Results of Experiments under the Physical Start-Up Program of the IVG.1M Reactor
Abstract
:1. Introduction
2. The IVG.1M Research Reactor
3. First Critical State
4. The Measurements of the Control Drum Reactivity Worth
- -
- The reactor subcriticality for a given position of the control drum system, obtained by measuring the introduced negative reactivity when the drums were dropped from this position;
- -
- The reactivity margin for the same position of the drums, determined from the known section of the reactivity worth curve.
5. Determination of the Reactivity Worth of the Reactivity Compensation Rod System
6. Statistical Weights of Technological Channels and the Reactivity Effects of Their Drainage
7. Measurement of the Activation Reaction Rate in the Central Experimental Channel
8. Measurement of Power Distribution in the LEU Fuel of the IVG.1M Reactor
- -
- Fuel fragments calibrated for uranium-235 content (100 mm high) to study the relative power distribution over the fuel assembly cross section;
- -
- Copper wire located along the length of the physical mock-up to determine the relative power distribution throughout the height of the fuel assembly.
9. Measurement of Gamma Radiation Fields during the Physical Start-Up of the Reactor
- -
- Removal of personnel from specific areas during the reactor operation;
- -
- The availability of stationary and mobile radiation monitoring systems;
- -
- Relatively low levels of the reactor operating power during experiments to determine the reactivity worth;
- -
- The use of personal protective equipment for personnel involved in preparatory work and physical research.
10. Study of Coolant Activity
11. Discussion of Result
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Atomic Energy Agency. Research Reactor Core Conversion from the Use of Highly Enriched Uranium to the Use of Low Enriched Uranium Fuels Guidebook; International Atomic Energy Agency: Vienna, Austria, 1980. [Google Scholar]
- Gil, L. Countries move towards low enriched uranium to fuel their research reactors. IAEA Bulletin 2019, 60, 26–27. [Google Scholar]
- International Atomic Energy Agency. Analyses Supporting Conversion of Research Reactors from High Enriched Uranium Fuel to Low Enriched Uranium Fuel; International Atomic Energy Agency: Vienna, Austria, 2018. [Google Scholar]
- Krecicki, M.; Kotlyar, D. Full-Core Coupled Neutronic, Thermal-Hydraulic, and Thermo-Mechanical Analysis of Low-Enriched Uranium Nuclear Thermal Propulsion Reactors. Energies 2022, 15, 7007. [Google Scholar] [CrossRef]
- Arinkin, F.M.; Shaimerdenov, A.A.; Gizatulin, S.K.; Dyusambaev, D.S.; Koltochnik, S.N.; Chakrov, P.V.; Chekushina, L.V. Core Conversion of VVR-K Research Reactors. At. Energy 2017, 123, 17–24. [Google Scholar] [CrossRef]
- Kashaykin, P.F.; Tomashuk, A.L.; Vasiliev, S.A.; Britskiy, V.A.; Ignatyev, A.D.; Ponkratov, Y.V.; Kulsartov, T.V.; Samarkhanov, K.K.; Gnyrya, V.S.; Zarenbin, A.V.; et al. Radiation Resistance of Single-Mode Optical Fibers at λ = 1.55 μm Under Irradiation at IVG.1M Nuclear Reactor. IEEE Trans. Nucl. Sci. 2020, 67, 2162–2171. [Google Scholar] [CrossRef]
