Examining Occupant-Comfort Responses to Indoor Humidity Ratio in Conventional and Vernacular Dwellings: A Rural Indian Case Study
Abstract
:1. Introduction
- To develop a non-intrusive, questionnaire-based approach to capture aggregated thermal and skin comfort responses;
- To develop a non-intrusive approach for validating a human thermo-physiological model (2-node, 16-segment) using thermal imagery and a point-in-time indoor environmental survey;
- Demonstration of the developed methodology using a case study in a rural Indian context.
2. Methodology
2.1. On-Field Monitoring of Indoor Environmental Parameters
2.2. Indoor Comfort Survey
2.3. Simulation Model
2.3.1. Energy Balance of the Human Body (Core–Skin–Indoor Air)
2.3.2. Experimental Validation
3. Results
3.1. Indoor Comfort Survey
3.1.1. Thermal Sensation
3.1.2. Indoor Air Quality (Skin) Sensation
3.1.3. Adaptation and Clothing
3.2. Simulation Results
3.3. Skin Temperature
3.3.1. Evaporative Loss and Skin Wettedness
3.3.2. Effect of Clothing
4. Discussions
4.1. Skin Parameters (tsk, Esk, w) vs. Comfort Response
4.2. Effects of Gender, Clothing, and BMI
4.3. The Case of Optimum Indoor Humidity: Literature vs. Present Study
5. The Way Forward—Use of the Proposed Methodology and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Indoor Comfort Survey Questionnaire
References
- Wallner, P.; Tappler, P.; Munoz, U.; Damberger, B.; Wanka, A.; Kundi, M.; Hutter, H.-P. Health and Wellbeing of Occupants in Highly Energy Efficient Buildings: A Field Study. Int. J. Environ. Res. Public Health 2017, 14, 314. [Google Scholar] [CrossRef] [PubMed]
- Fung, F.; Hughson, W.G. Health Effects of Indoor Fungal Bioaerosol Exposure. Appl. Occup. Environ. Hyg. 2003, 18, 535–544. [Google Scholar] [CrossRef]
- Arundel, A.V.; Sterling, E.M.; Biggin, J.H.; Sterling, T.D. Indirect health effects of relative humidity in indoor environments. Environ. Health Perspect. 1986, 65, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Markowicz, P.; Larsson, L. Influence of relative humidity on VOC concentrations in indoor air. Environ. Sci. Pollut. Res. 2015, 22, 5772–5779. [Google Scholar] [CrossRef] [PubMed]
- Petty, S.E. Indoor environmental quality. In Forensic Engineering: Damage Assessments for Residential and Commercial Structures; CRC Press: Boca Raton, FL, USA, 2017; pp. 421–436. [Google Scholar] [CrossRef]
- Hodgson, M. Indoor environmental exposures and symptoms. Environ. Health Perspect. 2002, 110 (Suppl. S4), 663–667. [Google Scholar] [CrossRef]
- Wallner, P.; Munoz, U.; Tappler, P.; Wanka, A.; Kundi, M.; Shelton, J.F.; Hutter, H.-P. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings. Int. J. Environ. Res. Public Health 2015, 12, 14132–14147. [Google Scholar] [CrossRef]
- Sahlberg, B.; Mi, Y.-H.; Norbäck, D. Indoor environment in dwellings, asthma, allergies, and sick building syndrome in the Swedish population: A longitudinal cohort study from 1989 to 1997. Int. Arch. Occup. Environ. Health 2009, 82, 1211–1218. [Google Scholar] [CrossRef]
- Peeters, L.; de Dear, R.; Hensen, J.; D’haeseleer, W. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation. Appl. Energy 2009, 86, 772–780. [Google Scholar] [CrossRef]
- de Dear, R.; Brager, G.S. The adaptive model of thermal comfort and energy conservation in the built environment. Int. J. Biometeorol. 2001, 45, 100–108. [Google Scholar] [CrossRef]
- Davis, R.E.; McGregor, G.R.; Enfield, K.B. Humidity: A review and primer on atmospheric moisture and human health. Environ. Res. 2016, 144, 106–116. [Google Scholar] [CrossRef]
- Wolkoff, P. Indoor air humidity, air quality, and health—An overview. Int. J. Hyg. Environ. Health 2018, 221, 376–390. [Google Scholar] [CrossRef] [PubMed]
- Hamehkasi, M. Effects of Low Humidity on Comfort, Health and Indoor Environmental Quality: A Literature Review. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2016. [Google Scholar]
- Ahmed, T.; Usman, M.; Scholz, M. Biodeterioration of buildings and public health implications caused by indoor air pollution. Indoor Built Environ. 2018, 27, 752–765. [Google Scholar] [CrossRef]
