Energy-Efficient Solutions: A Multi-Criteria Decision Aid Tool to Achieve the Targets of the European EPDB Directive
Abstract
:1. Introduction
European Building Scenario
2. Materials and Methods
- 1st step: Italian residential building stock state-of-the-art study.
- 2nd step: Characterization and cataloging of existing buildings pertaining to the construction era class of 1976–1990.
- 3rd step: Definition of simulations of energy efficiency interventions.
- 4th step: Economic estimation of energy efficiency interventions.
- 5th step: Dynamic matrix elaboration.
2.1. Italian Residential Building Stock State-of-the-Art Study
2.2. Characterization and Cataloging of Existing Buildings Pertaining to the Construction Era Class of 1976–1990
2.3. Definition of Simulations of Efficiency Interventions
- Interventions on the external walls and roof, including windows;
- Interventions for the replacement of the conditioning system;
- Combined interventions for the building envelope and the system.
- Low-emissivity double-glazed window frames with air gap and metal frame with thermal break from the manufacturer transmittance (Uf = 2.5 W/m2K) and solar factor (gg,l = 0.50) (S-INF_DV-BE-A);
- Low-emissivity double-glazed window frames with argon cavity and metal frame with thermal break from manufacturer transmittance (Uf = 1.50 W/m2K) and solar factor (gg,l = 0.50) (S-INF_DV-BE-ARG);
- Low-emissivity triple-glazed window frames with argon cavity and metal frame with thermal break from manufacturer transmittance (Uf = 1.00 Q/m2K) and solar factor (gg,l = 0.50) (S-INF_TV-BE-ARG).
2.4. Economic Estimation of Energy Efficiency Interventions
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sánchez Cordero, A.; Gómez Melgar, S.; Andújar Márquez, J.M. Green Building Rating Systems and the New Framework Level(s): A Critical Review of Sustainability Certification within Europe. Energies 2020, 13, 66. [Google Scholar] [CrossRef]
- Cumo, F.; Giustini, F.; Pennacchia, E.; Romeo, C. Support Decision Tool for Sustainable Energy Requalification the Existing Residential Building Stock. The Case Study of Trevignano Romano. Energies 2021, 14, 74. [Google Scholar] [CrossRef]
- Bruckner, T.; Bashmakov, I.A.; Mulugetta, Y.; Chum, H.; de la Vega Navarro, A.; Edmonds, J.; Faaij, A.; Fungtammasan, B.; Garg, A.; Hertwich, E.; et al. Energy Systems. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O.R., Pichs-Madruga, Y., Sokona, E., Farahani, S., Kadner, K., Seyboth, A., Adler, I., Baum, S., Brunner, P., Eickemeier, B., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Hong, J.; Shen, G.Q.; Guo, S.; Xue, F.; Zheng, W. Energy use embodied in China’s construction industry: A multi-regional input-output analysis. Renew. Sustain. Energy Rev. 2016, 53, 1303–1312. [Google Scholar] [CrossRef]
- Global Alliance for Buildings and Construction; International Energy Agency; United Nations Environment Programme. 2022 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector. Available online: https://globalabc.org/sites/default/files/2022-11/FULL%20REPORT_2022%20Buildings-GSR_1.pdf (accessed on 20 July 2023).
- International Energy Agency. Tracking Buildings 2022; International Energy Agency: Paris, France; Available online: https://www.iea.org/energy-system/buildings#tracking (accessed on 20 July 2023).
- Paris Agreement on Climate Change. Available online: https://www.consilium.europa.eu/en/policies/climate-change/paris-agreement/ (accessed on 28 June 2023).
- Ramos Ruiz, G.; Olloqui del Olmo, A. Climate Change Performance of nZEB Buildings. Buildings 2022, 12, 1755. [Google Scholar]
- European Parliament. Energy Performance of Buildings Directive. Available online: https://www.europarl.europa.eu/RegData/etudes/ATAG/2023/739377/EPRS_ATA(2023)739377_EN.pdf (accessed on 19 June 2023).
- European Commission. EU Building Stock Observatory. Available online: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/eu-building-stock-observatory_en (accessed on 28 June 2023).
