Review of Electric Vehicle Testing Procedures for Digital Twin Development: A Comprehensive Analysis
Abstract
:1. Introduction
2. DT Technology: Fundamentals and Evolution
- The DT represents the physical object, system, or process. In the automotive context, this could be a vehicle, its propulsion drive system, or specific components like the engine and transmission.
- The virtual model is the digital representation of the physical entity. It includes geometry, attributes, behavior, and interactions. The accuracy and fidelity of the virtual model are critical for achieving meaningful insights.
- DTs rely on data collected from sensors embedded within the physical entity. These sensors monitor temperature, pressure, vibration, and performance metrics.
- The DT and the physical entity are connected through data networks, enabling real-time data exchange and communication.
- Advanced analytics, machine learning algorithms, and simulations process sensor data and model interactions within the virtual counterpart.
- Visualization tools visually represent the DT’s behavior, making complex data understandable to users.
3. Propulsion Drive Systems in the Automotive Sector
- Energy Consumption [52]: Energy consumption of propulsion systems directly impacts the vehicle’s range and operational costs. Electric propulsion systems tend to be more energy-efficient, contributing to longer electric vehicle ranges.
- Emissions [53]: For internal combustion engines, emissions play a crucial role in environmental impact. Efforts to reduce emissions while maintaining performance are central to propulsion system optimization.
- Reliability and Durability [54]: Propulsion systems must be reliable and durable, minimizing maintenance requirements and enhancing the vehicle’s lifespan.
4. Applications of DTs for Electric Propulsion Drive Systems: Pioneering Efficiency and Sustainability
4.1. Predictive Maintenance and Condition Monitoring
4.2. Performance Optimization and Virtual Testing
4.3. Energy Efficiency Enhancement and Emissions Reduction
5. Practical Implications of DTs for Automotive Advancement
6. Challenges and Future Directions
6.1. Exploration of Challenges in Implementing DTs for Propulsion Drive Systems
6.2. Discussion of Data Integration, Accuracy, Computational Demands, and Real-World Validation
6.3. Speculation on the Future of DT Technology in the Automotive Industry and Potential Advancements
- Advanced Machine Learning [101]: Integrating advanced machine learning algorithms within DTs can enhance their predictive capabilities. Real-time anomaly detection, fault prediction, and prescriptive maintenance recommendations can empower manufacturers to optimize vehicle performance.
- Holistic Ecosystem Integration [102]: Future DTs may encompass the entire vehicular ecosystem, extending beyond propulsion systems to include chassis, sensors, communication networks, and road infrastructure. This holistic approach could comprehensively understand vehicle behavior in diverse contexts.
- DT Interoperability [103]: The development of standards for DT interoperability could facilitate seamless collaboration and information exchange across various stakeholders in the automotive value chain. This could lead to improved decision-making, faster innovation cycles, and enhanced operational efficiency.
7. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. DT in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. DT: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Biesinger, F.; Weyrich, M. The Facets of DTs in Production and the Automotive Industry. In Proceedings of the 2019 23rd International Conference on Mechatronics Technology (ICMT), Salerno, Italy, 23–26 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Van Mierlo, J.; Berecibar, M.; El Baghdadi, M.; De Cauwer, C.; Messagie, M.; Coosemans, T.; Jacobs, V.A.; Hegazy, O. Beyond the State of the Art of Electric Vehicles: A Fact-Based Paper of the Current and Prospective Electric Vehicle Technologies. World Electr. Veh. J. 2021, 12, 20. [Google Scholar] [CrossRef]