- Burger, H. Bioaerosols: Prevalence and health effects in the indoor environment. J. Allergy Clin. Immunol. 1990, 86, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Hugentobler, W. Mucociliary clearance is humidity dependent-contrary to common belief. In Proceedings of the 17th International Healthy Buildings Conference, Oslo, Norway, 21–23 June 2021; pp. 66–69. [Google Scholar]
- Toftum, J.; Jørgensen, A.S.; Fanger, P. Upper limits of air humidity for preventing warm respiratory discomfort. Energy Build. 1998, 28, 15–23. [Google Scholar] [CrossRef]
- Toftum, J.; Jørgensen, A.S.; Fanger, P. Upper limits for indoor air humidity to avoid uncomfortably humid skin. Energy Build. 1998, 28, 1–13. [Google Scholar] [CrossRef]
- Cheng, K.C.; Fujii, T. Isaac newton and heat transfer. Heat Transf. Eng. 1998, 19, 9–21. [Google Scholar] [CrossRef]
- Locher, W.G. Max von Pettenkofer (1818–1901) as a pioneer of modern hygiene and preventive medicine. Environ. Health Prev. Med. 2007, 12, 238–245. [Google Scholar] [CrossRef]
- Haldane, J.S. The influence of high air temperatures. J. Hyg. 1905, 5, 494–513. [Google Scholar] [CrossRef]
- Shastry, V.; Mani, M.; Tenorio, R. Evaluating thermal comfort and building climatic response in warm-humid climates for vernacular dwellings in Suggenhalli (India). Arch. Sci. Rev. 2016, 59, 12–26. [Google Scholar] [CrossRef]
- Singh, J. Health, Comfort and Productivity in the Indoor Environment. Indoor Built Environ. 1996, 5, 22–33. [Google Scholar] [CrossRef]
- Al Horr, Y.; Arif, M.; Kaushik, A.; Mazroei, A.; Katafygiotou, M.; Elsarrag, E. Occupant productivity and office indoor environment quality: A review of the literature. Build. Environ. 2016, 105, 369–389. [Google Scholar] [CrossRef]
- Fisk, W. How IEQ Affects Health, Productivity. ASHRAE J. 2002, 44, 56–60. [Google Scholar]
- Priyadarshani, S.; Mani, M.; Maskell, D. Influence of building typology on Indoor humidity regulation. REHVA J. 2021, 6, 48–52. [Google Scholar]
- Priyadarshani, S.; Mani, M.; Maskell, D. Discerning relative humidity trends in vernacular and conventional building typologies for occupant health. In Proceedings of the 17th International Healthy Buildings Conference, Oslo, Norway, 21–23 June 2021; Cao, G., Holøs, S.B., Kim, M.K., Schild, P.G., Eds.; pp. 587–598. Available online: https://www.sintefbok.no/papers/index/38/sintef_proceedings (accessed on 22 December 2022).
- Winslow, C.-E.A.; Herrington, L.P.; Gagge, A.P. Physiological Reactions of the Human Body to Various Atmospheric Humidities. Am. J. Physiol. Leg. Content 1937, 120, 288–299. [Google Scholar] [CrossRef]
- Gagge, A.P.; Stolwijk, J.A.J.; Nishi, Y. An effective Temperature Scale Based on a simple model of Human Physiological Regulatory Response. ASHRAE Trans. 1971, 77, 21–36. [Google Scholar]
- Winslow, C.-E.A.; Herrington, L.P.; Gagge, A.P. Physiological reactions of the human body to varying environmental temperatures. Am. J. Physiol. 1937, 120, 1–22. [Google Scholar] [CrossRef]
- Gonzalez, R.R.; Nishi, Y.; Gagge, A.P. Experimental evaluation of standard effective temperature a new biometeorological index of man’s thermal discomfort. Int. J. Biometeorol. 1974, 18, 1–15. [Google Scholar] [CrossRef]
- Gagge, A.P.; Herrington, L.P. “Thermal Interchanges between the Human Body and its Atmospheric Environment. Am. J. Hyg. 1937, 26, 84–102. [Google Scholar]
- Nishi, Y.; Gagge, A.P. Humid operative temperature. A biophysical index of thermal sensation and discomfort. J. Physiol. 1971, 63, 365–368. [Google Scholar]
- Gagge, A.P.; Fobelets, A.P.; Berglund, L. A standard predictive Index of human reponse to thermal environment. Am. Soc. Heat. Refrig. Air Cond. Eng. 1986, 92, 709–731. [Google Scholar]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Fanger, P.O. Thermal environment—Human requirements. Environmentalist 1986, 6, 275–278. [Google Scholar] [CrossRef]
- Givoni, B. Climate Considerations in Building and Urban Design. 1998. Available online: https://www.wiley.com/en-us/Climate+Considerations+in+Building+and+Urban+Design-p-9780471291770 (accessed on 5 August 2023).