- Filippidou, F.; Jimenez Navarro, J.P. Achieving the Cost-Effective Energy Transformation of Europe’s Buildings; EUR 29906 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-12394-1. [Google Scholar] [CrossRef]
- Bean, F.; Volt, J.; Dorizas, V.; Bourdakis, E.; Staniaszek, D.; Roscetti, A.; Pagliano, L. Future-Proof Buildings for All Europeans. A Guide to Implement the Energy Performance of Buildings Directive (2018/844). Buildings Performance Institute Europe (BPIE). 2019. Available online: https://www.bpie.eu/wp-content/uploads/2019/04/Implementing-the-EPBD_BPIE_2019.pdf (accessed on 20 July 2023).
- European Commission. In Focus: Energy Efficiency in Buildings. 17 February 2020. Available online: https://commission.europa.eu/news/focus-energy-efficiency-buildings-2020-02-17_en#:~:text=And%20one%20of%20the%20largest,%2C%20usage%2C%20renovation%20and%20demolition (accessed on 20 July 2023).
- Eurostat. Energy Consumption in Households. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households (accessed on 28 June 2023).
- Magrini, A.; Lentini, G.; Cuman, S.; Bodrato, A.; Marenco, L. From nearly zero energy buildings (NZEB) to positive energy buildings (PEB): The next challenge—The most recent European trends with some notes on the energy analysis of a forerunner PEB example. Dev. Built Environ. 2020, 3, 100019. [Google Scholar] [CrossRef]
- Agostinelli, S. Deep Renovation. Criteri di Efficientamento Energetico degli Edifici; Project “ENERSELVES” Interreg Europe Horizon; 2020; ISBN: 979-12-200-5959-6. Available online: https://www.researchgate.net/publication/355169433_DEEP_RENOVATION_Criteri_di_efficientamento_energetico_degli_edifici (accessed on 28 June 2023).
- Jafari, A.; Valentin, V.; Howe, K.; Russell, M. Environmental Impact of Housing Retrofit Activities: Case Study. In Proceedings of the World Sustainable Building (WBS), Barcelona, Spain, 28 October 2014. [Google Scholar]
- Tuominen, P.; Klobut, K.; Tolman, A.; Adjei, A.; de Best-Waldhober, M. Energy savings potential in buildings and overcoming market barriers in member states of the European Union. Energy Build. 2021, 51, 48–55. [Google Scholar] [CrossRef]
- Ballarini, I.; Corgnati, S.P.; Corrado, V. Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project. Energy Policy 2014, 68, 273–284. [Google Scholar] [CrossRef]
- European Commission. Energy Performance, Indoor Environment Quality, Retrofit: A Cost Predictive European Retrofitting Evaluation Method for Improving the Energy Performance and the Indoor Environment of Existing Apartment Buildings. Available online: https://cordis.europa.eu/project/id/JOR3960044 (accessed on 28 June 2023).
- Häkkinen, T. Systematic method for the sustainability analysis of refurbishment concepts of exterior walls. Constr. Build. Mater. 2012, 37, 783–790. [Google Scholar] [CrossRef]
- Sdei, A.; Tittelein, P.; Lassue, S.; McEvoy, M.E. Dynamic Thermal Modeling of Retrofitted Social Housing in England and France. In Proceedings of the CLIMA 2013: 11th REHVA World Congress and the 8th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings, Prague, Czech Republic, 16–19 June 2013; Karel Kabele, M.U., Suchý, K., Lain, M., Eds.; Society of Environmental Engineering (STP): Prague, Czech Republic, 2013; p. 6882. [Google Scholar]
- Chantrelle, F.P.; Lahmidi, H.; Keilholz, W.; Mankibi, M.E.; Michel, P. Development of a multicriteria tool for optimizing the renovation of buildings. Appl. Energy 2011, 88, 1386–1394. [Google Scholar] [CrossRef]
- Egiluz, Z.; Cuadrado, J.; Kortazar, A.; Marcos, I. Multi-Criteria Decision-Making Method for Sustainable Energy-Saving Retrofit Façade Solutions. Sustainability 2021, 13, 13168. [Google Scholar] [CrossRef]
- Chang, S.; Castro-Lacouture, D.; Yamagata, Y. Decision support for retrofitting building envelopes using multi-objective optimization under uncertainties. J. Build. Eng. 2020, 32, 101413. [Google Scholar]
- Papapostolou, A.; Mexis, F.; Karakosta, C. A Multicriteria Tool to Support Decision-Making in the Early Stages of Energy Efficiency Investments. In Decision Support Systems XII: Decision Support Addressing Modern Industry, Business, and Societal Needs; Cabral Seixas Costa, A.P., Papathanasiou, J., Jayawickrama, U., Kamissoko, D., Eds.; Springer: Berlin, Germany, 2022; Volume 447, pp. 190–202. [Google Scholar]
- Ministry of Economic Development; Ministry of Environment and Protection of Land and Sea; Ministry of Infrastructure and Transport. Strategia per la Riqualificazione Energetica del Parco Immobiliare Nazionale. 2020. Available online: https://www.mimit.gov.it/images/stories/documenti/STREPIN_2020_rev_25-11-2020.pdf (accessed on 28 June 2023).
