a small amount of organic pores. The laminae types control the pore structure and oiliness. Light hydrocarbon components are enriched in the silty laminae and the felsic laminae in a free state.
- (3)
- The high maturity and the interbedded combination of sand and shale ensure the efficient production of the interbedded-type shale oil. Maturity controls crude oil density, the gas-to-oil ratio, and pore pressure. When the Ro > 1.0%, the shale-oil mobility is evidently better. A good combination of sand and shale ensures the sustainable contribution of the pure-shale-oil section.
- (4)
- The interbedded-type shale-oil sweet spots are controlled by the superposition relationship between the siltstone interlayer and the pure-shale sweet spots. The “best shale and best siltstone interlayers” combination is the best, followed by the “best shale and medium siltstone interlayers” combination.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, W.Z.; Hu, S.Y.; Hou, L.H.; Yang, T.; Li, X.; Guo, B.C.; Yang, Z. Types and resource potential of continental shale oil in China and its boundary with tight oil. Pet. Explor. Dev. 2020, 47, 1–11. [Google Scholar] [CrossRef]
- Jin, Z.J. Hydrocarbon accumulation and resources evaluation: Recent advances and current challenges. Adv. Geo-Energy Res. 2023, 8, 1–4. [Google Scholar] [CrossRef]
- Hu, S.Y.; Zhao, W.Z.; Hou, L.H.; Yang, Z.; Zhu, R.K.; Wu, S.T.; Bai, B.; Jin, X. Development potential and technical strategy of continental shale oil in China. Pet. Explor. Dev. 2020, 47, 877–887. [Google Scholar] [CrossRef]
- Sun, J.Y.; Chen, X.W.; Zhang, Y.; Qin, Y.; Chen, C.; Li, W.Z.; Zhou, W.N. Displacement Characteristics of CO2 to CH4 in Heterogeneous Surface Slit Pores. Energy Fuels 2023, 37, 2926–2944. [Google Scholar] [CrossRef]
- Li, J.R.; Yang, Z.; Wu, S.T.; Pan, S.Q. Key issues and development direction of petroleum geology research on source rock strata in China. Adv. Geo-Energy Res. 2021, 5, 121–126. [Google Scholar] [CrossRef]
- Wang, X.N.; Li, J.R.; Jiang, W.Q.; Zhang, H.; Feng, Y.L.; Yang, Z. Characteristics, current exploration practices, and prospects of continental shale oil in China. Adv. Geo-Energy Res. 2022, 6, 454–459. [Google Scholar] [CrossRef]
- Fu, J.H.; Guo, W.; Li, S.X.; Liu, X.Y.; Cheng, D.X.; Zhou, X.P. Characteristics and exploration potential of muti-type shale oil in the 7th Member of Yanchang Formation, Ordos Basin. Nat. Gas Geosci. 2021, 32, 1749–1761. [Google Scholar]
- Zhi, D.M.; Tang, Y.; Yang, Z.F.; Guo, X.G.; Zheng, M.L.; Wan, M.; Huang, L.L. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin. Oil Gas Geol. 2019, 40, 524–534. [Google Scholar]
- He, W.Y.; Meng, Q.A.; Feng, Z.H.; Zhang, J.Y.; Wang, R. In-situ accumulation theory and exploration & development practice of Gulong shale oil in Songliao Basin. Acta Pet. Sin. 2022, 43, 1–14. [Google Scholar]
