Two Steps for Improving Reduced Graphene Oxide/Activated Durian Shell Carbon Composite by Hydrothermal and 3-D Ball Milling Process for Symmetry Supercapacitor Device
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Preparing of Reduced Graphene Oxide
2.3. Preparation of Waste DC
2.4. Preparation of rGO/AC–HDC Materials
2.5. Preparation of Working Electrodes and Fabrication of SC Devices
2.6. Material Characterization
2.7. Electrochemical Measurements
3. Results and Discussion
3.1. XRD and Raman Spectroscopy
3.2. SEM and EDX Analysis
3.3. BET Analysis
3.4. XPS Analysis
3.5. FT-IR Analysis
3.6. Electrical Conductivity
3.7. Electrochemical Properties
3.8. Coin Cell Devices
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kötz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 2000, 45, 2483–2498. [Google Scholar] [CrossRef]
- Khandelwal, M.; Kumar, A. One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide for high performance supercapacitor applications. J. Mater. Chem. A 2015, 3, 22975–22988. [Google Scholar] [CrossRef]
- Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B.Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010, 10, 4863–4868. [Google Scholar] [CrossRef]
- Mahmood, N.; Zhang, C.; Yin, H.; Hou, Y. Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J. Mater. Chem. A 2014, 2, 15–32. [Google Scholar] [CrossRef]
- Mensah-Darkwa, K.; Zequine, C.; Kahol, P.K.; Gupta, R.K. Supercapacitor energy storage device using biowastes: A sustainable approach to green energy. Sustainability 2019, 11, 414. [Google Scholar] [CrossRef]
- Ogata, C.; Kurogi, R.; Awaya, K.; Hatakeyama, K.; Taniguchi, T.; Koinuma, M.; Matsumoto, Y. All-graphene oxide flexible solid-state supercapacitors with enhanced electrochemical performance. ACS Appl. Mater. Interfaces 2017, 9, 26151–26160. [Google Scholar] [CrossRef]
- Rasul, S.; Alazmi, A.; Jaouen, K.; Hedhili, M.N.; Costa, P. Rational design of reduced graphene oxide for superior performance of supercapacitor electrodes. Carbon 2017, 111, 774–781. [Google Scholar] [CrossRef]
- Wang, M.; Duong, L.D.; Mai, N.T.; Kim, S.; Kim, Y.; Seo, H.; Kim, Y.C.; Jang, W.; Lee, Y.; Suhr, J. All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method. ACS Appl. Mater. Interfaces 2015, 7, 1348–1354. [Google Scholar] [CrossRef]
- Teo, E.Y.L.; Muniandy, L.; Ng, E.-P.; Adam, F.; Mohamed, A.R.; Jose, R.; Chong, K.F. High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochim. Acta 2016, 192, 110–119. [Google Scholar] [CrossRef]
- Guo, Y.; Qi, J.; Jiang, Y.; Yang, S.; Wang, Z.; Xu, H. Performance of electrical double layer capacitors with porous carbons derived from rice husk. Mater. Chem. Phys. 2003, 80, 704–709. [Google Scholar] [CrossRef]
- Tey, J.P.; Careem, M.A.; Yarmo, M.A.; Arof, A.K. Durian shell-based activated carbon electrode for EDLCs. Ionics 2016, 22, 1209–1216. [Google Scholar] [CrossRef]
- Ukkakimapan, P.; Sattayarut, V.; Wanchaem, T.; Yordsri, V.; Phonyiem, M.; Ichikawa, S.; Obata, M.; Fujishige, M.; Takeuchi, K.; Wongwiriyapan, W.; et al. Preparation of activated carbon via acidic dehydration of durian husk for supercapacitor applications. Diam. Relat. Mater. 2020, 107, 107906. [Google Scholar] [CrossRef]
- Ong, L.K.; Kurniawan, A.; Suwandi, A.C.; Lin, C.X.; Zhao, X.S.; Ismadji, S. A facile and green preparation of durian shell-derived carbon electrodes for electrochemical double-layer capacitors. Prog. Nat. Sci. Mater. Int. 2012, 22, 624–630. [Google Scholar] [CrossRef]
- Bo, Z.; Shuai, X.; Mao, S.; Yang, H.; Qian, J.; Chen, J.; Yan, J.; Cen, K. Green preparation of reduced graphene oxide for sensing and energy storage applications. Sci. Rep. 2014, 4, 4684. [Google Scholar] [CrossRef]
