Determination of Mineral Oil Concentration in the Mixture with Synthetic Ester Using Near-Infrared Spectroscopy
Abstract
:1. Introduction
2. Determination of Mineral Oil Concentration in a Mixture with Synthetic Ester—State of the Art and the Aim of the Research
3. The Use of Near-Infrared Spectroscopy to Determine the Concentration of Mineral Oil in a Mixture with Synthetic Ester—Research Results
3.1. Absorbance Band Selection
3.2. Dependence of the Absorbance on MO Concentration in the Mixture with SE
3.3. Method Verification and Discussion of the Results
3.4. Improving the Accuracy of the Method by Changing the Optical Path Length of the Cuvette
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rouse, T.O. Mineral Insulating Oil in Transformers. IEEE Electr. Insul. Mag. 1998, 14, 6–16. [Google Scholar] [CrossRef]
- Dombek, G.; Gielniak, J. Fire safety and electrical properties of mixtures of synthetic ester/mineral oil and synthetic ester/natural ester. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1846–1852. [Google Scholar] [CrossRef]
- Athanassatou, H.; Duart, J.C.; Perrier, C.; Sitar, I.; Walker, J.; Claiborne, C.; Boche, T.; Cherry, D.; Darwin, A.; Gockenbach, E.; et al. Experiences in Service with New Insulating Liquids; Cigré Technical Brochure 436; International Council on Large Electric Systems (CIGRE): Paris, France, 2010. [Google Scholar]
- Rozga, P.; Beroual, A.; Przybylek, P.; Jaroszewski, M.; Strzelecki, K. A Review on Synthetic Ester Liquids for Transformer Applications. Energies 2020, 13, 6429. [Google Scholar] [CrossRef]
- Nogueira, T.; Carvalho, J.; Magano, J. Eco-Friendly Ester Fluid for Power Transformers versus Mineral Oil: Design Considerations. Energies 2022, 15, 5418. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, R.; Pan, K.; Xu, Y.; Rapp, K. Detailed procedures of retrofilling transformers with FR3 naturalester and residual mineral oil content testing. IET Gener. Transm. Distrib. 2022, 16, 1901–1913. [Google Scholar] [CrossRef]
- Karaman, H.S.; Mansour, D.-E.A.; Lehtonen, M.; Darwish, M.M.F. Condition Assessment of Natural Ester–Mineral Oil Mixture Due to Transformer Retrofilling via Sensing Dielectric Properties. Sensors 2023, 23, 6440. [Google Scholar] [CrossRef]
- Fofana, I.; Wasserberg, V.; Borsil, H.; Gockenbach, E. Retrofilling conditions of high voltage transformers. IEEE Electr. Insul. Mag. 2001, 17, 17–30. [Google Scholar] [CrossRef]
- Fofana, I.; Wasserberg, V.; Borsi, H.; Gockenbach, E. Preliminary investigations for the retrofilling of perchlorethylene based fluid filled transformer. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 97–103. [Google Scholar] [CrossRef]
- Fatyga, P.; Morańda, H. Evaluation of the Mineral Oil and Synthetic Ester Percentage Composition after Replacing Oil with Ester Fluid in Power Transformer. In Proceedings of the International Conference Transformator, Toruń, Poland, 9–11 May 2017. (In Polish). [Google Scholar]
- Wasserberg, V.; Borsi, H.; Gockenbach, E. A New Method for Drying the Paper Insulation of Power Transformers During Service. In Proceedings of the IEEE International Symposium on Electrical Insulation, Anaheim, CA, USA, 5 April 2000. [Google Scholar] [CrossRef]
- Cybulski, M.; Przybylek, P. The Application of a Molecular Sieve for Drying the Insulation System of a Power Transformer in Terms of Improving Its Operational Reliability. Eksploat. Niezawodn. Maint. Reliab. 2022, 24, 502–509. [Google Scholar] [CrossRef]
- Atanasova-Höhlein, I.; Koncan-Gradnik, M.; Gradnik, T.; Cucek, B.; Przybylek, P.; Siodla, K.; Liland, K.B.; Leivo, S.; Liu, Q. Moisture Measurement and Assessment in Transformer Insulation—Evaluation of Chemical Methods and Moisture Capacitive Sensors; Cigré Technical Brochure 741; International Council on Large Electric Systems (CIGRE): Paris, France, 2018. [Google Scholar]