- Martínez-Gutiérrez, A.; Díez-González, J.; Ferrero-Guillén, R.; Verde, P.; Álvarez, R.; Perez, H. DT for automatic transportation in industry 4.0. Sensors 2021, 21, 3344. [Google Scholar] [CrossRef] [PubMed]
- Frankó, A.; Vida, G.; Varga, P. Reliable identification schemes for asset and production tracking in industry 4.0. Sensors 2020, 20, 3709. [Google Scholar] [CrossRef] [PubMed]
- Stączek, P.; Pizoń, J.; Danilczuk, W.; Gola, A. A DT approach for the improvement of an autonomous mobile robots (AMR’s) operating environment—A case study. Sensors 2021, 21, 7830. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Liu, T.; Zhang, J.; Xiong, X.; Liu, F. DT 3D System for Power Maintenance Vehicles Based on UWB and Deep Learning. Electronics 2023, 12, 3151. [Google Scholar] [CrossRef]
- Rjabtsikov, V.; Ibrahim, M.; Rassolkin, A.; Vaimann, T.; Kallaste, A. EV-Powertrain Test Bench for DT Development. In Proceedings of the 2022 IEEE 20th International Power Electronics and Motion Control Conference (PEMC), Brasov, Romania, 25–28 September 2022; pp. 559–563. [Google Scholar] [CrossRef]
- Perabo, F.; Park, D.; Zadeh, M.K.; Smogeli, O.; Jamt, L. DT Modelling of Ship Power and Propulsion Systems: Application of the Open Simulation Platform (OSP). In Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, The Netherlands, 17–19 June 2020; Volume 2020, pp. 1265–1270. [Google Scholar] [CrossRef]
- Ruba, M.; Nemes, R.O.; Ciornei, S.M.; Martis, C.; Bouscayrol, A.; Hedesiu, H. DT real-time fpga implementation for light electric vehicle propulsion system using EMR organization. In Proceedings of the 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, 14–17 October 2019. [Google Scholar] [CrossRef]
- Rasheed, A.; San, O.; Kvamsdal, T. DT: Values, challenges and enablers from a modeling perspective. IEEE Access 2020, 8, 21980–22012. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F. DT and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison. IEEE Access 2018, 6, 3585–3593. [Google Scholar] [CrossRef]
- Barricelli, B.R.; Casiraghi, E.; Fogli, D. A survey on DT: Definitions, characteristics, applications, and design implications. IEEE Access 2019, 7, 167653–167671. [Google Scholar] [CrossRef]
- Glaessgen, E.H.; Stargel, D.S. The DT paradigm for future NASA and U.S. Air force vehicles. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hl, USA, 23–26 April 2012; pp. 1–14. [Google Scholar] [CrossRef]
- Jain, P.; Poon, J.; Singh, J.P.; Spanos, C.; Sanders, S.R.; Panda, S.K. A DT approach for fault diagnosis in distributed photovoltaic systems. IEEE Trans. Power Electron. 2020, 35, 940–956. [Google Scholar] [CrossRef]
- Milton, M.; De La, C.O.; Ginn, H.L.; Benigni, A. Controller-Embeddable Probabilistic Real-Time DTs for Power Electronic Converter Diagnostics. IEEE Trans. Power Electron. 2020, 35, 9850–9864. [Google Scholar] [CrossRef]
- Saad, A.; Faddel, S.; Youssef, T.; Mohammed, O.A. On the Implementation of IoT-Based DT for Networked Microgrids Resiliency against Cyber Attacks. IEEE Trans. Smart Grid 2020, 11, 5138–5150. [Google Scholar] [CrossRef]
- Sivalingam, K.; Sepulveda, M.; Spring, M.; Davies, P. A Review and Methodology Development for Remaining Useful Life Prediction of Offshore Fixed and Floating Wind turbine Power Converter with DT Technology Perspective. In Proceedings of the 2018 2nd International Conference on Green Energy and Applications (ICGEA), Singapore, 24–26 March 2018; pp. 197–204. [Google Scholar] [CrossRef]
- Zhou, M.; Yan, J.; Feng, D. DT and its application to power grid online analysis. CSEE J. Power Energy Syst. 2019, 5, 391–398. [Google Scholar] [CrossRef]
- Moutis, P.; Alizadeh-Mousavi, O. DT of Distribution Power Transformer for Real-Time Monitoring of Medium Voltage from Low Voltage Measurements. IEEE Trans. Power Deliv. 2020, 36, 1952–1963. [Google Scholar] [CrossRef]
- Biesinger, F.; Kraß, B.; Weyrich, M. A Survey on the Necessity for a DT of Production in the Automotive Industry. In Proceedings of the 2019 23rd International Conference on Mechatronics Technology (ICMT), Salerno, Italy, 23–26 October 2019. [Google Scholar] [CrossRef]