- Census of Population and Housing: Build Your Tables with Data Warehouse. Statistiche Istat. Available online: http://dati-censimentopopolazione.istat.it/Index.aspx (accessed on 28 June 2023).
- Predisposizione del PAEE2014, ALLEGATO 1—Riqualificazione Energetica del Parco Edilizio Nazionale. Available online: www.ec.europa.eu/energy/sites/ener/files/documents/it_building_renov_2017_annex_1_neeap_it.pdf (accessed on 28 June 2023).
- Ruggieri, G.; Andreolli, F.; Zangheri, P. A Policy Roadmap for the Energy Renovation of the Residential and Educational Building Stock in Italy. Energies 2023, 16, 1319. [Google Scholar] [CrossRef]
- Chamber of Deputies, Office for Relations with the European Union. 18th Legislature (April 12, 2022), “Fit for 55” Package: Revision of the Directive on Energy Performance in Buildings. Available online: http://documenti.camera.it/leg18/dossier/pdf/ES065.pdf (accessed on 19 June 2023).
- Cumo, F.; Giustini, F.; Pennacchia, E. Stato Dell’arte di Soluzioni Tecnologiche di Involucro Edilizio Esistenti Come Base per Interventi di Deep Renovation del Patrimonio Immobiliare nel Settore Abitativo; 12/2019; ENEA: Rome, Italy, 2019; pp. 11–12, 99–118. Available online: https://www.enea.it/it/Ricerca_sviluppo/documenti/ricerca-di-sistema-elettrico/adp-mise-enea-2019-2021/efficienza-energetica-dei-prodotti-e-dei-processi-industriali/report-rds_ptr2019_073.pdf (accessed on 28 June 2023).
- Official Gazette of the Italian Republic. Allegato E—Requisiti degli Interventi di Isolamento Termico—5 October 2020. Available online: https://www.gazzettaufficiale.it/do/atto/serie_generale/caricaPdf?cdimg=20A0539400500010110001&dgu=2020-10-05&art.dataPubblicazioneGazzetta=2020-10-05&art.codiceRedazionale=20A05394&art.num=1&art.tiposerie=SG (accessed on 28 June 2023).
- National Agency for New Technologies, Energy and Sustainable Economic Development—ENEA. Vadenecum: Sistemi Ibridi (Comma 2.1; Articolo 14, D.L. 63/2013 e ss.mm.ii.)—Requisiti Tecnici Dell’intervento; 25 January 2021; ENEA: Rome, Italy, 2021; p. 2. Available online: https://www.efficienzaenergetica.enea.it/media/attachments/2021/02/12/sistemi_ibridi.pdf (accessed on 28 June 2023).