- Fofana, I.; Arakelian, V.G. Water in oil-filled high-voltage equipment, Part I: States, solubility, and equilibrium in insulating materials. IEEE Electr. Insul. Mag. 2007, 23, 15–27. [Google Scholar] [CrossRef]
- Przybylek, P.; Moranda, H.; Moscicka-Grzesiak, H.; Szczesniak, D. Application of Synthetic Ester for Drying Distribution Transformer Insulation—The Influence of Cellulose Thickness on Drying Efficiency. Energies 2019, 12, 3874. [Google Scholar] [CrossRef]
- Przybylek, P. Water solubility in synthetic ester and mixture of ester with mineral oil in aspect of cellulose insulation drying. Prz. Elektrotechniczny 2016, 10, 92–95. (In Polish) [Google Scholar]
- Fofana, I.; Wasserberg, V.; Borsi, H.; Gockenbach, E. Challenge of mixed insulating liquids for use in high-voltage transformers.1. Investigation of mixed liquids. IEEE Electr. Insul. Mag. 2002, 18, 18–31. [Google Scholar] [CrossRef]
- Lyutikova, M.N.; Korobeynikov, S.M.; Rao, U.M.; Fofana, I. Mixed Insulating Liquids with Mineral Oil for High-Voltage Transformer Applications: A Review. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 454–461. [Google Scholar] [CrossRef]
- Beroual, A.; Khaled, U.; Mbolo Noah, P.S.; Sitorus, H. Comparative Study of Breakdown Voltage of Mineral, Synthetic and Natural Oils and Based Mineral Oil Mixtures under AC and DC Voltages. Energies 2017, 10, 511. [Google Scholar] [CrossRef]
- Moranda, H.; Gielniak, J.; Kownacki, I. Assessment of Concentration of Mineral Oil in Synthetic Ester Based on the Density of the Mixture and the Capacitance of the Capacitor Immersed in It. Energies 2021, 14, 1839. [Google Scholar] [CrossRef]
- GlobeCore/Oil Filtration. Transformer Oil Density and Viscosity. Available online: https://globecore.com/oil-filtration-pumping/transformer-oil-density-and-viscosity/ (accessed on 19 July 2023).
- Ozaki, Y.; Genkawa, T.; Futami, Y. Near-Infrared Spectroscopy. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 40–49. [Google Scholar] [CrossRef]
- Pasquini, C. Near Infrared Spectroscopy: Fundamentals, Practical Aspects and Analytical Applications. J. Braz. Chem. Soc. 2003, 14, 198–219. [Google Scholar] [CrossRef]
- Przybylek, P. Application of Near-Infrared Spectroscopy to Measure the Water Content in Liquid Dielectrics. Energies 2022, 15, 5907. [Google Scholar] [CrossRef]
- Herman, H.; Shenton, M.J.; Stevens, G.C.; Heywood, R.J. A new approach to condition assessment and lifetime prediction of paper and oil used as transformer insulation. In Proceedings of the ICSD’01, 20001 IEEE 7th International Conference on Solid Dielectrics (Cat. No. 01CH37117), Eindhoven, The Netherlands, 25–29 June 2001. [Google Scholar] [CrossRef]
- Baird, P.J.; Herman, H.; Stevens, G. On-site analysis of transformer paper insulation using portable spectroscopy for chemometric prediction of aged condition. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1089–1099. [Google Scholar] [CrossRef]
- Borges, G.; Rohwedder, J.; Bortoni, E. A new method to detect fault gas in insulation oil using NIR spectroscopy and multivariate calibration. In Proceedings of the IEEE Int’l. Conference Instrumentation and Measurement Technology, Minneapolis, MN, USA, 6–9 May 2013. [Google Scholar] [CrossRef]
- Sato, T.; Kawano, S.; Iwamoto, M. Near Infrared Spectral Patterns of Fatty Acid Analysis from Fats and Oils. J. Am. Oil. Chem. Soc. 1991, 68, 827–833. [Google Scholar] [CrossRef]
- ElMasry, G.; Nakauchi, S. Prediction of meat spectral patterns based on optical properties and concentrations of the major constituents. Food Sci. Nutr. 2016, 4, 269–283. [Google Scholar] [CrossRef] [PubMed]
- Midel Safety Data Sheet. Available online: https://www.midel.com/app/uploads/2022/12/MIDEL_7131_SDS_UK.pdf (accessed on 19 July 2023).