- Ibrahim, M.; Rjabtšikov, V.; Gilbert, R. Overview of DT Platforms for EV Applications. Sensors 2023, 23, 1414. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, J.; Xia, L.; Wang, S.; Zhang, H.; Zhao, R. DT system design for dual-manipulator cooperation unit. In Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 12–14 June 2020; pp. 1431–1434. [Google Scholar] [CrossRef]
- Li, L.; Qu, T.; Liu, Y.; Zhong, R.Y.; Xu, G.; Sun, H.; Gao, Y.; Lei, B.; Mao, C.; Pan, Y.; et al. Sustainability assessment of intelligent manufacturing supported by DT. IEEE Access 2020, 8, 174988–175008. [Google Scholar] [CrossRef]
- Botín-Sanabria, D.M.; Mihaita, S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; Ramírez-Mendoza, R.A.; Lozoya-Santos, J.d.J. DT Technology Challenges and Applications: A Comprehensive Review. Remote. Sens. 2022, 14, 1335. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Liu, Z.; Mrad, N.; Dong, H. Prognostics of Damage Growth in Composite Materials Using Machine Learning Techniques. In Proceedings of the 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada, 22–25 March 2017; pp. 1042–1047. [Google Scholar] [CrossRef]
- Bécue, A.; Maia, E.; Feeken, L.; Borchers, P.; Praça, I. A new concept of DT supporting optimization and resilience of factories of the future. Appl. Sci. 2020, 10, 4482. [Google Scholar] [CrossRef]
- Moyne, J.; Iskandar, J. Big data analytics for smart manufacturing: Case studies in semiconductor manufacturing. Processes 2017, 5, 39. [Google Scholar] [CrossRef]
- Short, M.; Twiddle, J. An industrial digitalization platform for condition monitoring and predictive maintenance of pumping equipment. Sensors 2019, 19, 3781. [Google Scholar] [CrossRef] [PubMed]
- Resman, M.; Protner, J.; Simic, M.; Herakovic, N. A five-step approach to planning data-driven DTs for discrete manufacturing systems. Appl. Sci. 2021, 11, 3639. [Google Scholar] [CrossRef]
- Liu, Z.S.; Meng, X.T.; Xing, Z.Z.; Cao, C.F.; Jiao, Y.Y.; Li, A.X. DT-Based Intelligent Safety Risks Prediction of Prefabricated Construction Hoisting. Sustainability 2022, 14, 5179. [Google Scholar] [CrossRef]
- Rathore, M.M.; Shah, S.A.; Shukla, D.; Bentafat, E.; Bakiras, S. The Role of AI, Machine Learning, and Big Data in DTning: A Systematic Literature Review, Challenges, and Opportunities. IEEE Access 2021, 9, 32030–32052. [Google Scholar] [CrossRef]
- Emmert-Streib, F. Defining a DT: A Data Science-Based Unification. Mach. Learn. Knowl. Extr. 2023, 5, 1036–1054. [Google Scholar] [CrossRef]
- van der Schans, M.; Yu, J.; Martin, G. Digital luminaire design using LED DTs—accuracy and reduced computation time: A Delphi4LED methodology. Energies 2020, 13, 4979. [Google Scholar] [CrossRef]
- Al-Ali, A.R.; Gupta, R.; Batool, T.Z.; Landolsi, T.; Aloul, F.; Al Nabulsi, A. DT conceptual model within the context of internet of things. Futur. Internet 2020, 12, 163. [Google Scholar] [CrossRef]
- Vlaeyen, M.; Haitjema, H.; Dewulf, W. DT of an optical measurement system. Sensors 2021, 21, 6638. [Google Scholar] [CrossRef]
- Rjabtsikov, V.; Rassolkin, A.; Asad, B.; Vaimann, T.; Kallaste, A.; Kuts, V.; Jegorov, S.; Stepien, M.; Krawczyk, M. DT Service Unit for AC Motor Stator Inter-Turn Short Circuit Fault Detection. In Proceedings of the 2021 28th International Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED), Moscow, Russia, 27–29 January 2021. [Google Scholar] [CrossRef]
- Nounou, K.; Charpentier, J.F.; Marouani, K.; Benbouzid, M.; Kheloui, A. Emulation of an Electric Naval Propulsion System Based on a Multiphase Machine under Healthy and Faulty Operating Conditions. IEEE Trans. Veh. Technol. 2018, 67, 6895–6905. [Google Scholar] [CrossRef]
- Kuts, V.; Rassõlkin, A.; Partyshev, A.; Jegorov, S.; Rjabtšikov, V. ROS middle-layer integration to Unity3D as an interface option for propulsion drive simulations of autonomous vehicles. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1140, 012008. [Google Scholar] [CrossRef]
- Windisch, T.; Hofmann, W. A novel approach to MTPA tracking control of AC drives in vehicle propulsion systems. IEEE Trans. Veh. Technol. 2018, 67, 9294–9302. [Google Scholar] [CrossRef]
