Impact of Non-Uniform Irradiance and Temperature Distribution on the Performance of Photovoltaic Generators
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Five-Parameter PV Cell Model
2.2. Lab Measurements of PV Module Outputs (Voltage, Current and Irradiation)
3. Results
3.1. Temperature and Irradiance Distribution Measurements
- -
- temperature T as measured by the thermocouple
- -
- open voltage circuit,
- -
- short-circuit current,
- -
- the average irradiation,
3.1.1. Arrangement 1: All Lamps Are Lit, Inclinations φ = , and
3.1.2. Arrangement 2: Lamps Alternately Lit, Inclinations φ = , and
3.1.3. Summary Table of Measurements for All Cases
3.2. Modeling and Simulation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anjos, R.S.; Melicio, R.; Mendes, V.M.F.; Miguel, H. Crystalline Silicon PV Module under Effect of Shading Simulation of the Hot-Spot Condition. In Proceedings of the Technological Innovation for Smart Systems: 8th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2017, Costa de Caparica, Portugal, 3–5 May 2017; pp. 479–487. [Google Scholar] [CrossRef]
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.A.; Kim, K.-H. Solar energy: Potential and future prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- Milosavljević, D.D.; Pavlović, T.M.; Piršl, D.S. Performance Analysis of a Grid-Connected Solar PV Plant in Niš, Republic of Serbia. Renew. Sustain. Energy Rev. 2015, 44, 423–435. [Google Scholar] [CrossRef]
- Lo Brano, V.; Orioli, A.; Ciulla, G.; Di Gangi, A. An Improved Five-Parameter Model for Photovoltaic Modules. Sol. Energy Mater. Sol. Cells 2010, 94, 1358–1370. [Google Scholar] [CrossRef]
- Chikate, B.V.; Sadawarte, Y.A. The Factors Affecting the Performance of Solar Cell. Int. J. Comput. Appl. 2015, 1, 0975–8887. [Google Scholar]
- Fialho, L.; Melício, R.; Mendes, V.; Viana, S.; Rodrigues, C.; Estanqueiro, A. A simulation of integrated photovoltaic conversion into electric grid. Sol. Energy 2014, 110, 578–594. [Google Scholar] [CrossRef]
- Sarkar, M.N.I. Effect of Various Model Parameters on Solar Photovoltaic Cell Simulation: A SPICE Analysis. Renew. Wind. Water Sol. 2016, 3, 13. [Google Scholar] [CrossRef]
- Abbassi, R.; Abbassi, A.; Jemli, M.; Chebbi, S. Identification of Unknown Parameters of Solar Cell Models: A Comprehensive Overview of Available Approaches. Renew. Sustain. Energy Rev. 2018, 90, 453–474. [Google Scholar] [CrossRef]
- Ramadan, A.; Kamel, S.; Taha, I.B.M.; Tostado-Véliz, M. Parameter Estimation of Modified Double-Diode and Triple-Diode Photovoltaic Models Based on Wild Horse Optimizer. Electronics 2021, 10, 2308. [Google Scholar] [CrossRef]
- Patel, M.R. Wind and Solar Power Systems; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Vidyanandan, K.V. An Overview of Factors Affecting the Performance of Solar PV Systems. Energy Scan 2017, 27, 216. [Google Scholar]
- Mansouri, N.; Lashab, A.; Sera, D.; Guerrero, J.M.; Cherif, A. Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions. Energies 2019, 12, 3798. [Google Scholar] [CrossRef]
- Roumpakias, E. Development of Methodologies for Performance Analysis of Grid-Connected Photovoltaic Systems. Available online: https://www.didaktorika.gr/eadd/handle/10442/46825 (accessed on 16 February 2023).
- Rompotis, S.; Konstantaras, J.; Ktena, A.; Sarakis, L.; Manasis, C. A Monitoring System for PV plants using Open Technologies. In Proceedings of the 2022 IEEE 7th International Energy Conference (ENERGYCON), Riga, Latvia, 9–12 May 2022; pp. 1–5. [Google Scholar]
- Lineykin, S.; Averbukh, M.; Kuperman, A. Five-Parameter Model of Photovoltaic Cell Based on STC Data and Dimensionless. In Proceedings of the 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, Eilat, Israel, 14–17 November 2012. [Google Scholar] [CrossRef]
- Prakash, R.; Singh, S. Designing and Modelling of Solar Photovoltaic Cell and Array. IOSR J. Electr. Electron. Eng. (IOSR-JEEE) 2016, 11, 35–40. [Google Scholar] [CrossRef]
- Hamou, S.; Zine, S.; Abdellah, R. Efficiency of PV Module under Real Working Conditions. Energy Procedia 2014, 50, 553–558. [Google Scholar] [CrossRef]
- Celik, A.N.; Acikgoz, N. Modelling and Experimental Verification of the Operating Current of Mono-Crystalline Photovoltaic Modules Using Four- and Five-Parameter Models. Appl. Energy 2007, 84, 1–15. [Google Scholar] [CrossRef]
- Fialho, L.; Melício, R.; Mendes, V.M.; Figueiredo, J.; Collares-Pereira, M. Amorphous Solar Modules Simulation and Experimental Results: Effect of Shading. In Proceedings of the 5th Doctoral Conference on Computing, Electrical and Industrial Systems (DoCEIS), Costa de Caparica, Portugal, 7–9 April 2014; pp. 315–323. Available online: https://inria.hal.science/hal-01274793/ (accessed on 16 February 2023).