Parameter | Value |
---|---|
wavelength range | 800–2500 nm |
resolution | 0.5 nm |
wavelength repeatability | ±0.4 nm |
photometric range | −0.3 to 3 Abs |
photometric repeatability | ±0.001 Abs (0 to 0.5 Abs) |
±0.002 Abs (>0.5 Abs) | |
photometric accuracy | ±0.002 Abs (0 to 0.5 Abs) |
±0.004 Abs (>0.5 Abs) |
Sample no. | 1 | 2 | 3 | 4 | ||||
---|---|---|---|---|---|---|---|---|
Mass of SE, g | 19.5119 | 13.5457 | 5.2988 | 0 | ||||
Mass of MO, g | 0 | 5.2988 | 12.3739 | 17.5612 | ||||
Concentration of SE, % | 100 | 71.88 | 29.98 | 0 | ||||
Concentration of MO, % | 0 | 28.12 | 70.72 | 100 | ||||
Measurement | Meas. 1 | Meas. 2 | Meas. 1 | Meas. 2 | Meas. 1 | Meas. 2 | Meas. 1 | Meas. 2 |
Absorbance at 2126 nm | 0.36230 | 0.36274 | 0.30639 | 0.30587 | 0.23099 | 0.23121 | 0.17619 | 0.17619 |
Kind of Liquid | Liquid Description | Neutralization Value, mgKOH/goil |
---|---|---|
SE | Midel 7131—new synthetic ester by M&I Materials, Manchester, UK | 0.02 |
MO | Orlen Trafo EN—new non-inhibited, naphthenic oil | 0.01 |
MO1 | Aged miner oil taken from 4400 kVA transformer manufactured in 1969 | 0.13 |
MO2 | Aged miner oil taken from 500 kVA transformer manufactured in 1966 | 0.16 |
MO3 | Aged miner oil taken from 500 kVA transformer manufactured in 1965 | 0.22 |
Mineral Oil | New Mineral Oil Nv = 0.01 mgKOH/goil | Aged Mineral Oil Nv = 0.13 mgKOH/goil | Aged Mineral Oil Nv = 0.16 mgKOH/goil | Aged Mineral Oil Nv = 0.22 mgKOH/goil | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
rCMO, % | 9.79 | 18.74 | 47.27 | 9.76 | 19.02 | 28.11 | 9.49 | 19.09 | 28.42 | 9.82 | 18.73 | 28.55 |
Abs2126 | 0.3459 | 0.3293 | 0.2724 | 0.3452 | 0.3251 | 0.3062 | 0.3444 | 0.3266 | 0.3106 | 0.3444 | 0.3274 | 0.3092 |
dCMO, % | 8.00 | 17.02 | 47.75 | 8.39 | 19.25 | 29.50 | 8.82 | 18.44 | 27.11 | 8.84 | 18.04 | 27.87 |
ΔCMO, % | 1.77 | 1.72 | 0.48 | 1.37 | 0.23 | 1.39 | 0.67 | 0.66 | 1.31 | 0.98 | 0.68 | 0.68 |
Sample no. | 1 | 2 | 3 | 4 | ||||
---|---|---|---|---|---|---|---|---|
Mass of SE, g | 37.7071 | 29.3345 | 7.5725 | 0 | ||||
Mass of MO, g | 0 | 6.7892 | 26.3944 | 33.2789 | ||||
Concentration of SE, % | 100 | 81.21 | 22.29 | 0 | ||||
Concentration of MO, % | 0 | 18.79 | 77.71 | 100 | ||||
Measurement | Meas. 1 | Meas. 2 | Meas. 1 | Meas. 2 | Meas. 1 | Meas. 2 | Meas. 1 | Meas. 2 |
Absorbance at 2126 nm | 1.6904 | 1.6897 | 1.4886 | 1.4889 | 0.9265 | 0.9268 | 0.7384 | 0.7384 |
Parameters | Results | |||
---|---|---|---|---|
rCMO, % | 4.75 | 9.27 | 88.62 | 94.26 |
Abs2126 | 1.6377 | 1.5915 | 0.8328 | 0.7857 |
dCMO±, % | 4.28 | 9.13 | 88.83 | 93.78 |
ΔCMO, % | 0.46 | 0.14 | 0.21 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przybylek, P. Determination of Mineral Oil Concentration in the Mixture with Synthetic Ester Using Near-Infrared Spectroscopy. Energies 2023, 16, 6381. https://doi.org/10.3390/en16176381
Przybylek P. Determination of Mineral Oil Concentration in the Mixture with Synthetic Ester Using Near-Infrared Spectroscopy. Energies. 2023; 16(17):6381. https://doi.org/10.3390/en16176381
Chicago/Turabian StylePrzybylek, Piotr. 2023. "Determination of Mineral Oil Concentration in the Mixture with Synthetic Ester Using Near-Infrared Spectroscopy" Energies 16, no. 17: 6381. https://doi.org/10.3390/en16176381
APA StylePrzybylek, P. (2023). Determination of Mineral Oil Concentration in the Mixture with Synthetic Ester Using Near-Infrared Spectroscopy. Energies, 16(17), 6381. https://doi.org/10.3390/en16176381