- Cai, S.; Kirtley, J.L.; Lee, C.H.T. Critical Review of Direct-Drive Electrical Machine Systems for Electric and Hybrid Electric Vehicles. IEEE Trans. Energy Convers. 2022, 37, 2657–2668. [Google Scholar] [CrossRef]
- Li, S.; Lu, S.; Mi, C.C. Revolution of Electric Vehicle Charging Technologies Accelerated by Wide Bandgap Devices. Proc. IEEE 2021, 109, 985–1003. [Google Scholar] [CrossRef]
- Fathabadi, H. Plug-In Hybrid Electric Vehicles: Replacing Internal Combustion Engine with Clean and Renewable Energy Based Auxiliary Power Sources. IEEE Trans. Power Electron. 2018, 33, 9611–9618. [Google Scholar] [CrossRef]
- Ko, J.; Ko, S.; Son, H.; Yoo, B.; Cheon, J.; Kim, H. Development of brake system and regenerative braking cooperative control algorithm for automatic-transmission-based hybrid electric vehicles. IEEE Trans. Veh. Technol. 2015, 64, 431–440. [Google Scholar] [CrossRef]
- Deshpande, A.; Chen, Y.; Narayanasamy, B.; Yuan, Z.; Chen, C.; Luo, F. Design of a High-Efficiency, High Specific-Power Three-Level T-Type Power Electronics Building Block for Aircraft Electric-Propulsion Drives. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 407–416. [Google Scholar] [CrossRef]
- Aghabali, I.; Bauman, J.; Kollmeyer, P.J.; Wang, Y.; Bilgin, B.; Emadi, A. 800-V Electric Vehicle Powertrains: Review and Analysis of Benefits, Challenges, and Future Trends. IEEE Trans. Transp. Electrif. 2021, 7, 927–948. [Google Scholar] [CrossRef]
- Dai, X.; Quan, Q.; Ren, J.; Cai, K.Y. An analytical design-optimization method for electric propulsion systems of multicopter UAVs with desired hovering endurance. IEEE/ASME Trans. Mechatron. 2019, 24, 228–239. [Google Scholar] [CrossRef]
- Dai, X.; Quan, Q.; Ren, J.; Cai, K.Y. Efficiency optimization and component selection for propulsion systems of electric multicopters. IEEE Trans. Ind. Electron. 2019, 66, 7800–7809. [Google Scholar] [CrossRef]
- Tudor, D.; Paolone, M. Optimal Design of the Propulsion System of a Hyperloop Capsule. IEEE Trans. Transp. Electrif. 2019, 5, 1406–1418. [Google Scholar] [CrossRef]
- Park, G.J.; Kim, J.S.; Son, B.; Jung, S.Y. Optimal Design of PMa-synRM for an Electric Propulsion System Considering Wide Operation Range and Demagnetization. IEEE Trans. Appl. Supercond. 2018, 28, 1–4. [Google Scholar] [CrossRef]
- Verbruggen, F.; Salazar, M.; Pavone, M.; Hofman, T. Joint Design and Control of Electric Vehicle Propulsion Systems. In Proceedings of the 2020 European Control Conference (ECC), St. Petersburg, Russia, 12–15 May 2020; pp. 1725–1731. [Google Scholar] [CrossRef]
- Mira, J.D.; Mendoza, F.; Betancur, E.; Manrique, T.; Mejia-Gutierrez, R. A Propulsion System Design Methodology Based on Overall Efficiency Optimization for Electrically Powered Vessels. IEEE Trans. Transp. Electrification 2022, 8, 239–250. [Google Scholar] [CrossRef]
- Rjabtsikov, V.; Rassolkin, A.; Vaimann, T.; Kallaste, A.; Lukichev, D.V. Possibilities of Changing the Transport Characteristics of the TEP70 Locomotive. In Proceedings of the 2020 27th International Workshop on Electric Drives: MPEI Department of Electric Drives 90th Anniversary (IWED), Moscow, Russia, 27–30 January 2020; pp. 20–25. [Google Scholar] [CrossRef]
- Xu, L.; Huangfu, Y.; Ma, R.; Xie, R.; Song, Z.; Zhao, D.; Yang, Y.; Wang, Y.; Xu, L. A Comprehensive Review on Fuel Cell UAV Key Technologies: Propulsion System, Management Strategy, and Design Procedure. IEEE Trans. Transp. Electrif. 2022, 8, 4118–4139. [Google Scholar] [CrossRef]
- Traub, M.; Maier, A.; Barbehon, K.L. Future Automotive Architecture and the Impact of IT Trends. IEEE Softw. 2017, 34, 27–32. [Google Scholar] [CrossRef]
- Raja, H.A.; Kudelina, K.; Asad, B.; Vaimann, T.; Kallaste, A.; Rassõlkin, A.; Van Khang, H. Signal Spectrum-Based Machine Learning Approach for Fault Prediction and Maintenance of Electrical Machines. Energies 2022, 15, 9507. [Google Scholar] [CrossRef]