- Brager, G.S.; De Dear, R.J. Thermal adaptation in the built environment: A literature review. Energy Build. 1998, 17, 83–96. [Google Scholar] [CrossRef]
- Zhao, Q.; Lian, Z.; Lai, D. Thermal comfort models and their developments: A review. Energy Built Environ. 2021, 2, 21–33. [Google Scholar] [CrossRef]
- Carter, J.G.; Cavan, G.; Connelly, A.; Guy, S.; Handley, J.; Kazmierczak, A. Climate change and the city: Building capacity for urban adaptation. Prog. Plan. 2015, 95, 1–66. [Google Scholar] [CrossRef]
- Indraganti, M.; Ooka, R.; Rijal, H.B.; Brager, G.S. Drivers and barriers to occupant adaptation in offices in India. Arch. Sci. Rev. 2016, 58, 77–86. [Google Scholar] [CrossRef]
- Indraganti, M.; Lee, J.; Zhang, H.; Arens, E.A. Thermal adaptation and insulation opportunities provided by different drapes of Indian saris. Arch. Sci. Rev. 2016, 58, 87–92. [Google Scholar] [CrossRef]
- Indraganti, M.; Ooka, R.; Rijal, H.B. Thermal comfort in offices in India: Behavioral adaptation and the effect of age and gender. Energy Build. 2015, 103, 284–295. [Google Scholar] [CrossRef]
- De Dear, R.; Kim, J.; Candido, C.; Deuble, M. Adaptive thermal comfort in Australian school classrooms. Build. Res. Inf. 2015, 43, 383–398. [Google Scholar] [CrossRef]
- Bansal, N.K.; Minke, G. Climatic Zones and Rural Housing in India. Part 1 of the Indo-German Project on Passive Space Conditioning; Kernforschungsanlage Jülich GmbH ZENTRALBIBLIOTHEK: Jülich, Germany, 1988. [Google Scholar]
- Tai, Y.; Obayashi, K.; Yamagami, Y.; Saeki, K. Inverse Association of Skin Temperature with Ambulatory Blood Pressure and the Mediation of Skin Temperature in Blood Pressure Responses to Ambient Temperature. Hypertension 2022, 79, 1845–1855. [Google Scholar] [CrossRef]
- Jiang, X.; Hou, X.; Dong, N.; Deng, H.; Wang, Y.; Ling, X.; Guo, H.; Zhang, L.; Cai, F. Skin temperature and vascular attributes as early warning signs of pressure injury. J. Tissue Viability 2020, 29, 258–263. [Google Scholar] [CrossRef]
- Atmaca, I.; Yigit, A. Predicting the effect of relative humidity on skin temperature and skin wettedness. J. Therm. Biol. 2006, 31, 442–452. [Google Scholar] [CrossRef]
- Tanabe, S.-I.; Kobayashi, K.; Nakano, J.; Ozeki, Y.; Konishi, M. Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build. 2002, 34, 637–646. [Google Scholar] [CrossRef]
- de Dear, R.J.; Arens, E.; Hui, Z.; Oguro, M. Convective and radiative heat transfer coefficients for individual human body segments. Int. J. Biometeorol. 1997, 40, 141–156. [Google Scholar] [CrossRef] [PubMed]
- Togawa, T. Non-contact skin emissivity: Measurement from reflectance using step change in ambient radiation temperature. Clin. Phys. Physiol. Meas. 1989, 10, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Matthews, T.K.R.; Wilby, R.L.; Murphy, C. Communicating the deadly consequences of global warming for human heat stress. Proc. Natl. Acad. Sci. USA 2017, 114, 3861–3866. [Google Scholar] [CrossRef]
- Kong, D.; Liu, H.; Wu, Y.; Li, B.; Wei, S.; Yuan, M. Effects of indoor humidity on building occupants’ thermal comfort and evidence in terms of climate adaptation. Build. Environ. 2019, 155, 298–307. [Google Scholar] [CrossRef]
- Li, Y. Perceptions of temperature, moisture and comfort in clothing during environmental transients. Ergonomics 2005, 48, 234–248. [Google Scholar] [CrossRef]
