Maximizing Liquid Fuel Production from Reformed Biogas by Kinetic Studies and Optimization of Fischer–Tropsch Reactions
Abstract
:1. Introduction
2. Experimental Section
2.1. Catalyst Preparation
2.2. The Characterization Techniques
2.3. FTS Reaction
3. Mathematical Modelling
3.1. Model Assumptions
3.2. Kinetic Model
3.3. Assessment of Kinetic Parameters
4. Results and Discussion
4.1. Results of Experimental Studies
4.1.1. Catalyst Characterization
4.1.2. Effects of Variables on FTS
4.2. Results of Parametric Optimization and Kinetic Studies
4.2.1. Model Validation
4.2.2. Process Optimization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Ci | Concentration of component i | mol.cm−3 |
Ea | Activation energy | kJ/mol |
Fi | Molar flow rate of component i | mole/s |
kj | Rate constant of reaction j | mol/gcat·h·bar |
kj0 | Pre-exponential factor | mol/gcat·h·bar |
Mm | Average molecular weight | kg/mole |
nj, mj | Orders of reaction rate j | - |
Pt | Total pressure | bar |
Pi | Partial pressure of component i | bar |
R | Universal gas constant | 8.3145 J/mole. K |
rj | Rate of reaction j | mole/gm cat·h |
Si | Selectivity for component i mole | % |
si,j | Stoichiometric coefficient for the ith component participating in the jth reaction | |
T | Temperature | K |
w | Amount of catalyst in the reactor | Gm |
xi | mole fraction of component i in the liquid phase | - |
yi | mole fraction of component i in the gas phase | - |
Abbreviations | ||
FTS | Fischer–Tropsch Synthesis | |
GA | Genetic Algorithm | |
LHHW | Langmuir–Hinshelwood–Hougen–Watts | |
MARE | Mean absolute relative error | |
cat | Catalyst | |
com | Component | |
exp | Experimental value | |
H | Hydrogen |
References
- Pandey, U.; Runningen, A.; Gavrilović, L.; Jørgensen, E.A.; Putta, K.R.; Rout, K.R.; Rytter, E.; Blekkan, E.A.; Hillestad, M. Modeling Fischer–Tropsch kinetics and product distribution over a cobalt catalyst. AIChE J. 2021, 67, e17234. [Google Scholar] [CrossRef]
- Al-Zuhairi, F.K.; Azeez, R.A.; Mahdi, S.A. Synthesis of long-chain hydrocarbons from Syngas over promoted Co/SiO2 catalysts using Fischer–Tropsch reaction. AIP Conf. Proc. 2022, 2443, 030028. [Google Scholar]
- Steynberg, A. Introduction to fischer-tropsch technology. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2004; Volume 152, pp. 1–63. [Google Scholar]
- Van Santen, R.; Markvoort, A.; Filot, I.; Ghouri, M.; Hensen, E. Mechanism and microkinetics of the Fischer–Tropsch reaction. Phys. Chem. Chem. Phys. 2013, 15, 17038–17063. [Google Scholar] [CrossRef] [PubMed]
- Al-Zuhairi, F.; Micoli, L.; Florio, C.; Ausiello, A.; Turco, M.; Pirozzi, D.; Toscano, G. Anaerobic co-digestion of municipal solid wastes with giant reed under mesophilic conditions. J. Mater. Cycles Waste Manag. 2019, 21, 1332–1340. [Google Scholar] [CrossRef]
- Sukkar, K.A.; Al-Zuhairi, F.K.; Dawood, E.A. Evaluating the Influence of Temperature and Flow Rate on Biogas Production from Wood Waste via a Packed-Bed Bioreactor. Arab. J. Sci. Eng. 2021, 46, 6167–6175. [Google Scholar] [CrossRef]
- León, E.; Martín, M. Optimal production of power in a combined cycle from manure based biogas. Energy Convers. Manag. 2016, 114, 89–99. [Google Scholar] [CrossRef]