- Sun, L.D.; Liu, H.; He, W.Y.; Li, G.X.; Zhang, S.C.; Zhu, R.K.; Jin, X.; Meng, S.W.; Jiang, H. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing oilfield, NE China. Pet. Explor. Dev. 2021, 48, 527–540. [Google Scholar] [CrossRef]
- He, W.Y.; Meng, Q.A.; Zhang, J.Y. Controlling factors and their classification-evaluation of Gulong shale oil enrichment in Songliao Basin. Pet. Geol. Oilfield Dev. Daqing 2021, 40, 1–12. [Google Scholar]
- Zhang, J.F.; Xu, X.Y.; Bai, J.; Chen, S.; Liu, C.; Li, Y.H. Enrichment and exploration of deep lacustrine shale oil in the first member of Cretaceous Qingshankou Formation, south Songliao Basin, NE China. Pet. Explor. Dev. 2020, 47, 683–698. [Google Scholar] [CrossRef]
- Liu, B.; Sun, J.H.; Zhang, Y.Q.; He, J.L.; Fu, X.F.; Yang, L.; Xing, J.L.; Zhao, X.Q. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the changling Sag, southern Songliao Basin, NE China. Pet. Explor. Dev. 2021, 48, 608–624. [Google Scholar] [CrossRef]
- Feng, Z.H.; Huo, Q.L.; Wang, X.; Zeng, H.S.; Fu, L. Organic geochemical characteristics and paleosedimentary environments of the source rocks in member 1 of Qingshankou Formation. Pet. Geol. Oilfield Dev. Daqing 2015, 34, 1–7. [Google Scholar]
- Cui, B.W.; Chen, C.R.; Lin, X.D.; Zhao, Y.; Cheng, X.Y.; Zhang, Y.P.; Lu, G.Q. Characteristics and distribution of sweet spots in Gulong shale oil reservoirs of Songliao Basin. Pet. Geol. Oilfield Dev. Daqing 2020, 39, 45–55. [Google Scholar]
- SY/T 5163-2010; Analysis Method for Clay Minerals and Ordinary Non-Clay Minerals in Sedimentary Rocks by the X-ray Diffraction. Petroleum Industry Press: Beijing, China, 2010.
- GB/T 34533-2017; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China & Standardization Administration of the People’s Republic of China. Measurement of Helium Porosity and Pulse Decay Permeability of Shale. Standards Press of China: Beijing, China, 2017.
- GB/T 29171-2012; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China & Standardization Administration of the People’s Republic of China. Rock Capillary Pressure Measurement. Standards Press of China: Beijing, China, 2013.
- Sheng, P.; Zhang, T.W.; Loucks, R.G.; Shultz, J. Application of mercury injection capillary pressure to mudrocks: Conformance and compression corrections. Mar. Pet. Geol. 2017, 88, 30–40. [Google Scholar]
- Lin, S.H.; Hou, L.H.; Luo, X. Shale Mineralogy Analysis Method, Quantitative Correction of Minerals Using QEMSCAN Based on MAPS Technology. Appl. Sci. 2022, 12, 5013. [Google Scholar] [CrossRef]
- SY/T 5162-2021; Analytical Method for Rock Samples by Scanning Electron Microscope. Petroleum Industry Press: Beijing, China, 2021.
- SY/T 6490-2014; Specification for Measurement of Rock NMR Parameter in Laboratory. Petroleum Industry Press: Beijing, China, 2015.
- Mondal, L.; Singh, K.H. Fluid substitution in NMR T2 distribution and resistivity independent saturation computation using synthetic capillary pressure data. Pet. Res. 2023, 8, 77–86. [Google Scholar] [CrossRef]
