Monitoring and Preventing Failures of Transmission Pipelines at Oil and Natural Gas Plants
Abstract
:1. Introduction
2. Monitoring and Prevention of Pipeline Failures—Research Activities and New Approaches
3. Inhibitors Used for Corrosion Protection
4. Materials and Research Methods
- SEM-EDS scanning microscope photographs of the sample surface were taken.
- Analysis of the chemical composition on the surface of the sample was performed using an X-ray microanalyzer.
- Transverse metallographic micro-sections were taken from the test specimens (Figure 1) to study the micro-structure of the corrosion scale and the substrate.
- –
- concentration of dissolved oxygen and other oxidants,
- –
- degree of mineralization (mainly the concentration of chlorides and sulphates),
- –
- pH value and the concentration of aggressive CO2 associated with it,
- –
- water alkalinity,
- –
- content of Ca2+ and Mg2+ ions implying water hardness.
5. Results and Discussion
6. Analysis of the Obtained Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, R.; Zhang, H.; Yang, R.; Chen, W.; Chen, G. Nondestructive Testing for Corrosion Evaluation of Metal under Coating. J. Sens. 2021, 2021, 6640406. [Google Scholar] [CrossRef]
- May, Z.; Alam, M.K.; Nayan, N.A. Recent Advances in Nondestructive Method and Assessment of Corrosion Undercoating in Carbon–Steel Pipelines. Sensors 2022, 22, 6654. [Google Scholar] [CrossRef] [PubMed]
- Honarvar, F.; Varvani-Farahani, A. A review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control. Ultrasonics 2020, 108, 106227. [Google Scholar] [CrossRef]
- Al-Moubaraki, A.H.; Obot, I.B. Corrosion challenges in petroleum refinery operations: Sources, mechanisms, mitigation, and future outlook. J. Saudi Chem. Soc. 2021, 25, 101370. [Google Scholar] [CrossRef]
- Vankov, Y.; Rumyantsev, A.; Ziganshin, S.; Politova, T.; Minyazev, R.; Zagretdinov, A. Assessment of the Condition of Pipelines Using Convolutional Neural Networks. Energies 2020, 13, 618. [Google Scholar] [CrossRef]
- Ma, Q.; Tian, G.; Zeng, Y.; Li, R.; Song, H.; Wang, Z.; Gao, B.; Zeng, K. Pipeline In-Line Inspection Method, Instrumentation and Data Management. Sensors 2021, 21, 3862. [Google Scholar] [CrossRef] [PubMed]
- Melo, C.; Dann, M.R.; Hugo, R.J.; Janeta, A. Optimal locations for non-destructive inspections to verify direct assessment of internally corroded pipelines. Upstream Oil Gas Technol. 2020, 5, 100008. [Google Scholar] [CrossRef]
- Kremieniewski, M. Improving the Efficiency of Oil Recovery in Research and Development. Energies 2022, 15, 4488. [Google Scholar] [CrossRef]
- Khomenko, A.; Karpenko, O.; Koricho, E.G.; Haq, M.; Cloud, G.L.; Udpa, L. Quantitative comparison of optical transmission scanning with conventional techniques for NDE of impact damage in GFRP composites. Compos. Part B Eng. 2017, 123, 92–104. [Google Scholar] [CrossRef]
- Wronkowicz, A.; Dragan, K.; Lis, K. Assessment of uncertainty in damage evaluation by ultrasonic testing of composite structures. Compos. Struct. 2018, 203, 71–84. [Google Scholar] [CrossRef]