- Hernandez, B.; Martin, M. Optimization for biogas to chemicals via tri-reforming. Analysis of Fischer-Tropsch fuels from biogas. Energy Convers. Manag. 2018, 174, 998–1013. [Google Scholar] [CrossRef]
- Xie, J.; Paalanen, P.P.; van Deelen, T.W.; Weckhuysen, B.M.; Louwerse, M.J.; de Jong, K.P. Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas. Nat. Commun. 2019, 10, 167. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, K.; Kang, J.; Deng, W.; Wang, Y. Fischer–Tropsch catalysts for the production of hydrocarbon fuels with high selectivity. ChemSusChem 2014, 7, 1251–1264. [Google Scholar] [CrossRef]
- Moazami, N.; Mahmoudi, H.; Panahifar, P.; Rahbar, K.; Tsolakis, A.; Wyszynski, M.L. Mathematical modeling and performance study of Fischer-Tropsch synthesis of liquid fuel over cobalt-silica. Energy Procedia 2015, 75, 62–71. [Google Scholar] [CrossRef]
- Zhu, C.; Bollas, G.M. Gasoline selective Fischer-Tropsch synthesis in structured bifunctional catalysts. Appl. Catal. B Environ. 2018, 235, 92–102. [Google Scholar] [CrossRef]
- Pardo-Tarifa, F.; Cabrera, S.; Sanchez-Dominguez, M.; Boutonnet, M. Ce-promoted Co/Al2O3 catalysts for Fischer–Tropsch synthesis. Int. J. Hydrog. Energy 2017, 42, 9754–9765. [Google Scholar] [CrossRef]
- Moazami, N.; Wyszynski, M.L.; Rahbar, K.; Tsolakis, A.; Mahmoudi, H. A comprehensive study of kinetics mechanism of Fischer-Tropsch synthesis over cobalt-based catalyst. Chem. Eng. Sci. 2017, 171, 32–60. [Google Scholar] [CrossRef]
- Egiebor, N.; Ungar, K.; Wojciechowski, B. A classification of fischer–tropsch synthesis product distributions. Can. J. Chem. Eng. 1984, 62, 425–430. [Google Scholar] [CrossRef]
- Irani, M. Modeling of Fischer-Tropsch Synthesis Packed Bed Reactor for Producing Liquid Fuels from Natural Gas. Pet. Coal 2013, 55, 82–92. [Google Scholar]
- Moazami, N.; Mahmoudi, H.; Rahbar, K.; Panahifar, P.; Tsolakis, A.; Wyszynski, M.L. Catalytic performance of cobalt–silica catalyst for Fischer–Tropsch synthesis: Effects of reaction rates on efficiency of liquid synthesis. Chem. Eng. Sci. 2015, 134, 374–384. [Google Scholar] [CrossRef]
- Mosayebi, A.; Haghtalab, A. The comprehensive kinetic modeling of the Fischer–Tropsch synthesis over Co@ Ru/γ-Al2O3 core–shell structure catalyst. Chem. Eng. J. 2015, 259, 191–204. [Google Scholar] [CrossRef]
- Atashi, H.; Gholizadeh, J.; Tabrizi, F.F.; Tayebi, J. Modeling selectivity of ethylene and propylene in the Fischer-Tropsch synthesis with artificial neural network and response surface methodology. ChemistrySelect 2016, 1, 3271–3275. [Google Scholar] [CrossRef]
- Hatami, B.; Tavasoli, A.; Asghari, A.; Zamani, Y.; Zamaniyan, A. Kinetics Modeling of Fischer–Tropsch Synthesis on the Cobalt Catalyst Supported on Functionalized Carbon Nanotubes. Kinet. Catal. 2018, 59, 701–709. [Google Scholar] [CrossRef]
- Haghtalab, A.; Shariati, J.; Mosayebi, A. Experimental and kinetic modeling of Fischer–Tropsch synthesis over nano structure catalyst of Co–Ru/carbon nanotube. React. Kinet. Mech. Catal. 2019, 126, 1003–1026. [Google Scholar] [CrossRef]
- Zohdi-Fasaei, H.; Atashi, H.; Farshchi Tabrizi, F.; Mirzaei, A.A. Modeling and optimization of Fischer-Tropsch synthesis over Co-Mn-Ce/SiO2 catalyst using hybrid RSM/LHHW approaches. Energy 2017, 128, 496–508. [Google Scholar] [CrossRef]