- Rogulj, I.; Peretto, M.; Oikonomou, V.; Ebrahimigharehbaghi, S.; Tourkolias, C. Decarbonisation Policies in the Residential Sector and Energy Poverty: Mitigation Strategies and Impacts in Central and Southern Eastern Europe. Energies 2023, 16, 5443. [Google Scholar] [CrossRef]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef]
- Madushika, U.G.D.; Ramachandra, T.; Karunasena, G.; Udakara, P.A.D.S. Energy Retrofitting Technologies of Buildings: A Review-Based Assessment. Energies 2023, 16, 4924. [Google Scholar] [CrossRef]
- Garcia-Hooghuis, A.; Neila, F.J. Transposition of the 2002/91/EC and 2010/31/EU “Energy Performance Building Directive” in the EU Members States. Consequences and implications. Inf. Constr. 2013, 65, 289–300. [Google Scholar]
- European Court of Auditors. Energy Efficiency in Buildings: Greater Focus on Cost-Effectiveness Still Needed. 2020. Available online: https://www.eca.europa.eu/Lists/ECADocuments/SR20_11/SR_Energy_efficiency_in_buildings_EN.pdf (accessed on 20 July 2023).
- Odyssee-Mure. Evaluation of Energy Savings. 2021. Available online: https://www.odyssee-mure.eu/publications/efficiency-by-sector/ (accessed on 20 July 2023).
- Koengkan, M.; Fuinhas, J.A.; Auza, A.; Ursavaş, U. The Impact of Energy Efficiency Regulations on Energy Poverty in Residential Dwellings in the Lisbon Metropolitan Area: An Empirical Investigation. Sustainability 2023, 15, 4214. [Google Scholar] [CrossRef]
- EPAH. Introduction to the Energy Poverty Advisory Hub (EPAH) Handbooks: A Guide to Understanding and Addressing Energy Poverty. 2022. Available online: https://energy-poverty.ec.europa.eu/discover/publications/publications/introduction-energy-poverty-advisory-hub-epah-handbooks-guide-understanding-and-addressing-energy_en (accessed on 20 July 2023).
- Streimikiene, D.; Kyraikopoulos, G.L. Energy Poverty and Low Carbon Energy Transition. Energies 2023, 16, 610. [Google Scholar] [CrossRef]
- Xue, W.; Wang, Y.; Chen, Z.; Liu, H. An integrated model with stable numerical methods for fractured underground gas storage. J. Clean. Prod. 2023, 393, 136268. [Google Scholar] [CrossRef]
- Hu, H.; Zhu, Y.Q.; Li, S.Y.; Li, Z. Effects of green energy development on population growth and employment: Evidence from shale gas exploitation in Chongqing, China. Pet. Sci. 2021, 18, 1578–1588. [Google Scholar] [CrossRef]
- Javid, A.S.; Aramoun, F.; Bararzadeh, M.; Avami, A. Multi objective planning for sustainable retrofit of educational buildings. J. Build. Eng. 2019, 24, 100759. [Google Scholar] [CrossRef]
- Dolsak, J. Determinants of energy efficient retrofits in residential sector: A comprehensive analysis. Energy Build. 2023, 282, 112801. [Google Scholar] [CrossRef]
- Penna, P.; Prada, A.; Cappelletti, F.; Gasparella, A. Multi-objectives optimization of Energy Efficiency Measures in existing buildings. Energy Build. 2015, 95, 57–69. [Google Scholar] [CrossRef]
- Sing, M.C.P.; Chan, V.W.C.; Lai, J.H.K.; Matthews, J. Energy-efficient retrofitting of multi-storey residential buildings. Facilities 2021, 39, 722–736. [Google Scholar] [CrossRef]
- European Commission. REPowerEU. Affordable, Secure and Sustainable Energy for Europe. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and-sustainable-energy-europe_en (accessed on 20 July 2023).