- Rattanaveeranon, S.; Jiamwattanapong, K.; Jandee, N. Effect of Durian Peel Ash Added in Zinc Oxide/Reduced Graphene Oxide Composites Used as a Chemical Sensor for Hydrazine Detection. Mater. Sci. Appl. 2021, 12, 111–120. [Google Scholar] [CrossRef]
- Li, W.; Chen, C.; Wang, H.; Li, P.; Jiang, X.; Yang, J.; Liu, J. Hierarchical porous carbon induced by inherent structure of eggplant as sustainable electrode material for high performance supercapacitor. J. Mater. Res. Technol. 2022, 17, 1540–1552. [Google Scholar] [CrossRef]
- Basu, P.; Mahesh, R.; Harish, S.; Joseph, S.; Sagayaraj, P. One-pot hydrothermal preparation of Cu2O-CuO/rGO nanocomposites with enhanced electrochemical performance for supercapacitor applications. Appl. Surf. Sci. 2018, 449, 474–484. [Google Scholar] [CrossRef]
- Kotutha, I.; Duangchuen, T.; Swatsitang, E.; Meewasana, W.; Khajonrit, J.; Maensiri, S. Electrochemical properties of rGO/CoFe2O4 nanocomposites for energy storage application. Ionics 2019, 25, 5401–5409. [Google Scholar] [CrossRef]
- Lee, B.S.; Lee, Y.; Hwang, J.Y.; Choi, Y.C. Structural properties of reduced graphene oxides prepared using various reducing agents. Carbon Lett. 2015, 16, 255–259. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Elessawy, N.A.; Carrasco-Marín, F.; Hamad, H.A. A novel one-pot facile economic approach for the mass synthesis of exfoliated multilayered nitrogen-doped graphene-like nanosheets: New insights into the mechanistic study. Phys. Chem. Chem. Phys. 2019, 21, 13611–13622. [Google Scholar] [CrossRef]
- Phrompet, C.; Sriwong, C.; Ruttanapun, C. Mechanical, dielectric, thermal and antibacterial properties of reduced graphene oxide (rGO)-nanosized C3AH6 cement nanocomposites for smart cement-based materials. Compos. Part B Eng. 2019, 175, 107128. [Google Scholar] [CrossRef]
- Ramesh, A.; Jeyavelan, M.; Hudson, M.S.L. Electrochemical properties of reduced graphene oxide derived through camphor assisted combustion of graphite oxide. Dalton Trans. 2018, 47, 5406–5414. [Google Scholar] [CrossRef]
- Saleem, H.; Haneef, M.; Abbasi, H.Y. Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater. Chem. Phys. 2018, 204, 1–7. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.; Xu, C.; Sun, J.; Gao, L. Facile one-step hydrazine-assisted solvothermal synthesis of nitrogen-doped reduced graphene oxide: Reduction effect and mechanisms. RSC Adv. 2013, 3, 1194–1200. [Google Scholar] [CrossRef]
- Youn, H.C.; Bak, S.M.; Kim, M.S.; Jaye, C.; Fischer, D.A.; Lee, C.W.; Yang, X.Q.; Roh, K.C.; Kim, K.B. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors. ChemSusChem 2015, 8, 1875–1884. [Google Scholar] [CrossRef]
- Jha, P.K.; Singh, S.K.; Kumar, V.; Rana, S.; Kurungot, S.; Ballav, N. High-level supercapacitive performance of chemically reduced graphene oxide. Chem 2017, 3, 846–860. [Google Scholar] [CrossRef]
- Duangchuen, T.; Karaphun, A.; Wannasen, L.; Kotutha, I.; Swatsitang, E. Effect of SnS2 concentrations on electrochemical properties of SnS2/RGO nanocomposites synthesized by a one-pot hydrothermal method. Appl. Surf. Sci. 2019, 487, 634–646. [Google Scholar] [CrossRef]
- Xu, X.-l.; Yang, C.-j.; Yang, J.-h.; Huang, T.; Zhang, N.; Wang, Y.; Zhou, Z.-w. Excellent dielectric properties of poly (vinylidene fluoride) composites based on partially reduced graphene oxide. Compos. Part B Eng. 2017, 109, 91–100. [Google Scholar] [CrossRef]
- Abdelkader, A.M.; Karim, N.; Vallés, C.; Afroj, S.; Novoselov, K.S.; Yeates, S.G. Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2d Mater. 2017, 4, 035016. [Google Scholar] [CrossRef]