- Barkalov, K.; Gubaydullin, I.; Kozinov, E.; Lebedev, I.; Faskhutdinova, R.; Faskhutdinov, A.; Enikeeva, L. On Solving the Problem of Finding Kinetic Parameters of Catalytic Isomerization of the Pentane-Hexane Fraction Using a Parallel Global Search Algorithm. Mathematics 2022, 10, 3665. [Google Scholar] [CrossRef]
- Nestler, F.; Müller, V.; Ouda, M.; Hadrich, M.; Schaadt, A.; Bajohr, S.; Kolb, T. A novel approach for kinetic measurements in exothermic fixed bed reactors: Advancements in non-isothermal bed conditions demonstrated for methanol synthesis. React. Chem. Eng. 2021, 6, 1092–1107. [Google Scholar] [CrossRef]
- Parsafard, N.; Garmroodi, A.; Mirzaei, S. Gas-phase catalytic isomerization of n-heptane using Pt/(CrOx/ZrO2)-HMS catalysts: A kinetic modeling. Int. J. Chem. Kinet. 2021, 53, 971–981. [Google Scholar] [CrossRef]
- Shakor, Z.M.; AbdulRazak, A.A.; Sukkar, K.A. A detailed reaction kinetic model of heavy naphtha reforming. Arab. J. Sci. Eng. 2020, 45, 7361–7370. [Google Scholar] [CrossRef]
- Shakor, Z.M.; Ramos, M.J.; AbdulRazak, A.A. A detailed reaction kinetic model of light naphtha isomerization on Pt/zeolite catalyst. J. King Saud. Univ. Eng. Sci. 2022, 34, 303–308. [Google Scholar] [CrossRef]
- Regali, F.; Boutonnet, M.; Järås, S. Hydrocracking of n-hexadecane on noble metal/silica–alumina catalysts. Catal. Today 2013, 214, 12–18. [Google Scholar] [CrossRef]
- Ancheyta-Juárez, J.; Villafuerte-Macías, E. Kinetic modeling of naphtha catalytic reforming reactions. Energy Fuels 2000, 14, 1032–1037. [Google Scholar] [CrossRef]
- Al-Shathr, A.; Shakor, Z.M.; Majdi, H.S.; AbdulRazak, A.A.; Albayati, T.M. Comparison between artificial neural network and rigorous mathematical model in simulation of industrial heavy naphtha reforming process. Catalysts 2021, 11, 1034. [Google Scholar] [CrossRef]
- Aammer, H.; Shakor, Z.M.; Al-Sheikh, F.; Al-Naimi, S.A.; Anderson, W.A. Simulation and Optimization of the Ethane Cracking Furnace Using ASPEN PLUS and MATLAB: A Case Study from Petrochemical Complexes. Combust. Sci. Technol. 2022, 195, 2634–2654. [Google Scholar] [CrossRef]
- Hájek, J.; Murzin, D.Y. Liquid-Phase Hydrogenation of Cinnamaldehyde over a Ru−Sn Sol−Gel Catalyst. 1. Evaluation of Mass Transfer via a Combined Experimental/Theoretical Approach. Ind. Eng. Chem. Res. 2004, 43, 2030–2038. [Google Scholar] [CrossRef]
- Khalaf, Y.H.; Al-Zaidi, B.Y.S.; Shakour, Z.M. Experimental and Kinetic Study of the Effect of using Zr-and Pt-loaded Metals on Y-zeolite-based Catalyst to Improve the Products of n-heptane Hydroisomerization Reactions. Orbital Electron. J. Chem. 2022, 14, 153–167. [Google Scholar] [CrossRef]
- Al-Shathr, A.; Shakor, Z.M.; Al-Zaidi, B.Y.; Majdi, H.S.; AbdulRazak, A.A.; Aal-Kaeb, S.; Shohib, A.A.; McGregor, J. Reaction Kinetics of Cinnamaldehyde Hydrogenation over Pt/SiO2: Comparison between Bulk and Intraparticle Diffusion Models. Int. J. Chem. Eng. 2022, 2022, 8303874. [Google Scholar] [CrossRef]
- Al-Karim, A.A.; Shakor, Z.M.; Al-Sheikh, F.; Anderson, W.A. Experimental and kinetic study of vacuum residue cracking over zirconium based catalysts. React. Kinet. Mech. Catal. 2022, 135, 847–865. [Google Scholar] [CrossRef]