- Kudelina, K.; Asad, B.; Vaimann, T.; Rassõlkin, A.; Kallaste, A.; Van Khang, H. Methods of condition monitoring and fault detection for electrical machines. Energies 2021, 14, 7459. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, Y.; Liu, X.; Zheng, Y. A Digital-Twin-Assisted Fault Diagnosis Using Deep Transfer Learning. IEEE Access 2019, 7, 19990–19999. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, X.; Luo, J. Data-Model Combined Driven DT of Life-Cycle Rolling Bearing. IEEE Trans. Ind. Inform. 2022, 18, 1530–1540. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, D.; Jia, S.; Yang, L.; Yang, S. Incipient Interturn Short-Circuit Fault Diagnosis of Permanent Magnet Synchronous Motors Based on the Data-Driven DT Model. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 3514–3524. [Google Scholar] [CrossRef]
- Wileman, A.J.; Aslam, S.; Perinpanayagam, S. A Component Level DT Model for Power Converter Health Monitoring. IEEE Access 2023, 11, 54143–54164. [Google Scholar] [CrossRef]
- Yue, M.; Benaggoune, K.; Meng, J.; Diallo, D. Implementation of an early-stage fuel cell degradation prediction DT based on transfer learning. IEEE Trans. Transp. Electrif. 2022, 9, 3308–3318. [Google Scholar] [CrossRef]
- Li, Y.; Shen, X. A Novel Wind Speed-Sensing Methodology for Wind Turbines Based on DT Technology. IEEE Trans. Instrum. Meas. 2022, 71, 1–13. [Google Scholar] [CrossRef]
- Kudelina, K.; Vaimann, T.; Asad, B.; Rassõlkin, A.; Kallaste, A.; Demidova, G. Trends and Challenges in Intelligent Condition Monitoring of Electrical Machines Using Machine Learning. Appl. Sci. 2021, 11, 2761. [Google Scholar] [CrossRef]
- Kudelina, K.; Asad, B.; Vaimann, T.; Rassõlkin, A.; Kallaste, A. Production Quality Related Propagating Faults of Induction Machines. In Proceedings of the 2020 XI International Conference on Electrical Power Drive Systems (ICEPDS), St. Petersburg, Russia, 4–7 October 2020. [Google Scholar]
- Guerra, R.H.; Quiza, R.; Villalonga, A.; Arenas, J.; Castano, F. DT-Based Optimization for Ultraprecision Motion Systems with Backlash and Friction. IEEE Access 2019, 7, 93462–93472. [Google Scholar] [CrossRef]
- Rassolkin, A.; Rjabtsikov, V.; Vaimann, T.; Kallaste, A.; Kuts, V.; Partyshev, A. DT of an Electrical Motor Based on Empirical Performance Model. In Proceedings of the 2020 XI International Conference on Electrical Power Drive Systems (ICEPDS), St. Petersburg, Russia, 4–7 October 2020; pp. 21–24. [Google Scholar] [CrossRef]
- Toso, F.; Torchio, R.; Favato, A.; Carlet, P.G.; Bolognani, S.; Alotto, P. DTs as electric motor soft-sensors in the automotive industry. In Proceedings of the 2021 IEEE International Workshop on Metrology for Automotive (MetroAutomotive), Bologna, Italy, 1–2 July 2021; pp. 13–18. [Google Scholar] [CrossRef]
- Jones, G.; Frost, N.; Mosier, A. Introduction to Predictive Models for Motor Dielectric Aging. In Proceedings of the 2022 IEEE Electrical Insulation Conference (EIC), Knoxville, TN, USA, 19–23 June 2022; pp. 276–279. [Google Scholar] [CrossRef]
- Haber, R.; Strzelczak, S.; Miljkovic, Z.; Castano, F.; Fumagalli, L.; Petrovic, M. DT-based Optimization on the basis of Grey Wolf Method. A Case Study on Motion Control Systems. In Proceedings of the 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS), Tampere, Finland, 10–12 June 2020; pp. 469–474. [Google Scholar] [CrossRef]
- Wanasinghe, T.R.; Wroblewski, L.; Petersen, B.; Gosine, R.G.; James, L.A.; De Silva, O.; Mann, G.K.I.; Warrian, P.J. DT for the Oil and Gas Industry: Overview, Research Trends, Opportunities, and Challenges. IEEE Access 2020, 8, 104175–104197. [Google Scholar] [CrossRef]
- Almeaibed, S.; Al-Rubaye, S.; Tsourdos, A.; Avdelidis, N.P. DT Analysis to Promote Safety and Security in Autonomous Vehicles. IEEE Commun. Stand. Mag. 2021, 5, 40–46. [Google Scholar] [CrossRef]
- Agostinelli, S.; Cumo, F.; Guidi, G.; Tomazzoli, C. Cyber-physical systems improving building energy management: DT and artificial intelligence. Energies 2021, 14, 2338. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Sresakoolchai, J.; Ma, W.; Phil-Ebosie, O. DT aided vulnerability assessment and risk-based maintenance planning of bridge infrastructures exposed to extreme conditions. Sustainability 2021, 13, 2051. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F. A Smart Manufacturing Service System Based on Edge Computing, Fog Computing, and Cloud Computing. IEEE Access 2019, 7, 86769–86777. [Google Scholar] [CrossRef]