- Fan, J.; Tsang, H.W.K. Effect of Clothing Thermal Properties on the Thermal Comfort Sensation During Active Sports. Text. Res. J. 2008, 78, 111–118. [Google Scholar] [CrossRef]
- Uemae, M.; Uemae, T.; Kamijo, M. Psychological response to changes in temperature and humidity near the skin in the environments between thermo-neutral and hot. Int. J. Cloth. Sci. Technol. 2022, 34, 905–918. [Google Scholar] [CrossRef]
- Seppänen, O.; Kurnitski, J. Moisture control and ventilation. In WHO Guidelines for Indoor Air Quality: Dampness and Mould; World Health Organization: Geneva, Switzerland, 2009; pp. 31–61. [Google Scholar]
- Strachan, D.P.; Sanders, C.H. Damp housing and childhood asthma; respiratory effects of indoor air temperature and relative humidity. J. Epidemiol. Community Health (1978) 1989, 43, 7–14. [Google Scholar] [CrossRef]
- Blay, K.; Agyekum, K.; Opoku, A. Actions, attitudes and beliefs of occupants in managing dampness in buildings. Int. J. Build. Pathol. Adapt. 2019, 37, 42–53. [Google Scholar] [CrossRef]
- Gunnbjörnsdottir, M.; Norbäck, D.; Plaschke, P.; Norrman, E.; Björnsson, E.; Janson, C. The relationship between indicators of building dampness and respiratory health in young Swedish adults. Respir. Med. 2003, 97, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Engvall, K.; Norrby, C.; Norbäck, D. Asthma symptoms in relation to building dampness and odour in older multifamily houses in Stockholm. Int. J. Tuberc. Lung Dis. 2001, 5, 468–477. [Google Scholar] [PubMed]
- ESterling, M.; Arundel, A.; Sterling, T.D. Criteria for Human Exposure to Humidity in Occupied Buildings. ASHRAE Trans. 1985, 91, 611–622. [Google Scholar]
- ASHRAE Standard 55; Thermal Environmental Conditions for Human Occupancy. ASHRAE: Peachtree Corners, GA, USA, 2004.
- Li, C.; Liu, H.; Li, B.; Sheng, A. Seasonal effect of humidity on human comfort in a hot summer/cold winter zone in China. Indoor Built Environ. 2019, 28, 264–277. [Google Scholar] [CrossRef]
- Jokl, M.V. Thermal Comfort and Optimum Humidity. Acta Polytech. 2002, 42, 12–24. [Google Scholar]
Conventional Building; Male | Vernacular Building; Female | ||||
---|---|---|---|---|---|
T1 | 34.7 °C | T6 | 32.5 °C | T1 | 35.5 °C |
T2 | 34.4 °C | T7 | 32.4 °C | T2 | 34.6 °C |
T3 | 34.1 °C | T8 | 34.6 °C | T3 | 34.4 °C |
T4 | 32.7 °C | T9 | 34.0 °C | T4 | 34.0 °C |
T5 | 32.7 °C | T5 | 34.9 °C |
Instrument | T/RH dataloggers | Heat Stress Meter | Automatic Blood Pressure monitor | Thermal Imager | Thermometer |
Elitech RC-4HC | WBGT Meter | OMRON HEM-7120 | FLIR® C5 | SANITAS SFT 65 | |
Measurand | Indoor Air Temperature and RH | Indoor ambient temperature, RH, globe temperature | Pulse (Heart rate) and BP (blood pressure) of the occupants | Thermal (infrared) imagery of the occupants (IR range: 8~14 μm) | Skin temperature |
Accuracy | ±0.5 °C; ±3% (RH) | ±0.8 °C (Ta), ±5% (RH), ±0.6 °C (Tg) | ±3 mm Hg (BP), ±5% (Pulse) | ±3 °C | ±0.3 °C |
Building Typology | Gender | Mean Body Mass (kg) | Mean Height (m) | Computed DuBois Area (m2) |
---|---|---|---|---|
Vernacular | Female | 40.87 | 1.45 | 1.28 |
Male | 51.50 | 1.58 | 1.51 | |
Conventional | Female | 53.63 | 1.47 | 1.45 |
Male | 66.56 | 1.59 | 1.69 | |
All Participants | 51.32 | 1.51 | 1.45 |