- Yang, J.-S.; Zhao, P.; Cao, Y.-P.; Zhao, X.; Li, Y.; Zhang, D.-J. A New Type of Ultrasonic Wall Thickness Measurement System Applied in Natural-gas Pipeline. In Proceedings of the 2021 IEEE Far East NDT New Technology & Application Forum (FENDT), Kunming, China, 14–17 December 2021. [Google Scholar] [CrossRef]
- Mazzinghi, A.; Freni, A.; Capineri, L. A microwave non-destructive testing method for controlling polymeric coating of metal layers in industrial products. NDT E Int. 2019, 102, 207–217. [Google Scholar] [CrossRef]
- Sedaghati, A.; Honarvar, F.; Sinclair, A.N. Lamb wave-based experimental and numerical studies for detection and sizing of corrosion damage in metallic plates. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 2107–2120. [Google Scholar] [CrossRef]
- Slotwinski, J.A.; Garboczi, E.J.; Hebenstreit, K.M. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control. J. Res. Natl. Inst. Stand. Technol. 2014, 119, 494–528. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Oswald-Tranta, B.; Gürocak, M.; Galic, A.; Adam, R.; Schledjewski, R. In-line and off-line NDT defect monitoring for thermoplastic automated tape layup. NDT E Int. 2023, 137, 102839. [Google Scholar] [CrossRef]
- Bhargava Reddy, M.S.; Ponnamma, D.; Sadasivuni, K.K.; Aich, S.; Kailasa, S.; Parangusan, H.; Ibrahim, M.; Eldeib, S.; Shehata, O.; Ismail, M.; et al. Sensors in advancing the capabilities of corrosion detection: A review. Sensors Actuators A Phys. 2021, 332, 113086. [Google Scholar] [CrossRef]
- Xu, X.; Fan, Z.; Chen, X.; Cheng, J.; Bu, Y. Ultrasonic Phased Array Imaging Approach Using Omni-Directional Velocity Correction for Quantitative Evaluation of Delamination in Composite Structure. Sensors 2023, 23, 1777. [Google Scholar] [CrossRef]
- Camacho, J.; Svilainis, L.; Álvarez-Arenas, T.G. Ultrasonic Imaging and Sensors. Sensors 2022, 22, 7911. [Google Scholar] [CrossRef]
- Guorong, S.; Ce, B.; Yan, L.; Yang, L.; Jing, Y.; Lei, Z.; Cunfu, H. Guided Wave Focusing Imaging Detection of Pipelines by Piezoelectric Sensor Array. J. Sens. 2022, 2022, 4731341. [Google Scholar] [CrossRef]
- Wright, R.F.; Lu, P.; Devkota, J.; Lu, F.; Ziomek-Moroz, M.; Ohodnicki, P.R. Corrosion sensors for structural health monitoring of oil and natural gas infrastructure: A Review. Sensors 2019, 19, 3964. [Google Scholar] [CrossRef]
- Zhong, S. Progress in terahertz nondestructive testing: A review. Front. Mech. Eng. 2019, 14, 273–281. [Google Scholar] [CrossRef]
- Bajgholi, M.E.; Rousseau, G.; Ginzel, E.; Thibault, D.; Viens, M. Total focusing method applied to probability of detection. Int. J. Adv. Manuf. Technol. 2023, 126, 3637–3647. [Google Scholar] [CrossRef]
- Caminero, M.A.; García-Moreno, I.; Rodríguez, G.P.; Chacón, J.M. Internal damage evaluation of composite structures using phased array ultrasonic technique: Impact damage assessment in CFRP and 3D printed reinforced composites. Compos. Part B Eng. 2019, 165, 131–142. [Google Scholar] [CrossRef]
- Ono, K. A Comprehensive Report on Ultrasonic Attenuation of Engineering Materials, Including Metals, Ceramics, Polymers, Fiber-Reinforced Composites, Wood, and Rocks. Appl. Sci. 2020, 10, 2230. [Google Scholar] [CrossRef]