- Samarkhanov, K.; Batyrbekov, E.; Khasenov, M.; Gordienko, Y.; Zaurbekova, Z.; Bochkov, V. Study of Luminescence in Noble Gases and Binary Kr-Xe Mixture Excited by the Products of 6Li(n,α)T Nuclear Reaction. Eurasian Chem.-Technol. J. 2019, 21, 115–123. [Google Scholar] [CrossRef]
- Ponkratov, Y.; Batyrbekov, E.; Khasenov, M.; Samarkhanov, K.; Chikhray, Y. Application of High-Energy Tritium Ions and Alpha Particles Formed in 6Li(n,α)T Nuclear Reaction to Excite the Luminescence of Inert Gas Mixtures. Fusion Sci. Technol. 2021, 77, 327–332. [Google Scholar] [CrossRef]
- Samarkhanov, K. Optical Radiation from the Sputtered Species under Excitation of Ternary Mixtures of Noble Gases by the 6Li(n,α)3H Nuclear Reaction Products. Eurasian Chem.-Technol. J. 2021, 23, 95–102. [Google Scholar] [CrossRef]
- Pakhnits, V.A.; Aleinikov, Y.V.; Popov, Y.A.; Prozorova, I.V.; Toktaganov, M.O. Experiment–calculated researches to substantiate options of IVG.1M reactor fuel replacement. NNC RK Bull. 2009, 1, 46–54. (In Russian) [Google Scholar]
- Aleynikov, Y.; Azimkhanov, A.; Beisembayev, E.; Ganovichev, D.; Garner, P.; Gnyrya, V.; Hanan, N.; Ignashev, V.; Vassiliev, Y.; Vurim, A.; et al. Study of Feasibility of HEU to LEU Conversion for IVG-1M Reactor. In Proceedings of the RERTR 2011: International Meeting on Reduced Enrichment for Research and Test Reactors, Santiago, Chile, 23–27 October 2011; p. S4-P3. [Google Scholar]
- Irkimbekov, R.A.; Akayev, A.S.; Zhagiparova, L.K.; Khazhidnov, A.S.; Gnyrya, V.S.; Vurim, A.D.; Garner, P.L.; Hanan, N.A. Safety analysis of the IVG.1M reactor with LEU fuel. In Proceedings of the RERTR-2019: International Meeting on Reduced Enrichment for Research and Test Reactors, Zagreb, Croatia, 6–9 October 2019; p. S13-P2. [Google Scholar]
- Alferov, V.P.; Radaev, A.I.; Shchurovskaya, M.V.; Tikhomirov, G.V.; Hanan, N.A.; van Heerden, F.A. Comparative validation of Monte Carlo codes for the conversion of a research reactor. Ann. Nucl. Energy 2015, 77, 273–280. [Google Scholar] [CrossRef]
- Skakov, M.K.; Vurim, A.D.; Gnyrya, V.S.; Azimkhanov, A.S.; Kolbayenkov, A.N.; Derbyshev, I.K.; Nurzhanov, Y.B. In-pile tests of water-cooled technological channels with low-enriched uranium fuel within conversion of IVG.1M research reactor. NNC RK Bull. 2018, 3, 18–21. (In Russian) [Google Scholar]
- Gnyrya, V.S.; Vurim, A.D.; Derbyshev, I.K.; Koyanbaev, E.T.; Baklanov, V.V.; Azimkhanov, A.S.; Ganovichev, D.A.; Popov, Y.A.; Kolbayenkov, A.N.; Garner, P.L.; et al. Status of the IVG.1M Fuel Test. In Proceedings of the RERTR-2019: International Meeting on Reduced Enrichment for Research and Test Reactors, Zagreb, Croatia, 6–9 October 2019; p. S10-P2. [Google Scholar]
- Zaytsev, D.A.; Repnikov, V.M.; Soldatkin, D.M.; Solntsev, V.A. Studies of behavior of the fuel compound based on the U-Zr micro-heterogeneous quasialloy during cyclic thermal tests. J. Phys. Conf. Ser. 2017, 891, 012181. [Google Scholar] [CrossRef]
- Tsyganov, S.; Kravchenko, A.; Kraynov, Y.; Nasedkin, A.; Chmykhun, V. Estimation of experimental uncertainty for physical measurements based on the start-up data of the latest VVER-1000 units. Kerntechnik 2015, 84, 424–430. [Google Scholar] [CrossRef]