- Mylonas, G.; Kalogeras, A.; Kalogeras, G.; Anagnostopoulos, C.; Alexakos, C.; Munoz, L. DTs from Smart Manufacturing to Smart Cities: A Survey. IEEE Access 2021, 9, 143222–143249. [Google Scholar] [CrossRef]
- Qamsane, Y.; Moyne, J.; Toothman, M.; Kovalenko, I.; Balta, E.C.; Faris, J.; Tilbury, D.M.; Barton, K. A Methodology to Develop and Implement DT Solutions for Manufacturing Systems. IEEE Access 2021, 9, 44247–44265. [Google Scholar] [CrossRef]
- Kato, S.; Tokunaga, S.; Maruyama, Y.; Maeda, S.; Hirabayashi, M.; Kitsukawa, Y.; Monrroy, A.; Ando, T.; Fujii, Y.; Azumi, T. Autoware on Board: Enabling Autonomous Vehicles with Embedded Systems. In Proceedings of the 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), Porto, Portugal, 11–13 April 2018; pp. 287–296. [Google Scholar] [CrossRef]
- Reimers, J.; Dorn-Gomba, L.; Mak, C.; Emadi, A. Automotive Traction Inverters: Current Status and Future Trends. IEEE Trans. Veh. Technol. 2019, 68, 3337–3350. [Google Scholar] [CrossRef]
- Lim, C.W.J.; Le, K.Q.; Lu, Q.; Wong, C.H. An Overview of 3-D Printing in Manufacturing, Aerospace, and Automotive Industries. IEEE Potentials 2016, 35, 18–22. [Google Scholar] [CrossRef]
- Damjanovic-Behrendt, V. A DT-based Privacy Enhancement Mechanism for the Automotive Industry. In Proceedings of the 2018 International Conference on Intelligent Systems (IS), Funchal, Portugal, 25–27 September 2018. [Google Scholar]
- Tao, F.; Zhang, M. DT Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing. IEEE Access 2017, 61, 10. [Google Scholar]
- Wan, J.; Tang, S.; Li, D.; Wang, S.; Liu, C.; Abbas, H.; Vasilakos, A.V. A Manufacturing Big Data Solution for Active Preventive Maintenance. IEEE Trans. Ind. Informatics 2017, 13, 2039–2047. [Google Scholar] [CrossRef]
- Moyne, J.; Qamsane, Y.; Balta, E.C.; Kovalenko, I.; Faris, J.; Barton, K.; Tilbury, D.M. A Requirements Driven DT Framework: Specification and Opportunities. IEEE Access 2020, 8, 107781–107801. [Google Scholar] [CrossRef]
- Dimitrova, E.; Tomov, S. DTs: An Advanced technology for Railways Maintenance Transformation. In Proceedings of the 2021 13th Electrical Engineering Faculty Conference (BulEF), Varna, Bulgaria, 8–11 September 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Hu, Z.; Lou, S.; Xing, Y.; Wang, X.; Cao, D.; Lv, C. Review and Perspectives on Driver DT and Its Enabling Technologies for Intelligent Vehicles. IEEE Trans. Intell. Veh. 2022, 7, 417–440. [Google Scholar] [CrossRef]
- Liao, X.; Wang, Z.; Zhao, X.; Han, K.; Tiwari, P.; Barth, M.J.; Wu, G. Cooperative Ramp Merging Design and Field Implementation: A DT Approach Based on Vehicle-to-Cloud Communication. IEEE Trans. Intell. Transp. Syst. 2022, 23, 4490–4500. [Google Scholar] [CrossRef]
- Mihai, S.; Yaqoob, M.; Hung, D.V.; Davis, W.; Towakel, P.; Raza, M.; Karamanoglu, M.; Barn, B.; Shetve, D.; Prasad, R.V.; et al. DTs: A Survey on Enabling Technologies, Challenges, Trends and Future Prospects. IEEE Commun. Surv. Tutor. 2022, 24, 2255–2291. [Google Scholar] [CrossRef]
- Classens, K.; Heemels, W.P.M.H.M.; Oomen, T. DTs in mechatronics: From model-based control to predictive maintenance. In Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), Beijing, China, 15 July–15 August 2021; pp. 336–339. [Google Scholar] [CrossRef]
- Wenzheng, L.; Yifeng, Z. Concept, Key Technologies and Challenges of DT Riverbasin. In Proceedings of the 2022 IEEE 12th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 15–17 July 2022; pp. 117–122. [Google Scholar] [CrossRef]
- Michael, J.; Pfeiffer, J.; Rumpe, B.; Wortmann, A. Integration Challenges for DT Systems-of-Systems. In Proceedings of the 10th IEEE/ACM International Workshop on Software Engineering for Systems-of-Systems and Software Ecosystems, Lisbon, Portugal, 14–20 April 2022; pp. 9–12. [Google Scholar] [CrossRef]
- Pantovic, V.; Milovanovic, D.; Starcevic, D.; Bojkovic, Z. 5G mobile networks and DTs concept: Research challenges in network DT emulation. In Proceedings of the 2022 4th International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM), Mauritius, 22–24 November 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Kober, C.; Fette, M.; Wulfsberg, J.P. Challenges of DT Application in Manufacturing. In Proceedings of the 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Kuala Lumpur, Malaysia, 7–10 December 2022; pp. 162–168. [Google Scholar] [CrossRef]