- Choudhary, S.; Vishwakarma, M.; Dwivedi, S.K. Evaluation and Prevention of Hydrogen Embrittlement by NDT Methods: A Review. Mater. Proc. 2021, 6, 18. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, S.; Jin, S.; Liu, Z.; Lin, L. Heterogeneous ultrasonic time-of-flight distribution in multidirectional CFRP corner and its implementation into total focusing method imaging. Compos. Struct. 2022, 294, 115789. [Google Scholar] [CrossRef]
- Poorhaydari, K. A Comprehensive Examination of High-Temperature Hydrogen Attack—A Review of over a Century of Investigations. J. Mater. Eng. Perform. 2021, 30, 7875–7908. [Google Scholar] [CrossRef]
- Yan, H.; Zhao, P.; Xiao, C.; Zhang, D.; Jiao, S.; Pan, H.; Wu, X. Design and Kinematic Characteristic Analysis of a Spiral Robot for Oil and Gas Pipeline Inspections. Actuators 2023, 12, 240. [Google Scholar] [CrossRef]
- Bęben, D. Badania skuteczności działania wybranych inhibitorów korozji stosowanych okresowo w przemyśle wydobywczym. Artic. Ochr. Przed Korozją 2019, 11, 376–381. [Google Scholar]
- Zaki, A.; Chai, H.K.; Aggelis, D.G.; Alver, N. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique. Sensors 2015, 15, 19069–19101. [Google Scholar] [CrossRef]
- Duan, J.; Li, C.; Jin, J. Modal Analysis of Tubing Considering the Effect of Fluid–Structure Interaction. Energies 2022, 15, 670. [Google Scholar] [CrossRef]
- Mazur, R.; Stefanek, P.; Orlikowski, J. Corrosion monitoring as a factor increasing the safety vof hydrotechnical infrastructure. Pol. Acad. Sci. 2022, LXVIII, 197–209. [Google Scholar] [CrossRef]
- Valdez, B.; Schorr, M.; Zlatev, R.; Carrillo, M.; Stoytcheva, M.; Alvarez, L.; Eliezer, A.; Rosas, N. Corrosion Control in Industry. In Environmental and Industrial Corrosion—Practical and Theoretical Aspects; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Bęben, D. The Influence of Temperature on Degradation of Oil and Gas Tubing Made of L80-1 Steel. Energies 2021, 14, 6855. [Google Scholar] [CrossRef]
- Bęben, D. Ochrona chemiczna metali przed korozją na przykładzie wybranych kopalń gazu ziemnego. Artic. Ochr. Przed Korozją 2014, 57, 478–481. [Google Scholar]
- Khan, A.; Qurashi, A.; Badeghaish, W.; Noui-Mehidi, M.N.; Aziz, M.A. Frontiers and Challenges in Electrochemical Corrosion Monitoring; Surface and Downhole Applications. Sensors 2020, 20, 6583. [Google Scholar] [CrossRef]
- Garcia-Arriaga, V.; Alvarez-Ramirez, J.; Amaya, M.; Sosa, E. H2S and O2 influence on the corrosion of carbon steel immersed in a solution containing 3 M diethanolamine. Corros. Sci. 2010, 52, 2268–2279. [Google Scholar] [CrossRef]
- Wasim, M.; Djukic, M.B. External corrosion of oil and gas pipelines: A review of failure mechanisms and predictive preventions. J. Nat. Gas Sci. Eng. 2022, 100, 104467. [Google Scholar] [CrossRef]
- Khalid, H.U.; Ismail, M.C.; Nosbi, N. Permeation Damage of Polymer Liner in Oil and Gas Pipelines: A Review. Polymers 2020, 12, 2307. [Google Scholar] [CrossRef] [PubMed]