- De Lotto, R.; Micciché, C.; Venco, E.M.; Bonaiti, A.; De Napoli, R. Energy Communities: Technical, Legislative, Organizational, and Planning Features. Energies 2022, 15, 1731. [Google Scholar] [CrossRef]
- Leonhardt, R.; Noble, B.; Poelzer, G.; Fitzpatrick, P.; Belcher, K.; Holdmann, G. Advancing local energy transitions: A global review of government instruments supporting community energy. Energy Res. Soc. Sci. 2022, 83, 102350. [Google Scholar] [CrossRef]
- Shirazi, A.; Ashuri, B. Embodied Life Cycle Assessment (LCA) comparison of residential building retrofit measures in Atlanta. Build. Environ. 2020, 171, 106644. [Google Scholar] [CrossRef]
- D’Agostino, D.; Parker, D.; Melia, P. Environmental and economic implications of energy efficiency in new residential buildings: A multi-criteria selection approach. Energy Strategy Rev. 2019, 26, 100412. [Google Scholar] [CrossRef]
- Ingrao, C.; Messineo, A.; Beltramo, R.; Yigitcanlar, T.; Ioppolo, G. How can life cycle thinking support sustainability of buildings? Investigating life cycle assessment applications for energy efficiency and environmental performance. J. Clean. Prod. 2018, 201, 556–569. [Google Scholar] [CrossRef]
- Pereira, V.; Santos, J.; Leite, F.; Escórcio, P. Using BIM to improve building energy efficiency—A scientometric and systematic review. Energy Build. 2021, 250, 111292. [Google Scholar] [CrossRef]
ANTE OPERAM SAMPLE ENVELOPE TYPE COMBINATIONS | |||||
---|---|---|---|---|---|
Building type | Multi-family multy-story block building | ||||
Construction type | Reinforced concrete framed structure | ||||
Costruction era class | 1976 to 1990 | ||||
COMBINATION N°: | 1 | 2 | 3 | 4 | |
BUILDING ENVELOPE FEATURES * | UHC | Flat roof made of late concrete, low level of insulation (1976 to 1990) | Flat roof made of late concrete, low level of insulation (1976 to 1990) | Flat roof made of late concrete, low level of insulation (1976 to 1990) | Flat roof made of late concrete, low level of insulation (1976 to 1990) |
U = 1.01 W/m²K | U = 1.01 W/m²k | U = 1.01 W/m²k | U = 1.01 W/m²K | ||
LHC | Concrete basement on ground, low level of insulation (1976 to 1990) | Concrete basement on ground, low level of insulation (1976 to 1990) | Concrete basement on ground, low level of insulation (1976 to 1990) | Concrete basement on ground, low level of insulation (1976 to 1990) | |
U = 1.24 W/m²k | U = 1.24 W/m²k | U = 1.24 W/m²k | U = 1.24 W/m²k | ||
VC | Hollow-case masonry with hollow bricks, low level of insulation (1976 to 1990) 30 cm thick | Hollow-case masonry with hollow bricks, low level of insulation (from 1976 to 1990) sp. 40 cm | Hollow brick masonry, low level of insulation (1976 to 1990) 25 cm thick | Hollow brick masonry, low level of insulation (1976 to 1990) sp. 40 cm | |
U = 0.76 W/m²K | U = 0.78 W/m²K | U = 0.80 W/m²K | U = 0.76 W/m²K |
CLIMATE ZONE | |||
---|---|---|---|
A | Porto Empedocle | (AG) | |
B | Crotone | (KR) | |
C | Capistrano | (VV) | |
D | Castiglion Fibocchi | (AR) | |
E | San Didero | (TO) | |
F | Setriere | (TO) | |
ENERGY RATING | A4 | ||
A3 | |||
A2 | |||
A1 | |||
B | |||
C | |||
D | |||
E | |||
F | |||
G |
ANTE OPERAM ENERGY CLASS BY CLIMATE ZONE | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample Building with Reinforced Concrete Frame Structure | ||||||||||||||||||||||||
N° ANTE OPERAM TYPE | 1 | 2 | 3 | 4 | ||||||||||||||||||||
CLIMATE ZONE | A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F |