- Khalaf, A.L.; Al-Zuhairi, F.K.; Kadhim, W.A.; Ab Rahim, M.H. The effects of cerium promoter on the performance of cobalt-based catalysts in fischer tropsch synthesis for liquid fuel production. IIUM Eng. J. 2020, 21, 1–11. [Google Scholar] [CrossRef]
- Gnanamani, M.K.; Jacobs, G.; Graham, U.M.; Pendyala, V.R.R.; Martinelli, M.; MacLennan, A.; Hu, Y.; Davis, B.H. Effect of sequence of P and Co addition over silica for Fischer-Tropsch synthesis. Appl. Catal. A Gen. 2017, 538, 190–198. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, C.; He, H.; Teraoka, Y. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl. Catal. B Environ. 2007, 75, 167–174. [Google Scholar] [CrossRef]
- Xiaoping, D.; Changchun, Y.; Ranjia, L.; Haibo, S.; Shikong, S. Role of CeO2 promoter in Co/SiO2 catalyst for Fischer-Tropsch synthesis. Chin. J. Catal. 2006, 27, 904–910. [Google Scholar]
- Eliseev, O.; Tsapkina, M.; Davydov, P.; Dzhukasheva, L.; Lapidus, A. Synthesis of hydrocarbons from carbon monoxide and hydrogen in the presence of cobalt catalysts promoted with cerium oxide. Solid Fuel Chem. 2017, 51, 166–169. [Google Scholar] [CrossRef]
- Mansouri, M.; Atashi, H.; Mirzaei, A.A.; Jangi, R. Kinetics of the Fischer-Tropsch synthesis on silica-supported cobalt-cerium catalyst. Int. J. Ind. Chem. 2013, 4, 1. [Google Scholar] [CrossRef]
- Mansouri, M.; Atashi, H.; Tabrizi, F.F.; Mansouri, G.; Setareshenas, N. Fischer–Tropsch synthesis on cobalt–manganese nanocatalyst: Studies on rate equations and operation conditions. Int. J. Ind. Chem. 2014, 5, 14. [Google Scholar] [CrossRef]
- Dry, M.E. Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Appl. Catal. A Gen. 1996, 138, 319–344. [Google Scholar] [CrossRef]
- Zolfaghari, Z.; Tavasoli, A.; Tabyar, S.; Pour, A.N. Enhancement of bimetallic Fe-Mn/CNTs nano catalyst activity and product selectivity using microemulsion technique. J. Energy Chem. 2014, 23, 57–65. [Google Scholar] [CrossRef]
- Pendyala, V.R.R.; Jacobs, G.; Bertaux, C.; Khalid, S.; Davis, B.H. Fischer–Tropsch synthesis: Effect of ammonia on supported cobalt catalysts. J. Catal. 2016, 337, 80–90. [Google Scholar] [CrossRef]
- Zhang, L.; Chu, H.; Qu, H.; Zhang, Q.; Xu, H.; Cao, J.; Tang, Z.; Xuan, J. An investigation of efficient microstructured reactor with monolith Co/anodic γ-Al2O3/Al catalyst in Fischer-Tropsch synthesis. Int. J. Hydrog. Energy 2018, 43, 3077–3086. [Google Scholar] [CrossRef]
- Akbarzadeh, O.; Mohd Zabidi, N.A.; Wang, G.; Kordijazi, A.; Sadabadi, H.; Moosavi, S.; Amani Babadi, A.; Hamizi, N.A.; Abdul Wahab, Y.; Ab Rahman, M. Effect of Pressure, H2/CO Ratio and Reduction Conditions on Co–Mn/CNT Bimetallic Catalyst Performance in Fischer–Tropsch Reaction. Symmetry 2020, 12, 698. [Google Scholar] [CrossRef]
- Tristantini, D.; Lögdberg, S.; Gevert, B.; Borg, Ø.; Holmen, A. The effect of synthesis gas composition on the Fischer–Tropsch synthesis over Co/γ-Al2O3 and Co–Re/γ-Al2O3 catalysts. Fuel Process. Technol. 2007, 88, 643–649. [Google Scholar] [CrossRef]
- Pant, K.K.; Upadhyayula, S. Detailed kinetics of Fischer Tropsch synthesis over Fe-Co bimetallic catalyst considering chain length dependent olefin desorption. Fuel 2019, 236, 1263–1272. [Google Scholar]
- Ghouri, M.M.; Afzal, S.; Hussain, R.; Blank, J.; Bukur, D.B.; Elbashir, N.O. Multi-scale modeling of fixed-bed Fischer Tropsch reactor. Comput. Chem. Eng. 2016, 91, 38–48. [Google Scholar] [CrossRef]