- Dondi, D.; Brunelli, D.; Benini, L.; Pavan, P.; Bertacchini, A.; Larcher, L. Photovoltaic Cell Modeling for Solar Energy Powered Sensor Networks. In Proceedings of the 2007 2nd International Workshop on Advances in Sensors and Interface, Bari, Italy, 26–27 June 2007. [Google Scholar] [CrossRef]
- Goss, B.; Cole, I.; Betts, T.; Gottschalg, R. Irradiance Modelling for Individual Cells of Shaded Solar Photovoltaic Arrays. Sol. Energy 2014, 110, 410–419. [Google Scholar] [CrossRef]
- Subudhi, B.; Pradhan, R. Characteristics Evaluation and Parameter Extraction of a Solar Array Based on Experimental Analysis. In Proceedings of the 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems, Singapore, 5–8 December 2011. [Google Scholar] [CrossRef]
- Humada, A.M.; Darweesh, S.Y.; Mohammed, K.G.; Kamil, M.; Mohammed, S.F.; Kasim, N.K.; Tahseen, T.A.; Awad, O.I.; Mekhilef, S. Modeling of PV System and Parameter Extraction Based on Experimental Data: Review and Investigation. Sol. Energy 2020, 199, 742–760. [Google Scholar] [CrossRef]
- Salmi, T.; Bouzguenda, M.; Gastli, A.; Masmoudi, A. MATLAB/Simulink Based Modelling of Solar Photovoltaic Cell. Int. J. Renew. Energy Res. 2012, 2, 213–218. [Google Scholar]
- ISO9060:1990. Available online: https://www.iso.org/obp/ui/#iso:std:iso:9060:ed-1:v1:en (accessed on 16 February 2023).
- Xenophontos, A.; Bazzi, A.M. Model-Based Maximum Power Curves of Solar Photovoltaic Panels under Partial Shading Conditions. IEEE J. Photovolt. 2018, 8, 233–238. [Google Scholar] [CrossRef]
- Chenni, R.; Makhlouf, M.; Kerbache, T.; Bouzid, A. A Detailed Modeling Method for Photovoltaic Cells. Energy 2007, 32, 1724–1730. [Google Scholar] [CrossRef]
- Dolara, A.; Leva, S.; Manzolini, G. Comparison of Different Physical Models for PV Power Output Prediction. Sol. Energy 2015, 119, 83–99. [Google Scholar] [CrossRef]
- De Soto, W.; Klein, S.A.; Beckman, W.A. Improvement and Validation of a Model for Photovoltaic Array Performance. Sol. Energy 2006, 80, 78–88. [Google Scholar] [CrossRef]
- Stornelli, V.; Muttillo, M.; De Rubeis, T.; Nardi, I. A New Simplified Five-Parameter Estimation Method for Single-Diode Model of Photovoltaic Panels. Energies 2019, 12, 4271. [Google Scholar] [CrossRef]
- Ahmed, M.T. Modelization and Characterization of Photovoltaic-Panels. Master’s Thesis, University of Évora, Evora, Portugal, January 2017. [Google Scholar]
- Ahmed, T.; Gonçalves, T.; Albino, A.; Rashel, M.R.; Veiga, A.; Tlemçani, M. Different parameters variation analysis of a PV cell, In Proceedings of the International Conference for Students on Applied Engineering, Newcastle, UK, 20–21 October 2016.
- Alam, N.; Coors, V.; Zlatanova, S.; Oosterom, P.J.M. Shadow effect on photovoltaic potentiality analysis using 3d city models. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, 25 August–1 September 2012; Volume XXXIX-B8. [Google Scholar]
- Bonkoungou, D.; Koalaga, Z.; Njomo, D. Modelling and simulation of photovoltaic module considering single diode equivalent circuit model in MATLAB. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 493–502. [Google Scholar]
- Paris Climate Change Conference, (FCCC/CP/2015/L.9/Rev.1), The Global Standard of Globalization is Not Limited to the Limitations of the System, XXI 2 °C. 2015. Available online: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 29 August 2023).