- Lee, M.J.; Won, J.-H.; Choe, J.; Lim, J.-Y. Investigation of the Effect of Rod Worth Uncertainty on the Reactivity Measurements of CEFR Start-Up Tests via McCARD Monte Carlo Calculations. Energies 2022, 15, 8259. [Google Scholar] [CrossRef]
- Irkimbekov, R.; Vurim, A.; Vityuk, G.; Zhanbolatov, O.; Kozhabayev, Z.; Surayev, A. Modeling of Dynamic Operation Modes of IVG.1M Reactor. Energies 2023, 16, 932. [Google Scholar] [CrossRef]
- Goorley, T.; James, M.; Booth, T.; Brown, F.; Bull, J.; Cox, L.J.; Durkee, J.; Elson, J.; Fensin, M.; Forster, R.A.; et al. Initial MCNP6 release overview. Nucl. Technol. 2012, 180, 298–315. [Google Scholar] [CrossRef]
- Chadwick, M.B.; Obložinský, P.; Herman, M.; Greene, N.M.; McKnight, R.D.; Smith, D.L.; Young, P.G.; MacFarlane, R.E.; Hale, G.M.; Frankle, S.C.; et al. ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology. Nucl. Data Sheets 2006, 107, 2931–3059. [Google Scholar] [CrossRef]
- Irkimbekov, R.A.; Zhagiparova, L.K.; Kotov, V.M.; Vurim, A.D.; Gnyrya, V.S. Neutronics Model of the IVG.1M Reactor: Development and Critical-State Verification. At. Energy 2019, 127, 69–76. [Google Scholar] [CrossRef]
- Irkimbekov, R.A.; Surayev, A.S.; Vityuk, G.A.; Zhanbolatov, O.M.; Kozhabaev, Z.B.; Bedenko, S.V.; Ghal-Eh, N.; Vurim, A.D. Study on an open fuel cycle of IVG.1M research reactor operating with LEU-fuel. Nucl. Eng. Technol. 2023, 55, 1439–1447. [Google Scholar] [CrossRef]
- Sabitova, R.R.; Popov, Y.A.; Irkimbekov, R.A.; Bedenko, S.V.; Prozorova, I.V.; Svetachev, S.N.; Medetbekov, B.S. Experimental studies of power distribution in LEU-fuel of the IVG.1M reactor. Appl. Radiat. Isot. 2023, 200, 110942. [Google Scholar] [CrossRef]
- Lewis, B.J. Fundamental aspects of defective nuclear fuel behaviour and fission product release. J. Nucl. Mater. 1988, 160, 201–217. [Google Scholar] [CrossRef]
- Oettingen, M. The Application of Radiochemical Measurements of PWR Spent Fuel for the Validation of Burnup Codes. Energies 2022, 15, 3041. [Google Scholar] [CrossRef]
- Irkimbekov, R.A.; Vurim, A.D.; Bedenko, S.V.; Vlaskin, G.N.; Surayev, A.S.; Vityuk, G.A.; Vega-Carrillo, H.R. Estimating the neutron component of radiation properties of the IVG.1M research reactor irradiated low-enriched fuel. Appl. Radiat. Isot. 2022, 181, 110094. [Google Scholar] [CrossRef] [PubMed]
Change in the Core | Reactivity Effect, βeff | |
---|---|---|
Experiment | Calculation | |
Removing the physical mock-up from the first row channel | −3.2 ± 0.1 | −2.91 ± 0.02 |
Removing the physical mock-up from the second row channel | −3.0 ± 0.2 | −2.92 ± 0.02 |
Removing the physical mock-up from the third row channel | −2.2 ± 0.2 | −1.86 ± 0.02 |
Draining water from the first row channel | −0.41 ± 0.05 | −0.40 ± 0.02 |
Draining water from the second row channel | −0.43 ± 0.05 | −0.48 ± 0.02 |
Draining water from the third row channel | −0.42 ± 0.05 | −0.49 ± 0.02 |
Reaction | LEU Fuel Core (Reactor Power of 1 kW) | HEU Fuel Core (Reactor Power of 10 kW) | |
---|---|---|---|