- Agnieszka, S. Korozja rur wydobywczych odwiertów gazowych z zawartością CO2. Nafta-Gaz 2011, 6, 395–400. [Google Scholar]
- Pessu, F.; Barker, R.; Chang, F.; Chen, T.; Neville, A. Iron sulphide formation and interaction with corrosion inhibitor in H2S-containing environments. J. Pet. Sci. Eng. 2021, 207, 109152. [Google Scholar] [CrossRef]
- Liu, M.; Du, C.; Liu, Z.; Wang, L.; Zhong, R.; Cheng, X.; Ao, J.; Duan, T.; Zhu, Y.; Li, X. A review on pitting corrosion and environmentally assisted cracking on duplex stainless steel. Microstructures 2023, 3, 2023020. [Google Scholar] [CrossRef]
- Bhandari, J.; Khan, F.; Abbassi, R.; Garaniya, V.; Ojeda, R. Modelling of pitting corrosion in marine and offshore steel structures—A technical review. J. Loss Prev. Process Ind. 2015, 37, 39–62. [Google Scholar] [CrossRef]
- Lopez, A.B.; Sousa, J.P.; Pragana, J.P.M.; Bragança, I.M.F.; Santos, T.G.; Silva, C.M.A. In Situ Ultrasonic Testing for Wire Arc Additive Manufacturing Applications. Machines 2022, 10, 1069. [Google Scholar] [CrossRef]
- Marzorati, S.; Verotta, L.; Trasatti, S.P. Green Corrosion Inhibitors from Natural Sources and Biomass Wastes. Molecules 2018, 24, 48. [Google Scholar] [CrossRef]
- Bęben, D. Wpływ pH roztworu na korozję wybranych gatunków stali. Artic. Ochr. Przed Korozją 2016, 7, 260–263. [Google Scholar]
- Kuznetsov, Y.I.; Redkina, G.V. Thin Protective Coatings on Metals Formed by Organic Corrosion Inhibitors in Neutral Media. Coatings 2022, 12, 149. [Google Scholar] [CrossRef]
- Hughes, A.E.; Winkler, D.A.; Carr, J.; Lee, P.D.; Yang, Y.S.; Laleh, M.; Tan, M.Y. Corrosion Inhibition, Inhibitor Environments, and the Role of Machine Learning. Corros. Mater. Degrad. 2022, 3, 672–693. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Z.; Taylor, B.; Dong, H. Matching pipeline In-line inspection data for corrosion characterization. NDT E Int. 2019, 101, 44–52. [Google Scholar] [CrossRef]
- Han, X.; Yang, D.Y.; Frangopol, D.M. Optimum maintenance of deteriorated steel bridges using corrosion resistant steel based on system reliability and life-cycle cost. Eng. Struct. 2021, 243, 112633. [Google Scholar] [CrossRef]
- Thompson, N.G.; Yunovich, M.; Dunmire, D. Cost of Corrosion and Corrosion Maintenance Strategies. Corros. Rev. 2007, 25, 247–262. [Google Scholar] [CrossRef]
- Al-Qurashi, O.S.; Wazzan, N. Molecular and periodic DFT calculations of the corrosion protection of Fe(110) by individual components of Aerva lanata flower as a green corrosion inhibitor. J. Saudi Chem. Soc. 2022, 26, 101566. [Google Scholar] [CrossRef]
- Stachowicz, A. Zabezpieczenie antykorozyjne instalacji napowierzchniowej i uzbrojenia wgłębnego odwiertów przeznaczonych do zatłaczania cieczy odpadowych i wody złożowej. Nafta-Gaz 2016, 72, 939–944. [Google Scholar] [CrossRef]
- Yang, H.M. Role of Organic and Eco-Friendly Inhibitors on the Corrosion Mitigation of Steel in Acidic Environments-A State-of-Art Review. Molecules 2021, 26, 3473. [Google Scholar] [CrossRef]
- Bharatiya, U.; Gal, P.; Agrawal, A.; Shah, M.; Sircar, A. Effect of Corrosion on Crude Oil and Natural Gas Pipeline with Emphasis on Prevention by Ecofriendly Corrosion Inhibitors: A Comprehensive Review. J. Bio. Tribo. Corros. 2019, 5, 35. [Google Scholar] [CrossRef]