- Del Campo, G.; Piovano, L.; Oostrom, F.P.L.; Saavedra, E.; Zissis, G.; Santamaria, A. DTs for Street Lighting: Challenges for a Virtual Reality solution based on Internet-of-Things Devices and Photometry Rendering. In Proceedings of the 2023 IEEE Sustainable Smart Lighting World Conference & Expo (LS18), Mumbai, India, 8–10 June 2023. [Google Scholar] [CrossRef]
- Ibrahim, M.; Raja, H.A.; Rassõlkin, A.; Vaimann, T.; Kallaste, A. An EV-Traction Inverter Data-Driven Modelling for DT Development. In Proceedings of the 2023 23rd International Scientific Conference on Electric Power Engineering (EPE), Brno, Czech Republic, 24–26 May 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Rjabtsikov, V.; Rjabtšikov, V.; Kuts, V.; Kudelina, K.; Vaimann, T.; Kallaste, A.; Partyshev, A. Parametric DT of autonomous electric vehicle transmission. J. Mach. Eng. 2021, 21, 131–140. [Google Scholar] [CrossRef]
- Kudelina, K.; Raja, H.A.; Autsou, S.; Asad, B.; Vaimann, T.; Rassolkin, A.; Kallaste, A. Preliminary Analysis of Global Parameters of Induction Machine for Fault Prediction in Rotor Bars. In Proceedings of the 2022 IEEE 20th International Power Electronics and Motion Control Conference (PEMC), Brasov, Romania, 25–28 September 2022; pp. 243–248. [Google Scholar] [CrossRef]
- Ibrahim, M.; Rjabtsikov, V.; Jegorov, S.; Rassolkin, A.; Vaimann, T.; Kallaste, A. Conceptual Modelling of an EV-Permanent Magnet Synchronous Motor DT. In Proceedings of the 2022 IEEE 20th International Power Electronics and Motion Control Conference (PEMC), Brasov, Romania, 25–28 September 2022; pp. 156–160. [Google Scholar] [CrossRef]
- Raja, H.A.; Vaimann, T.; Rassolkin, A.; Kallaste, A.; Belahcen, A. IoT Based Tools for Data Acquisition in Electrical Machines and Robotics. In Proceedings of the 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), Gliwice, Poland, 25–29 April 2021; pp. 737–742. [Google Scholar] [CrossRef]
- Jaensch, F.; Csiszar, A.; Scheifele, C.; Verl, A. DTs of Manufacturing Systems as a Base for Machine Learning. In Proceedings of the 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Stuttgart, Germany, 20–22 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Shen, X.; Gao, J.; Wu, W.; Li, M.; Zhou, C.; Zhuang, W. Holistic Network Virtualization and Pervasive Network Intelligence for 6G. IEEE Commun. Surv. Tutor. 2021, 24, 1–30. [Google Scholar] [CrossRef]
- Saifutdinov, F.; Jackson, I.; Tolujevs, J.; Zmanovska, T. DT as a Decision Support Tool for Airport Traffic Control. In Proceedings of the 2020 61st International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS), Riga, Latvia, 15–16 October 2020. [Google Scholar] [CrossRef]
- Rong, G.; Shin, B.H.; Tabatabaee, H.; Lu, Q.; Lemke, S.; Mozeiko, M.; Boise, E.; Uhm, G.; Gerow, M.; Mehta, S.; et al. LGSVL Simulator: A High Fidelity Simulator for Autonomous Driving. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020. [Google Scholar] [CrossRef]
- Yu, W.; Liu, Y.; Dillon, T.; Rahayu, W.; Mostafa, F. An Integrated Framework for Health State Monitoring in a Smart Factory Employing IoT and Big Data Techniques. IEEE Internet Things J. 2021, 9, 2443–2454. [Google Scholar] [CrossRef]
Description | |
---|---|
Strengths | Efficient Design and Development: DTs allow for rapid prototyping, testing, and iteration, reducing design time and cost. |
Performance Optimization: Real-time insights from DTs enable engineers to fine-tune propulsion systems for optimal efficiency and power delivery. | |
Predictive Maintenance: DTs can predict and prevent breakdowns by monitoring components’ health, reducing maintenance costs and vehicle downtime. | |
Data-Driven Decisions: Real-time data from DTs empower manufacturers to make informed decisions, from production to operations. | |
Improved Safety: Monitoring and analyzing real-time data can enhance vehicle safety, prevent accidents, and aid in designing safer vehicles. | |