- Li, J.B.; Lu, S.F.; Chen, G.H.; Wang, M.; Tian, S.S.; Guo, Z.Q. A new method for measuring shale porosity with low-field nuclear magnetic resonance considering non-fluid signals. Mar. Pet. Geol. 2019, 102, 535–543. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.L.; Fu, X.F.; Bai, Y.F.; Bai, L.H.; Jia, M.C.; He, B. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong sag, northern Songliao Basin, northeast China. AAPG Bull. 2019, 103, 405–432. [Google Scholar] [CrossRef]
- Liu, S.J.; Cao, Y.C.; Liang, C. Lithologic characteristics and sedimentary environment of fine-grained sedimentary rocks of the Paleogene in Dongying Sag, Bohai Bay Basin. J. Palaeogeogr. 2019, 21, 479–489. [Google Scholar]
- Teng, J.; Liu, B.; Mastalerz, M.; Schieber, J. Origin of organic matter and organic pores in the overmature Ordovician-Silurian Wufeng-Longmaxi Shale of the Sichuan Basin, China. Int. J. Coal Geol. 2022, 253, 103970. [Google Scholar] [CrossRef]
- Lu, Y.B.; Yang, F.; Bai, T.A.; Han, B.; Lu, Y.C.; Gao, H. Shale oil occurrence mechanisms: A comprehensive review of the occurrence state, occurrence space, and movability of shale oil. Energies 2022, 15, 9485. [Google Scholar] [CrossRef]
- Wang, M.; Ma, R.; Li, J.B.; Lu, S.F.; Li, C.M.; Guo, Z.Q.; Li, Z. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China. Pet. Explor. Dev. 2019, 46, 833–846. [Google Scholar] [CrossRef]
- Ren, Q.; Wei, H.; Lei, G.F.; Zhang, W.G.; Ge, B.Y.; Nan, J.X. Effect of microscopic pore throat structure on displacement characteristics of lacustrine low permeability sandstone: A case study of Chang 6 reservoir in Wuqi Oilfield, Ordos Basin. Geofluids 2022, 2022, 7438074. [Google Scholar]
- Zhang, J.Y.; Tao, S.Z.; Wu, S.T.; Liu, G.D.; Zhao, W.Z.; Li, G.H. Controlling effect of pore-throat structures on tight oil accumulation effectiveness in the upper Cretaceous Qingshankou formation, Songliao Basin. Geoenergy Sci. Eng. 2023, 225, 211689. [Google Scholar] [CrossRef]
- Bernard, S.; Horsfield, B.; Schulz, H.M.; Wirth, R.; Schreiber, A.; Sherwood, N. Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany). Mar. Pet. Geol. 2012, 31, 70–89. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Duan, L.F.; Jiang, Z.X.; Huang, L.L.; Chang, J.Q.; Zheng, G.W.; Wang, Z.W.; An, F.; Wei, W.H. Using laser scanning confocal microscopy combined with saturated oil experiment to investigate the pseudo in-situ occurrence mechanism of light and heavy components of shale oil in sub-micron shale. J. Pet. Sci. Eng. 2023, 220, 111234. [Google Scholar] [CrossRef]
- Krumbein, W.C. The mechanical analysis of fine-grained sediments. J. Sediment. Res. 1932, 2, 140–149. [Google Scholar] [CrossRef]
- Wu, S.T.; Petroleum Geology Committee of China Petroleum Society; Petroleum Geology Committee of China Geological Society. Unconventional Oiland Gas Committee of China Petroleum Society Shale laminar structure and reservoir performance evaluation of Qingshankou Formation in Songliao Basin. In Proceedings of the 6th Symposium on Unconventional Oil and Gas Geological Evaluation and New Energy, Wuhan, China, 9–12 July 2021. [Google Scholar]