- Argyropoulos, V.; Boyatzis, S.C.; Giannoulaki, M.; Guilminot, E.; Zacharopoulou, A. Organic Green Corrosion Inhibitors Derived from Natural and/or Biological Sources for Conservation of Metals Cultural Heritage. In Microorganisms in the Deterioration and Preservation of Cultural Heritage; Joseph, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Kolawole, F.O.; Kolawole, S.K.; Agunsoye, J.O.; Adebisi, J.A.; Bello, S.A.; Hassan, S.B. Mitigation of Corrosion Problems in API 5L Steel Pipeline—A Review. J. Mater. Environ. Sci. 2018, 9, 2397–2410. [Google Scholar]
- Behrsing, T.; Deacon, G.B.; Junk, P.C. 1—The chemistry of rare earth metals, compounds, and corrosion inhibitors. In Woodhead Publishing Series in Metals and Surface Engineering, Rare Earth-Based Corrosion Inhibitors; Forsyth, M., Hinton, B., Eds.; Woodhead Publishing: Sawston, UK, 2014; pp. 1–37. [Google Scholar] [CrossRef]
- Zhang, X.; Zevenbergen, J.; Benedictus, T. Corrosion Studies on Casing Steel in CO2 Storage Environments. Energy Procedia 2013, 37, 5816–5822. [Google Scholar] [CrossRef]
- Eliyan, F.F.; Alfantazi, A. Influence of temperature on the corrosion behavior of API-X100 pipeline steel in 1-bar CO2-HCO3− solutions: An electrochemical study. Mater. Chem. Phys. 2013, 140, 508–515. [Google Scholar] [CrossRef]
- Jakubowski, M. Influence of pitting corrosion on fatigue and corrosion fatigue of ship structures Part I Pitting corrosion of ship structures. Pol. Marit. Res. 2014, 21, 62–69. [Google Scholar] [CrossRef]
- Li, D.; Liu, Q.; Wang, W.; Jin, L.; Xiao, H. Corrosion Behavior of AISI 316L Stainless Steel Used as Inner Lining of Bimetallic Pipe in a Seawater Environment. Materials 2021, 14, 1539. [Google Scholar] [CrossRef]
- Yang, X.; Hao, T.; Sun, Q.; Zhang, Z.; Lin, Y. The Corrosion Behavior of X100 Pipeline Steel in a Sodium Chloride Solution Containing Magnesium and Calcium. Materials 2023, 16, 5258. [Google Scholar] [CrossRef]
- Azzouni, D.; Haldhar, R.; Salim, R.; Ech-chihbi, E.; Mrani, S.A.; Rais, Z.; Azam, M.; Kim, S.C.; Taleb, M. Adsorption treatment residues as novel ecological corrosion inhibitors applied to mild steel in a molar hydrochloric acid medium: Experimental studies and surface characterization. Mater. Today Commun. 2023, 35, 106181. [Google Scholar] [CrossRef]
- Usarek, Z.; Warnke, K. Inspection of gas pipelines using magnetic flux Leakage technology. Adv. Mater. Sci. 2017, 17, 37–45. [Google Scholar] [CrossRef]
- Songa, Q.H.; Zhanga, Y.F.; Lib, Q.; Lib, Q.X.; Jua, C.; Wanga, Z.L.; Lia, J.J. Corrosion electrochemical behavior of arc sprayed Al coatings. Dig. J. Nanomater. Biostruct. 2022, 17, 825–837. [Google Scholar] [CrossRef]
- Tait, W.S. Chapter 27—Controlling Corrosion of Chemical Processing Equipment. In Handbook of Environmental Degradation of Materials, 3rd ed.; Kutz, M., Ed.; William Andrew Publishing: New York, NY, USA, 2018; pp. 583–600. [Google Scholar] [CrossRef]