- Demirel, Y. Energy: Production, Conversion, Storage, Conservation and Coupling; Springer, Springer International Publisher: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Darwish, Z.A.; Kazem, H.A.; Sopian, K.; Alghoul, M.A.; Chaichan, M.T. Impact of some environmental variables with dust on solar photovoltaic (PV) performance: Review and research status. Int. J. Energy Environ. 2013, 7, 152–159. [Google Scholar]
- Elzinga, D. Electricity System Development: A Focus on—Smart Grids Overview of Activities and Players in Smart Grids; United Nations Economic Commission for Europe: Geneva, Switzerland, 2015. [Google Scholar]
- Foles, A.C.N. MPPT Study from a Solar Photovoltaic Panelaccording to Perturbations Induced by Shadows. Masters’s Thesis, University of Évora, Evora, Portugal, 2017. [Google Scholar]
- Gomes, I.L.R.; Pousinho, H.M.I.; Melício, R.; Mendes, V.M.F. Bidding and optimization strategies for Wind-PV systems in electricity markets assisted by CPS. Energy Procedia 2016, 106, 111–121. [Google Scholar] [CrossRef]
- Gokmen, N.; Hu, W.; Hou, P.; Chen, Z.; Sera, D.; Spataru, S. Investigation of wind speed cooling effect on PV panels in windy locations. Renew. Energy 2016, 90, 283–290. [Google Scholar] [CrossRef]
- Hudedmani, M.G.; Soppimath, V.; Jambotkar, C. A study of materials for solar pv technology and challenges. Sch. Res. Libr. Eur. J. Appl. Eng. Sci. Res. 2017, 5, 1–13. [Google Scholar]
- Hategekimana, P. Analysis of Electrical Loads and Strategies for Increasing Self-Consumption with BIPV Case Study Skarpnes Zero Energy House. Master’s Thesis, University of Agder, Grimstad, Norway, 2017. [Google Scholar]
- Isoaho, K.; Goritz, A.; Schulz, N. Governing clean energy transitions in China and India. In The Political Economy of Clean Energy Transitions; Oxford Scholarship: Oxford, UK, 2017. [Google Scholar]
- Kaur, T. Solar PV Integration in smart grid issues and challenges. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2015, 4, 5861–5865. [Google Scholar]
- Mekkaoui, A.; Laouer, M.; Mimoun, Y. Modeling and simulation for smart grid integration of solar/wind energy. Leonardo J. Sci. 2017, 30, 31–46. [Google Scholar]
- Menoufi, K. Dust accumulation on the surface of photovoltaic panels: Introducing the photovoltaic soiling index (PVSI). Sustainability 2017, 9, 963. [Google Scholar] [CrossRef]
- Prakesh, S.; Sherine, S. Forecasting Methodologies Of Solar Resource And PV Power For Smart Grid Energy Management. Int. J. Pure Appl. Math. 2017, 116, 313–318. [Google Scholar]
- Rashel, M.R.; Ahmed, T.; Goncalves, T.; Tlemcani, M.; Melicio, R. Analysis of environmental parameters sensitivity to improve modeling of a c-Si panel. Sens. Lett. 2018, 16, 176–181. [Google Scholar] [CrossRef]
- Rashel, M.R.; Rifath, J.; Gonçalves, T.; Tlemçani, M.; Melício, R. Sensitivity analysis through error function of crystalline-Si photovoltaic cell model integrated in a smart grid. Int. J. Renew. Energy Res. 2017, 7, 1926–1933. [Google Scholar]
- Rashel, M.R.; Albino, A.; Gonçalves, T.; Tlemçani, M. MATLAB Simulink modeling of photovoltaic cells for understanding shadow effect. In Proceedings of the International Conference on Renewable Energy Research and Applications, Birmingham, UK, 20–23 November 2016. [Google Scholar]
- Saleem, Y.; Rehmani, M.H. Internet of things-aided smart grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions. IEEE Access 2019, 7, 62962–63003. [Google Scholar] [CrossRef]
- Singla, A.; Singh, K.; Yadav, V.K. Environmental effects on performance of solar photovoltaic module. In Proceedings of the Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy, Bangalore, India, 21–23 January 2016. [Google Scholar]