- Hu, W.F.; Chen, C.; Sun, J.Y.; Zhang, N.; Zhao, J.F.; Liu, Y.; Ling, Z.; Li, W.Z.; Liu, W.G.; Song, Y.C. Three-body aggregation of guest molecules as a key step in methane hydrate nucleation and growth. Commun. Chem. 2022, 5, 33. [Google Scholar] [CrossRef]
- Li, J.B.; Wang, M.; Jiang, C.Q.; Lu, S.F.; Li, Z. Sorption model of lacustrine shale oil: Insights from the contribution of organic matter and clay minerals. Energy 2022, 260, 125011. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Li, J.B.; Shao, H.M.; Deng, Z.X.; Wu, Y. Thermal maturity: The controlling factor of wettability, pore structure, and oil content in the lacustrine Qingshankou shale, Songliao Basin. J. Pet. Sci. Eng. 2022, 215, 110618. [Google Scholar] [CrossRef]
- Liang, C.; Cao, Y.C.; Liu, K.Y.; Jiang, Z.X.; Wu, J.; Hao, F. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: Implications for hydrocarbon migration and accumulation. Geochim. Cosmochim. Acta 2018, 229, 112–128. [Google Scholar] [CrossRef]
- Carlson, R.; Chamberlain, D.E. Steroid biomarker-clay mineral adsorption free energies: Implications to petroleum migration indices. Org. Geochem. 1986, 10, 163–180. [Google Scholar] [CrossRef]
- Slatt, R.M.; O’Brien, N.R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull. 2011, 95, 2017–2030. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, D.P.; Han, X.Y.; Zhang, K.X.; Shang, X.F.; Zhou, S. Evaluation of fracturability of shale reservoirs in the longmaxi formation in southern sichuan basin. Front. Earth Sci. 2022, 10, 993829. [Google Scholar] [CrossRef]
- Zhao, N.; Huang, J.Q.; Li, D.M.; Wu, X.H.; Huang, Q.Z. Sedimentary laws of thin-layer, Fine-grain turbidites of distant-gentle slope: A case from the 1st member of Qingshankou Formation in Dabusu area of west slope, south Songliao basin. Acta Sedimentol. Sin. 2013, 31, 291–301. [Google Scholar]
- Potter, P.E.; Maynard, J.B.; Pryor, W.A. Sedimentology of Shale; Springer: New York, NY, USA, 1980; pp. 1–310. [Google Scholar]
- Wu, J.; Li, H.; Goodarzi, F.; Min, X.; Cao, W.X.; Huang, L.F.; Pan, Y.Y.; Luo, Q.Y. Geochemistry and depositional environment of the Mesoproterozoic Xiamaling shales, northern North China. J. Pet. Sci. Eng. 2022, 215, 110730. [Google Scholar] [CrossRef]
- Milliken, K.L.; Rudnicki, M.; Awwiller, D.N.; Zhang, T.W. Organic matter–hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bull. 2013, 97, 177–200. [Google Scholar] [CrossRef]
- Yan, Q.; Ping, H.W.; Yang, X.; Liu, H.L.; Chen, H.H. Evaluation of Shale Oil Mobility for the Eocene Shahejie Formation in Liutun Sag, Dongpu Depression, Bohai Bay Basin. Energies 2023, 16, 2101. [Google Scholar] [CrossRef]
- Han, Y.J.; Mahlstedt, N.; Horsfield, B. The Barnett Shale: Compositional fractionation associated with intraformational petroleum migration, retention, and expulsion. AAPG Bull. 2015, 99, 2173–2202. [Google Scholar] [CrossRef]