- Otari, S.V.; Kumar, M.; Anwar, M.Z.; Thorat, N.D.; Patel, S.K.; Lee, D.; Lee, J.H.; Lee, J.-K.; Kang, Y.C.; Zhang, L. Rapid synthesis and decoration of reduced graphene oxide with gold nanoparticles by thermostable peptides for memory device and photothermal applications. Sci. Rep. 2017, 7, 10980. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Wu, S.; Yin, X.; Wu, W. Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. Appl. Surf. Sci. 2019, 496, 143696. [Google Scholar] [CrossRef]
- Zou, J.; Xu, J.; Wu, H.; Li, Z.; Zhao, F.; Zeng, X.; Huang, J. In-situ heteroatoms self-doping carbon materials with hierarchical porosity derived from golden imperial chrysanthemum for symmetrical supercapacitor. J. Energy Storage 2022, 55, 105448. [Google Scholar] [CrossRef]
- Shrestha, D. Activated carbon and its hybrid composites with manganese (IV) oxide as effectual electrode materials for high performance supercapacitor. Arab. J. Chem. 2022, 15, 103946. [Google Scholar] [CrossRef]
Sample | Element | C/O Ratio | |||
---|---|---|---|---|---|
Carbon (C) | Oxygen (O) | Calcium (Ca) | Magnesium (Mg) | ||
rGO | 81.52 | 18.48 | - | - | 4.411 |
DC | 82.33 | 10.70 | 0.41 | 0.52 | 7.694 |
AC–HDC | 87.98 | 9.60 | 0.26 | 0.95 | 9.164 |
AC–HDC–3D15M | 82.29 | 12.49 | 0.85 | 1.28 | 6.588 |
AC–HDC–3D30M | 83.35 | 12.33 | 1.22 | 1.30 | 6.759 |
rGO/AC–HDC–3D15M | 83.74 | 11.70 | 0.76 | 1.44 | 7.157 |
Ref. | Material | Electrolytes | Specific Capacitance (F g−1) | Current Density (A g−1) or Scan Rate (mVs−1) | Energy Density (Wh/kg) | Power Density (kW/kg) | Cell (3E/2E) |
---|---|---|---|---|---|---|---|
[32] | Golden chrysanthemum | 6.0 M KOH | 165 F g−1 | 0.5 A g−1 | 25.3 Wh kg−1 | 225 W kg−1 | 2E |
[33] | Waste wood-dust | 6 M KOH | 300.1 F g−1 | 1 A g−1 | 16.3 Wh kg−1 | 148.2 W kg−1 | 3E |
[11] | Durian | Na2SO4 | 93.1 F g−1 | 50 mV s−1 | 11.3 Wh kg−1 | 170 kW kg−1 | 3E |
[11] | Durian | Organic electrolyte | Specific gravimetric 145 F g−1 | 0.1 A g−1 | 32 Wh kg−1 | 316 W kg−1 | 2E |
[33] | Heavy bio-oil | 6 M KOH | 259 F g−1 | 0.5 A g−1 | 12.95 Wh kg−1 | 12.95 W h kg−1 | 2E |
[33] | Coal tar pitch | 113.3 mA h g− 1 | 0.1 A g−1 | 64.9 Wh kg−1 | 1.23 kW kg−1 | 2E | |
[33] | Eggplant | 6 M KOH | 469 F g−1 | 1 A g−1 | 38.51 Wh kg−1 | 687.1 W kg−1 | 2E |
This work | rGO/durian (electrode) | 3 M KOH | 545.78 F g−1 | 0.5 A g−1 | 60.834 Wh kg−1 | 275.478 W kg−1 | 3E |
rGO/durian (coin cell) | 3 M KOH | 65.585 F g−1 | 0.25 A g−1 | 5.123 Wh kg−1 | 47.289 W kg−1 | 2E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngamjumrus, N.; Silakaew, K.; Thompho, S.; Sriwong, C.; Ruttanapun, C. Two Steps for Improving Reduced Graphene Oxide/Activated Durian Shell Carbon Composite by Hydrothermal and 3-D Ball Milling Process for Symmetry Supercapacitor Device. Energies 2023, 16, 6962. https://doi.org/10.3390/en16196962
Ngamjumrus N, Silakaew K, Thompho S, Sriwong C, Ruttanapun C. Two Steps for Improving Reduced Graphene Oxide/Activated Durian Shell Carbon Composite by Hydrothermal and 3-D Ball Milling Process for Symmetry Supercapacitor Device. Energies. 2023; 16(19):6962. https://doi.org/10.3390/en16196962
Chicago/Turabian StyleNgamjumrus, Nantikron, Kanyapak Silakaew, Somphob Thompho, Chaval Sriwong, and Chesta Ruttanapun. 2023. "Two Steps for Improving Reduced Graphene Oxide/Activated Durian Shell Carbon Composite by Hydrothermal and 3-D Ball Milling Process for Symmetry Supercapacitor Device" Energies 16, no. 19: 6962. https://doi.org/10.3390/en16196962
APA StyleNgamjumrus, N., Silakaew, K., Thompho, S., Sriwong, C., & Ruttanapun, C. (2023). Two Steps for Improving Reduced Graphene Oxide/Activated Durian Shell Carbon Composite by Hydrothermal and 3-D Ball Milling Process for Symmetry Supercapacitor Device. Energies, 16(19), 6962. https://doi.org/10.3390/en16196962