ENERGY RATING | F | F | F | G | G | G | F | F | F | G | G | G | F | F | F | G | G | G | F | F | F | G | G | G |
EPgl,nren (kWh/m2 year) | 80.00 | 91.73 | 114.77 | 182.78 | 223.43 | 371.68 | 80.70 | 92.58 | 115.85 | 184.51 | 225.62 | 375.18 | 81.82 | 93.94 | 117.75 | 187.49 | 229.38 | 381.37 | 81.09 | 93.06 | 116.65 | 185.66 | 227.10 | 377.52 |
CO2 emissions (kg/m2 year) | 1036.14 | 1188.10 | 1485.63 | 2368.11 | 2894.84 | 4816.07 | 1046.57 | 1200.69 | 1501.72 | 2392.91 | 2927.20 | 4867.76 | 1060.39 | 1217.50 | 1525.30 | 2431.06 | 2975.24 | 4945.52 | 1051.70 | 1207.13 | 1512.19 | 2408.94 | 2946.71 | 4898.79 |
ENERGY EFFICIENCY INTERVENTIONS | ||||||||
---|---|---|---|---|---|---|---|---|
DESCRIPTION | CODING 1 | INTERVENTION SPECIFICATIONS | CODING 2 | OTHER SPECIFICATIONS | NOMENCLATURE | |||
Winter air conditioning system replacement in the common parts | S_IMP_ | Condensing boiler * | CA-CON | S_IMP_CA-CON | ||||
Hybrid system ** | SI | S_IMP_SI | ||||||
Thermostatic valves installation | I_VLV-TER_ | Single room plus climatic | SA-CLIM | I_VLV-TER_SA-CLIM | ||||
Existing windows replacement | S-INF_ | Double low-e double glazing air gap, metal frame with thermal break | DV-BE-A | TRANSMITTANCE U | 2.50 W/m²K | ggl,n | 0.50 | S-INF_DV-BE-A |
Double glazing low-e double glazing Argon cavity, metal frame with thermal cut | DV-BE-ARG | 1.50 W/m²K | 0.50 | S-INF_DV-BE-ARG | ||||
Triple glazing low-e double glazing Argon cavity, metal frame with thermal cut | TV-BE-ARG | 1.00 W/m²K | 0.50 | S-INF_TV-BE-ARG | ||||
Opaque envelope thermal insulation | IS-TERM_ | Roofing insulation in XPS panels - extruded polystyrene foam | CO-XPS | THICKNESS | IS-TERM_CO-XPS_10 cm | |||
_10 cm | _12 cm | _14 cm | 16 cm | |||||
THERMAL CONDUCTIVITY (λ) | IS-TERM_CO-XPS_12 cm | |||||||
λ = 0.031 W/mK | ||||||||
IS-TERM_CO-XPS_14 cm | ||||||||
c = 1450 J/kgK | ||||||||
ρ = 35 kg/m3 | IS-TERM_CO-XPS_16 cm | |||||||
Rock wool panel coating system *** | SC-LR | THICKNESS | IS-TERM_SC-LR_6 cm | |||||
_6 cm | _8 cm | _10 cm | _12 cm | |||||
THERMAL CONDUCTIVITY (λ) | IS-TERM_SC-LR_8 cm | |||||||
λ = 0.032 W/mK | ||||||||
IS-TERM_SC-LR_10 cm | ||||||||
c = 1030 J/kgK | ||||||||
ρ = 30 kg/m3 | IS-TERM_SC-LR_12 cm | |||||||
Phenolic foam board coating system *** | SC-SF | THICKNESS | IS-TERM_SC-SF_4 cm | |||||
_4 cm | _6 cm | _8 cm | - | |||||
THERMAL CONDUCTIVITY (λ) | IS-TERM_SC-SF_6 cm | |||||||
λ = 0.021 W/Mk | ||||||||
c = 1750 J/kgK | IS-TERM_SC-SF_8 cm | |||||||
ρ = 35 kg/m3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cumo, F.; Pennacchia, E.; Zylka, C. Energy-Efficient Solutions: A Multi-Criteria Decision Aid Tool to Achieve the Targets of the European EPDB Directive. Energies 2023, 16, 6245. https://doi.org/10.3390/en16176245
Cumo F, Pennacchia E, Zylka C. Energy-Efficient Solutions: A Multi-Criteria Decision Aid Tool to Achieve the Targets of the European EPDB Directive. Energies. 2023; 16(17):6245. https://doi.org/10.3390/en16176245
Chicago/Turabian StyleCumo, Fabrizio, Elisa Pennacchia, and Claudia Zylka. 2023. "Energy-Efficient Solutions: A Multi-Criteria Decision Aid Tool to Achieve the Targets of the European EPDB Directive" Energies 16, no. 17: 6245. https://doi.org/10.3390/en16176245
APA StyleCumo, F., Pennacchia, E., & Zylka, C. (2023). Energy-Efficient Solutions: A Multi-Criteria Decision Aid Tool to Achieve the Targets of the European EPDB Directive. Energies, 16(17), 6245. https://doi.org/10.3390/en16176245