- Chai, Z.H.; Fang, H.W.; Yao, S.M.; Wang, Q. A model for the flocculation-settling-resuspension process of cohesive sediment. J. Hydraul. Eng. 2016, 47, 1540–1547. [Google Scholar]
- Yan, W.; Wang, J.B.; Liu, S.; Wang, K.; Zhou, Y.N. Logging identification for the Longmaxi mud shale reservoir in the Jiaoshiba area, Sichuan Basin. Nat. Gas Ind. 2014, 34, 30–36. [Google Scholar]
Sample | Depth (m) | Well | TOC (wt%) | Quartz (%) | Feldspar (%) | Clay (%) | Siderite (%) | Dolomite (%) | Calcite (%) | Pyrite (%) |
---|---|---|---|---|---|---|---|---|---|---|
#1 | 2218.45 | H82GP1-24 | 2.17 | 30.15 | 21.48 | 39.49 | 0.00 | 2.35 | 4.35 | 2.19 |
#2 | 2220.2 | H82GP1-24 | 3.62 | 26.20 | 29.17 | 39.49 | 0.00 | 2.28 | 1.50 | 1.36 |
#3 | 2224.64 | H82GP1-24 | 1.35 | 35.93 | 22.35 | 39.16 | 0.00 | 2.56 | 0.00 | 0.00 |
#4 | 2226.07 | H82GP1-24 | 0.65 | 35.04 | 23.21 | 36.86 | 0.00 | 1.73 | 0.00 | 3.17 |
#5 | 2231.72 | H82GP1-24 | 0.78 | 37.73 | 28.34 | 33.93 | 0.00 | 0.00 | 0.00 | 0.00 |
#6 | 2236.4 | H82GP1-24 | 0.92 | 33.53 | 27.53 | 31.43 | 0.00 | 4.06 | 2.35 | 1.10 |
#7 | 2237.76 | H82GP1-24 | 3.55 | 22.37 | 32.26 | 39.21 | 0.00 | 5.25 | 0.00 | 0.91 |
#8 | 2238.76 | H82GP1-24 | 2.31 | 30.55 | 22.33 | 35.41 | 1.17 | 10.54 | 0.00 | 0.00 |
#9 | 2249.5 | H82GP1-24 | 0.10 | 40.25 | 31.00 | 12.92 | 0.83 | 12.37 | 2.63 | 0.00 |
#10 | 2251.4 | H82GP1-24 | 0.41 | 39.07 | 14.57 | 32.47 | 2.79 | 7.89 | 2.15 | 1.07 |
#11 | 2255.48 | H82GP1-24 | 0.78 | 35.20 | 18.10 | 35.83 | 3.89 | 4.29 | 1.74 | 0.95 |
#12 | 2257 | H82GP1-24 | 0.80 | 32.99 | 23.61 | 33.72 | 3.32 | 5.64 | 0.72 | 0.00 |
#13 | 2259.26 | H82GP1-24 | 2.08 | 28.87 | 15.92 | 46.08 | 4.16 | 3.94 | 0.00 | 1.03 |
#14 | 2263.9 | H82GP1-24 | 1.67 | 27.60 | 17.02 | 42.26 | 2.92 | 7.41 | 0.88 | 1.92 |
#15 | 2264.9 | H82GP1-24 | 0.49 | 25.19 | 24.87 | 23.90 | 1.02 | 10.33 | 12.22 | 2.47 |
#16 | 2527.5 | H197 | 2.34 | 28.77 | 24.53 | 43.55 | 1.24 | 1.91 | 0.00 | 0.00 |
#17 | 2555.7 | H197 | 0.41 | 32.13 | 19.31 | 45.86 | 0.00 | 0.82 | 1.88 | 0.00 |
#18 | 2548 | H81-39-15 | 1.98 | 24.05 | 25.29 | 48.38 | 0.00 | 1.19 | 0.00 | 1.09 |
#19 | 1670.5 | G45-14 | 1.87 | 28.97 | 22.39 | 38.64 | 3.79 | 0.00 | 6.21 | 0.00 |
#20 | 1689.5 | G45-14 | 4.74 | 24.20 | 22.58 | 38.98 | 0.00 | 7.23 | 3.98 | 3.04 |
#21 | 1694 | G45-14 | 0.46 | 34.84 | 18.74 | 42.15 | 0.00 | 1.18 | 3.09 | 0.00 |
#22 | 1712.3 | G45-14 | 1.58 | 28.53 | 17.15 | 45.26 | 0.00 | 0.00 | 3.33 | 2.03 |
#23 | 1691.04 | G45-14 | 7.91 | 18.91 | 38.48 | 37.02 | 0.00 | 3.17 | 0.00 | 1.76 |
#24 | 1693.06 | G45-14 | 2.64 | 23.62 | 16.40 | 50.17 | 0.00 | 1.24 | 6.39 | 2.18 |
#25 | 1697.74 | G45-14 | 0.27 | 30.70 | 22.94 | 43.62 | 0.00 | 1.07 | 1.67 | 0.00 |
#26 | 1699.62 | G45-14 | 0.42 | 30.47 | 24.55 | 39.99 | 0.00 | 1.73 | 3.26 | 0.00 |
#27 | 1714.8 | G45-14 | 1.38 | 24.03 | 21.05 | 46.02 | 0.00 | 0.68 | 1.76 | 6.45 |
Sample | Well | Depth (m) | Permeability (10−3 μm2) | Porosity (%) | Smax (%) | Pd (MPa) | We (%) |
---|---|---|---|---|---|---|---|