- He, Y. Corrosion Monitoring. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Awuku, B.; Huang, Y.; Yodo, N. Predicting Natural Gas Pipeline Failures Caused by Natural Forces: An Artificial Intelligence Classification Approach. Appl. Sci. 2023, 13, 4322. [Google Scholar] [CrossRef]
- Galvão, T.L.P.; Ferreira, I.; Kuznetsova, A.; Novell-Leruth, G.; Song, C.; Feiler, C.; Lamaka, S.V.; Rocha, C.; Maia, F.; Zheludkevich, M.L.; et al. CORDATA: An open data management web application to select corrosion inhibitors. NPJ Mater. Degrad. 2022, 6, 48. [Google Scholar] [CrossRef]
Designation of the Well | Unit | I-1 |
---|---|---|
pH | 5.3 | |
Density (20 °C) | g/cm3 | 1.043 |
Dissolved substances | mg/dm3 | 728 |
Undissolved substances | mg/dm3 | 70 |
Roasting residue | mg/dm3 | 32 |
Chlorides | mg/dm3 | 269 |
Iron | mg/dm3 | 6.2 |
Mercury | mg/dm3 | 47.5 |
Calcium | mg/dm3 | 62.5 |
Magnesium | mg/dm3 | 12.2 |
Aluminium | mg/dm3 | 1.3 |
Zinc | mg/dm3 | 14.9 |
Sodium | mg/dm3 | 105.6 |
Manganese | mg/dm3 | 0.8 |
Bar | mg/dm3 | 6.7 |
Potassium | mg/dm3 | 95.3 |
Matte | mg/dm3 | 0.6 |
Copper | mg/dm3 | 0.6 |
Nickel | mg/dm3 | 0.3 |
Molybdenum | mg/dm3 | 1.7 |
Strontium | mg/dm3 | 0.9 |
Tin | mg/dm3 | 0.5 |
Lead | mg/dm3 | 0.5 |
Carbonates | mg/dm3 | n.s. |
Bicarbonates | mg/dm3 | 610 |
Sulfates | mg/dm3 | <20 |
Element % Weight | Native Steel (1) | Pipe Arc | ||
---|---|---|---|---|
Part (2) | Boundary Section (3) | Corroded (4) | ||
Fe | 99.00 | 22.32 | 6.19 | 20.74 |
O | 0.00 | 25.26 | 24.18 | 21.38 |
C | 0.096 | 25.19 | 11.83 | 39.53 |
Mn | 0.43 | 0.08 | 0.00 | 0.05 |
Si | 0.23 | 0.63 | 0.06 | 0.44 |
Ca | 0.00 | 0.11 | 0.19 | 0.43 |
Hg | 0.00 | 16.74 | 33.69 | 7.46 |
Al | 0.02 | 0.82 | 0.79 | 0.31 |
S | 0.004 | 6.24 | 14.15 | 5.47 |
Mg | 0.00 | 0.11 | 0.10 | 0.05 |
P | 0.016 | 0.12 | 0.00 | 0.02 |
Cr | 0.034 | 2.35 | 5.54 | 0.39 |
Cu | 0.02 | 0.04 | 3.29 | 3.74 |
Parameter | Unit | Normal Conditions | Actual Conditions |
---|---|---|---|
Volume | mol/cm3 | 22,669 | 154.7 |
Density | kg/dm3 | 0.8365 | 0.9585 |
Compressibility factor | - | 0.9981 | 0.9499 |
Viscosity | cP | 0.0117 | 0.0183 |
Thermal conductivity | W/m C | 30.69 | 52.31 |
Measurements | Readings |
---|---|
Background measurement without inhibitor [µm/year] | 157.8 |
Inhibitor quantity [l/h] | 0.5 |
Average probe reading during the inhibitor test [µm/year] | 8.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bęben, D.; Steliga, T. Monitoring and Preventing Failures of Transmission Pipelines at Oil and Natural Gas Plants. Energies 2023, 16, 6640. https://doi.org/10.3390/en16186640
Bęben D, Steliga T. Monitoring and Preventing Failures of Transmission Pipelines at Oil and Natural Gas Plants. Energies. 2023; 16(18):6640. https://doi.org/10.3390/en16186640
Chicago/Turabian StyleBęben, Dariusz, and Teresa Steliga. 2023. "Monitoring and Preventing Failures of Transmission Pipelines at Oil and Natural Gas Plants" Energies 16, no. 18: 6640. https://doi.org/10.3390/en16186640
APA StyleBęben, D., & Steliga, T. (2023). Monitoring and Preventing Failures of Transmission Pipelines at Oil and Natural Gas Plants. Energies, 16(18), 6640. https://doi.org/10.3390/en16186640