Weaknesses | Data Integration: Gathering and integrating data from various sources and sensors into a coherent DT can be complex. |
Accuracy and Fidelity: The accuracy of the virtual model is crucial; any discrepancies between the DT and the physical entity can lead to misleading insights. | |
Privacy and Security: Handling sensitive vehicle data raises concerns about privacy and cybersecurity. | |
Computational Demands: Running real-time simulations and analytics within DTs requires significant computational resources. | |
Validation and Calibration: Ensuring that the DT accurately reflects real-world behavior can be challenging. | |
Opportunities | Broader Industry Application: The concept of DTs originated in aerospace and manufacturing, indicating potential applications beyond the automotive sector. |
Technological Advancements: Ongoing advances in computing power, data analytics, and connectivity can expand the capabilities of DT technology. | |
Innovation in Fault Diagnosis: Opportunities exist for developing advanced fault diagnosis techniques using DTs, enhancing system reliability and maintenance efficiency. | |
Threats | Complex Implementation: The complexities of integrating DTs into existing automotive processes and systems could slow down widespread adoption. |
Lack of Standardization: A lack of standardized approaches and frameworks for DT implementation could lead to compatibility issues and hinder collaboration. | |
Competitive Landscape: As DT adoption grows, competition among automotive companies and technology providers in implementing effective DT strategies could intensify. |
DT Method | Advantages | Shortcomings |
---|---|---|
Data-Driven DTs | - Utilizes real-world data for accurate modeling. | - Highly dependent on data availability and quality. |
- Suitable for predictive maintenance applications. | - May struggle to capture complex physical behaviors. | |
- Incorporates machine learning for pattern recognition. | - Lack of interpretability in black-box models. | |
- Enables anomaly detection and predictive analytics. | - Requires extensive computational resources. | |
Physics-Based DTs | - Offers a deep understanding of system dynamics. | - Relies on comprehensive and accurate physics models. |
- Suitable for complex simulations and virtual testing. | - Development and validation can be time-consuming. | |
- Provides transparency in modeling physical phenomena. | - Complexity can limit real-time capabilities. | |
- Supports optimization of system performance. | - May require specialized expertise for modeling. | |
Hybrid DTs | - Combines the strengths of data-driven and physics-based models. | - Integration can be complex and challenging. |
- Offers versatility and adaptability to different scenarios. | - Balancing model components may require effort. | |
- Enables accurate modeling using limited data. | - Development and maintenance can be resource-intensive. | |
- Suitable for complex systems with uncertain dynamics. | - Proper validation of hybrid models can be tricky. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rjabtšikov, V.; Rassõlkin, A.; Kudelina, K.; Kallaste, A.; Vaimann, T. Review of Electric Vehicle Testing Procedures for Digital Twin Development: A Comprehensive Analysis. Energies 2023, 16, 6952. https://doi.org/10.3390/en16196952
Rjabtšikov V, Rassõlkin A, Kudelina K, Kallaste A, Vaimann T. Review of Electric Vehicle Testing Procedures for Digital Twin Development: A Comprehensive Analysis. Energies. 2023; 16(19):6952. https://doi.org/10.3390/en16196952
Chicago/Turabian StyleRjabtšikov, Viktor, Anton Rassõlkin, Karolina Kudelina, Ants Kallaste, and Toomas Vaimann. 2023. "Review of Electric Vehicle Testing Procedures for Digital Twin Development: A Comprehensive Analysis" Energies 16, no. 19: 6952. https://doi.org/10.3390/en16196952
APA StyleRjabtšikov, V., Rassõlkin, A., Kudelina, K., Kallaste, A., & Vaimann, T. (2023). Review of Electric Vehicle Testing Procedures for Digital Twin Development: A Comprehensive Analysis. Energies, 16(19), 6952. https://doi.org/10.3390/en16196952