#S1 | H72 | 2427.80 | 0.01 | 4.40 | 78.40 | 8.48 | 40.33 |
#S2 | Q1 | 1636.27 | 0.23 | 8.00 | 11.67 | 34.51 | 34.81 |
#S3 | Q6 | 1857.82 | 0.10 | 7.50 | 90.85 | 1.37 | 43.36 |
#S4 | H59 | 2453.09 | 0.01 | 3.80 | 72.22 | 10.30 | 32.93 |
#S5 | H60 | 2417.40 | 2.54 | 12.90 | 93.83 | 0.34 | 47.59 |
#S6 | H60 | 2360.40 | 2.56 | 14.50 | 92.80 | 0.34 | 49.39 |
#S7 | H62 | 2423.20 | 5.90 | 16.20 | 97.34 | 0.34 | 41.58 |
#S8 | Q5 | 1511.00 | 0.28 | 9.10 | 90.32 | 0.70 | 36.30 |
#S9 | Q5 | 2360.03 | 2.24 | 11.10 | 93.13 | 0.34 | 36.58 |
#S10 | H104 | 2370.54 | 0.21 | 6.90 | 94.61 | 0.69 | 31.14 |
Parameters | Shale Sweet Spots | Remarks | Siltstone Interlayer Sweet Spots | ||||
---|---|---|---|---|---|---|---|
Type I | Type II | Type III | Type I | Type II | Type III | ||
Ro (%) | ≥1.2 | 1.0–1.2 | 0.7–1.0 | Selection zone | |||
Brittle mineral Content (%) | 55–80 | <50 | Selection zone/layer | ||||
Crude oil density (g/cm3) | ≤0.84 | 0.84–0.85 | 0.85–0.87 | Selection zone | |||
Gas-to-oil ratio (m3/m3) | ≥50 | 40–50 | <40 | Selection zone | |||
Pressure coefficient | ≥1.2 | 1.0–1.2 | <1.0 | Selection zone | |||
Monolayer thickness of type I layer (m) | ≥8 | 6–8 | <6 | Selection zone | 2–4 | 1–3 | 0–2 |
TOC (%) | ≥2.0 | 1.2–2.0 | <1.2 | Selection zone | |||
Effective porosity (%) | ≥4.5 | 4–4.5 | <4 | Selection zone | ≥11 | 9–11 | <9 |
Oil Saturation (%) | ≥55 | 50–55 | <50 | Selection zone/layer | ≥55 | 50–55 | <50 |
OSI (mg/gTOC) for shale or Energy storage coefficient | >100 | <100 | Selection zone/layer | ≥0.18 | 0.06–0.18 | <0.06 | |
Lithofacies | Felsic shale, silty-laminated shale | Selection zone/layer | |||||
Sedimentary Facies | Outer delta front, semi-deep lake, deep lake | Selection zone | Delta front | ||||
Fault system | not developed or has small internal faults | Deep faults developed | Selection zone |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Xing, J.; Xue, W.; Zheng, L.; Wang, R.; Xiao, D. Characteristics and Key Controlling Factors of the Interbedded-Type Shale-Oil Sweet Spots of Qingshankou Formation in Changling Depression. Energies 2023, 16, 6213. https://doi.org/10.3390/en16176213
Yang L, Xing J, Xue W, Zheng L, Wang R, Xiao D. Characteristics and Key Controlling Factors of the Interbedded-Type Shale-Oil Sweet Spots of Qingshankou Formation in Changling Depression. Energies. 2023; 16(17):6213. https://doi.org/10.3390/en16176213
Chicago/Turabian StyleYang, Liang, Jilin Xing, Wei Xue, Lehua Zheng, Rui Wang, and Dianshi Xiao. 2023. "Characteristics and Key Controlling Factors of the Interbedded-Type Shale-Oil Sweet Spots of Qingshankou Formation in Changling Depression" Energies 16, no. 17: 6213. https://doi.org/10.3390/en16176213
APA StyleYang, L., Xing, J., Xue, W., Zheng, L., Wang, R., & Xiao, D. (2023). Characteristics and Key Controlling Factors of the Interbedded-Type Shale-Oil Sweet Spots of Qingshankou Formation in Changling Depression. Energies, 16(17), 6213. https://doi.org/10.3390/en16176213