Sl. No. | Segment | Vernacular | Conventional | ||||||
---|---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | ||||||
Rt | Re,t | Rt | Re,t | Rt | Re,t | Rt | Re,t | ||
1 | Left foot | 0.111 | 0.195 | 0.111 | 0.195 | 0.181 | 0.202 | 0.111 | 0.195 |
2 | Right foot | 0.111 | 0.195 | 0.111 | 0.195 | 0.181 | 0.202 | 0.111 | 0.195 |
3 | Left leg | 0.183 | 0.247 | 0.183 | 0.247 | 0.174 | 0.250 | 0.173 | 0.249 |
4 | Right Leg | 0.183 | 0.247 | 0.183 | 0.247 | 0.174 | 0.250 | 0.173 | 0.249 |
5 | Left Thigh | 0.197 | 0.248 | 0.197 | 0.248 | 0.189 | 0.250 | 0.188 | 0.249 |
6 | Right thigh | 0.197 | 0.248 | 0.197 | 0.248 | 0.189 | 0.250 | 0.188 | 0.249 |
7 | Pelvis | 0.210 | 0.298 | 0.210 | 0.298 | 0.201 | 0.300 | 0.201 | 0.299 |
8 | Head | 0.129 | 0.277 | 0.129 | 0.277 | 0.130 | 0.277 | 0.130 | 0.277 |
9 | Left Hand | 0.121 | 0.243 | 0.121 | 0.242 | 0.122 | 0.243 | 0.122 | 0.243 |
10 | Right Hand | 0.121 | 0.243 | 0.121 | 0.242 | 0.122 | 0.243 | 0.122 | 0.243 |
11 | Left Arm | 0.116 | 0.269 | 0.116 | 0.269 | 0.184 | 0.276 | 0.116 | 0.270 |
12 | Right Arm | 0.116 | 0.269 | 0.116 | 0.269 | 0.184 | 0.276 | 0.116 | 0.270 |
13 | Left Shoulder | 0.201 | 0.350 | 0.199 | 0.346 | 0.191 | 0.350 | 0.190 | 0.349 |
14 | Right Shoulder | 0.201 | 0.350 | 0.199 | 0.346 | 0.191 | 0.350 | 0.190 | 0.349 |
15 | Back | 0.216 | 0.351 | 0.215 | 0.348 | 0.206 | 0.351 | 0.206 | 0.350 |
16 | Chest | 0.212 | 0.339 | 0.211 | 0.337 | 0.202 | 0.339 | 0.202 | 0.338 |
Season | Building Typology | Gender | Tsk − Tsk,n (°C) | Esk (W/m2) | Mean w (Unitless) | IaqSV | TSV |
---|---|---|---|---|---|---|---|
Summer | Conventional | Female | 1.45 | 19.06 | 0.11 | Neutral | Slightly warm |
Male | 1.99 | 20.77 | 0.12 | ||||
Vernacular | Female | 2.33 | 22.23 | 0.124 | Neutral | Neutral | |
Male | 2.34 | 22.26 | 0.125 | ||||
Monsoon | Conventional | Female | −0.15 | 13.58 | 0.1 | Moist | Hot |
Male | 0.35 | 14.94 | 0.1 | ||||
Vernacular | Female | −0.014 | 12.18 | 0.11 | Moist | Hot | |
Male | −0.002 | 12.22 | 0.11 | ||||
Winter | Conventional | Female | −5.42 | 8.69 | 0.06 | Dry | Cold |
Male | −4.86 | 9.13 | 0.06 | ||||
Vernacular | Female | −3.77 | 9.94 | 0.06 | Neutral | Cold | |
Male | −3.76 | 9.93 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priyadarshani, S.; Rao, R.R.; Mani, M.; Maskell, D. Examining Occupant-Comfort Responses to Indoor Humidity Ratio in Conventional and Vernacular Dwellings: A Rural Indian Case Study. Energies 2023, 16, 6843. https://doi.org/10.3390/en16196843
Priyadarshani S, Rao RR, Mani M, Maskell D. Examining Occupant-Comfort Responses to Indoor Humidity Ratio in Conventional and Vernacular Dwellings: A Rural Indian Case Study. Energies. 2023; 16(19):6843. https://doi.org/10.3390/en16196843
Chicago/Turabian StylePriyadarshani, Suchi, Roshan R. Rao, Monto Mani, and Daniel Maskell. 2023. "Examining Occupant-Comfort Responses to Indoor Humidity Ratio in Conventional and Vernacular Dwellings: A Rural Indian Case Study" Energies 16, no. 19: 6843. https://doi.org/10.3390/en16196843
APA StylePriyadarshani, S., Rao, R. R., Mani, M., & Maskell, D. (2023). Examining Occupant-Comfort Responses to Indoor Humidity Ratio in Conventional and Vernacular Dwellings: A Rural Indian Case Study. Energies, 16(19), 6843. https://doi.org/10.3390/en16196843