Calculated | Measured | Measured | |
58Ni(n,p)58Co | 2.04 × 10−16 | 1.93 × 10−16 | 1.84 × 10−15 |
197Au(n,γ)198Au | 2.00 × 10−12 | 2.12 × 10−12 | 2.11 × 10−11 |
Power Peaking Factor, rel. u. | |||
---|---|---|---|
First WCTC Row | Second WCTC Row | Third WCTC Row | |
along height of fuel assembly | 1.58 | 1.58 | 1.27 |
along radius of fuel assembly | 1.52 | 1.55 | 1.37 |
Check Point | Distance from the Reactor, m | Dose Rate, µSv/h |
---|---|---|
Sub-reactor room | 5 | 0.13–0.21 |
Above the reactor | 5 | 0.28–20.4 |
Adjoining room | 10 | 0.12–0.19 |
Ceiling | 35 | 0.10–0.20 |
Isotope-AP | A(t), Bq/L | A0(t), Bq/L | A0(t), Bq/L | ||
t1 = 30 min | t2 = 39 min | t1 = 30 min | t2 = 39 min | ||
Na-24 | 9.9 × 102 | 1.0 × 10³ | 1.0 × 10³ | 1.1 × 10³ | 1.0 × 10³ |
Isotope-FP | A(t), Bq/L | A0(t), Bq/L | R/B | ||
t1 = 30 min | t2 = 39 min | t1 = 30 min | t2 = 39 min | ||
Kr-85 | 5.6 × 102 | 4.8 × 102 | 6.1 × 102 | 5.4 × 102 | 5.1 × 10−6 |
Kr-87 | 2.7 × 10³ | 2.6 × 10³ | 3.5 × 10³ | 3.8 × 10³ | 5.0 × 10−6 |
Kr-88 | 2.5 × 10³ | 2.3 × 10³ | 2.8 × 10³ | 2.6 × 10³ | 5.7 × 10−6 |
Rb-89 | 1.2 × 104 | 7.9 × 10³ | 4.8 × 10³ | 4.7 × 104 | 6.3 × 10−6 |
Sr-92 | 3.8 × 10³ | 4.2 × 10³ | 4.3 × 10³ | 5.0 × 10³ | 5.4 × 10−6 |
Y-94 | 2.7 × 10³ | 2.0 × 10³ | 8.2 × 10³ | 8.7 × 10³ | 1.1 × 10−6 |
Tc-104 | 2.2 × 10³ | 2.0 × 10³ | 6.7 × 10³ | 8.8 × 10³ | 3.3 × 10−6 |
Te-131 | 3.5 × 10³ | 3.4 × 10³ | 8.2 × 10³ | 1.0 × 104 | 3.4 × 10−6 |
I-133 | 8.8 × 102 | 6.1 × 102 | 9.0 × 102 | 6.2 × 102 | 6.0 × 10−6 |
I-134 | 7.7 × 10³ | 7.4 × 10³ | 1.1 × 104 | 1.2 × 104 | 4.0 × 10−6 |
Te-134 | 5.3 × 10³ | 4.7 × 10³ | 8.7 × 10³ | 9.1 × 10³ | 2.3 × 10−6 |
I-135 | 1.6 × 10³ | 2.0 × 10³ | 1.7 × 10³ | 2.1 × 10³ | 5.0 × 10−6 |
Cs-138 | 1.4 × 104 | 1.3 × 104 | 2.8 × 104 | 3.0 × 104 | 5.9 × 10−6 |
Xe-138 | 7.5 × 10³ | 4.3 × 10³ | 3.3 × 104 | 3.0 × 104 | 3.0 × 10−6 |
La-142 | 3.9 × 10³ | 2.9 × 10³ | 4.9 × 10³ | 3.9 × 10³ | 2.9 × 10−6 |
Average | 4.3 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabitova, R.; Popov, Y.; Irkimbekov, R.; Prozorova, I.; Derbyshev, I.; Nurzhanov, E.; Surayev, A.; Gnyrya, V.; Azimkhanov, A. Results of Experiments under the Physical Start-Up Program of the IVG.1M Reactor. Energies 2023, 16, 6263. https://doi.org/10.3390/en16176263
Sabitova R, Popov Y, Irkimbekov R, Prozorova I, Derbyshev I, Nurzhanov E, Surayev A, Gnyrya V, Azimkhanov A. Results of Experiments under the Physical Start-Up Program of the IVG.1M Reactor. Energies. 2023; 16(17):6263. https://doi.org/10.3390/en16176263
Chicago/Turabian StyleSabitova, Radmila, Yuri Popov, Ruslan Irkimbekov, Irina Prozorova, Ildar Derbyshev, Erlan Nurzhanov, Artur Surayev, Vyacheslav Gnyrya, and Almas Azimkhanov. 2023. "Results of Experiments under the Physical Start-Up Program of the IVG.1M Reactor" Energies 16, no. 17: 6263. https://doi.org/10.3390/en16176263
APA StyleSabitova, R., Popov, Y., Irkimbekov, R., Prozorova, I., Derbyshev, I., Nurzhanov, E., Surayev, A., Gnyrya, V., & Azimkhanov, A. (2023). Results of Experiments under the Physical Start-Up Program of the IVG.1M Reactor. Energies, 16(17), 6263. https://doi.org/10.3390/en16176263