- Viegas, J.L.; Susana, M.; Melicio, R.; Mendes, V.M.F. Electricity demand profile prediction based on household characteristics. In Proceedings of the 12th International Conference on the European Energy Market, Lisbon, Portugal, 19–22 May 2015. [Google Scholar]
- Wang, J.; Gong, H.; Zou, Z. Modeling of dust deposition affecting transmittance of PV modules. J. Clean Energy Technol. 2017, 5, 217–221. [Google Scholar] [CrossRef]
- Zaihidee, F.M.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B. Dust as an unalterable deteriorative factor affecting PV panel’s efficiency: Why and how. Renew. Sustain. Energy Rev. 2016, 65, 1267–1278. [Google Scholar] [CrossRef]
PLM250P-60 | |
---|---|
Technology | Polycrystalline |
250 W | |
31.73 V | |
7.88 A | |
37.58 V | |
8.49 A | |
Cells | 60 |
Cell Efficiency | 17.64% |
Module Efficiency | 15.27% |
Output per m2 | 152.74 W/m2 |
Ultra Vitalux 300 W | |
---|---|
Nominal Wattage | 300.0 W |
Nominal Voltage | 230.0 V |
Lamp Voltage | 230.0 V |
Construction Voltage | 230.0 V |
Radiated Power UVA | 13.6 W |
Radiated Power UVB | 3.0 W |
Diameter | 127 mm |
T-Type Thermocouple | |
---|---|
Temperature measurement range | −328 to 400 °F (−200 to 204 °C) |
Standard Accuracy | +/−1.0 C or +/−0.75% |
+Leg | Copper |
−Leg | Copper-Nikkel |
Pyranometer CMP6 | |
---|---|
Spectral range (50% points) | 285 to 2800 nm |
Sensitivity | <3% |
Response time | 18 s |
Maximum solar irradiance | 2000 W/m2 |
Temperature response (−10 °C to +40 °C) | <±4% |
Zero offset | <±4 W/m2 |
Directional response (up to 80° with 1000 W/m2 beam) | <20 W/m2 |
Meteon Data Logger | |
---|---|
Analogue inputs | 1 × bi-polar 16-bit |
Input ranges | 6.25 mV to 200 mV |
Accuracy | 0.1% |
Operational temperature range | −10 °C to +40 °C |
Internal memory size | 3518 samples |
Thermal Camera | |
---|---|
IR Resolution | 160 × 120 pixels (25,600) measurement points per image |
Spatial Resolution | 2.72 mrad |
Thermal sensitivity | <0.1 °C |
Object temperature range | −20 °C to +250 °C |
Spectral range | 7.5–13 µm |
Minimum focus distance | 0.4 m |
Image frequency | 60 Hz |
Accuracy | ±2 °C or ±2% of reading |
Arrangement 1 | Arrangement 2 | |||||
---|---|---|---|---|---|---|
Angle | ||||||
(V) | 34.00 | 33.50 | 28.80 | 32.00 | 29.50 | 29.10 |
(I) | 3.40 | 1.83 | 1.60 | 2.00 | 0.94 | 0.83 |
51.5 | 45 | 43 | 43 | 41 | 39.5 | |
(W/m2) | 800.55 | 681.05 | 593.70 | 398.97 | 334.67 | 293.52 |
(W/m2) | 207.47 | 144.95 | 115.16 | 161.05 | 106.12 | 72.29 |
(W/m2) | 1223.00 | 986.00 | 837.00 | 946.00 | 742.00 | 519.00 |
(W/m2) | 422.00 | 450.00 | 390.00 | 177.00 | 165.00 | 150.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, P.; Ktena, A.; Kosmopoulos, P.; Konstantaras, J.; Vrachopoulos, M. Impact of Non-Uniform Irradiance and Temperature Distribution on the Performance of Photovoltaic Generators. Energies 2023, 16, 6322. https://doi.org/10.3390/en16176322
Thomas P, Ktena A, Kosmopoulos P, Konstantaras J, Vrachopoulos M. Impact of Non-Uniform Irradiance and Temperature Distribution on the Performance of Photovoltaic Generators. Energies. 2023; 16(17):6322. https://doi.org/10.3390/en16176322
Chicago/Turabian StyleThomas, Petrakis, Aphrodite Ktena, Panagiotis Kosmopoulos, John Konstantaras, and Michael Vrachopoulos. 2023. "Impact of Non-Uniform Irradiance and Temperature Distribution on the Performance of Photovoltaic Generators" Energies 16, no. 17: 6322. https://doi.org/10.3390/en16176322
APA StyleThomas, P., Ktena, A., Kosmopoulos, P., Konstantaras, J., & Vrachopoulos, M. (2023). Impact of Non-Uniform Irradiance and Temperature Distribution on the Performance of Photovoltaic Generators. Energies, 16(17), 6322. https://doi.org/10.3390/en16176322