- Okeke, I.J.; Sahoo, K.; Kaliyan, N.; Mani, S. Life cycle assessment of renewable diesel production via anaerobic digestion and Fischer-Tropsch synthesis from miscanthus grown in strip-mined soils. J. Clean. Prod. 2020, 249, 119358. [Google Scholar] [CrossRef]
- Okeke, I.J.; Mani, S. Techno-economic assessment of biogas to liquid fuels conversion technology via Fischer-Tropsch synthesis. Biofuels Bioprod. Biorefining 2017, 11, 472–487. [Google Scholar] [CrossRef]
- Naqi, A.; Kuhn, J.N.; Joseph, B. Techno-economic analysis of producing liquid fuels from biomass via anaerobic digestion and thermochemical conversion. Biomass Bioenergy 2019, 130, 105395. [Google Scholar] [CrossRef]
- Tijmensen, M.J.; Faaij, A.P.; Hamelinck, C.N.; van Hardeveld, M.R. Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass Bioenergy 2002, 23, 129–152. [Google Scholar] [CrossRef]
- Swanson, R.M.; Platon, A.; Satrio, J.A.; Brown, R.C. Techno-economic analysis of biomass-to-liquids production based on gasification. Fuel 2010, 89, S11–S19. [Google Scholar] [CrossRef]
- Hamelinck, C.N.; Faaij, A.P.; den Uil, H.; Boerrigter, H. Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential. Energy 2004, 29, 1743–1771. [Google Scholar] [CrossRef]
- Kauffman, N.; Hayes, D.; Brown, R. A life cycle assessment of advanced biofuel production from a hectare of corn. Fuel 2011, 90, 3306–3314. [Google Scholar] [CrossRef]
- De Jong, S.; Antonissen, K.; Hoefnagels, R.; Lonza, L.; Wang, M.; Faaij, A.; Junginger, M. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production. Biotechnol. Biofuels 2017, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Dang, Q.; Yu, C.; Luo, Z. Environmental life cycle assessment of bio-fuel production via fast pyrolysis of corn stover and hydroprocessing. Fuel 2014, 131, 36–42. [Google Scholar] [CrossRef]
- Fortier, M.-O.P.; Roberts, G.W.; Stagg-Williams, S.M.; Sturm, B.S. Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae. Appl. Energy 2014, 122, 73–82. [Google Scholar] [CrossRef]
- Dry, M.E. Fischer-Tropsch synthesis over iron catalysts. Catal. Lett. 1990, 7, 241–251. [Google Scholar] [CrossRef]
- Rytter, E.; Tsakoumis, N.E.; Holmen, A. On the selectivity to higher hydrocarbons in Co-based Fischer–Tropsch synthesis. Catal. Today 2016, 261, 3–16. [Google Scholar] [CrossRef]
- Khodakov, A.Y. Fischer-Tropsch synthesis: Relations between structure of cobalt catalysts and their catalytic performance. Catal. Today 2009, 144, 251–257. [Google Scholar] [CrossRef]
- Borg, Ø.; Eri, S.; Blekkan, E.A.; Storsæter, S.; Wigum, H.; Rytter, E.; Holmen, A. Fischer–Tropsch synthesis over γ-alumina-supported cobalt catalysts: Effect of support variables. J. Catal. 2007, 248, 89–100. [Google Scholar] [CrossRef]
Reactions | Ej (kJ/mol) [15] | Ej (kJ/mol) [16] | Ej (kJ/mol) [11] | Ej (kJ/mol) [17] | Ej (kJ/mol) [14] |
---|---|---|---|---|---|
83.4239 | 15.693 | 83.5 | 99.79 | 101.15 | |
65.018 | 20.384 | 65.0 | 72.51 | 78.79 | |
49.782 | 15.607 | 49.8 | 48.51 | 59.95 | |
34.8855 | 16.406 | 34.9 | 31.03 | 33.73 | |
27.7289 | 86.934 | 27.7 | 27.59 | 23.04 | |
25.7301 | 81.753 | 25.7 | 10.14 | 17.83 | |
23.5643 | 73.878 | 23.6 | 12.44 | 21.25 | |
58.8263 | 55.329 | 58.8 | 10.00 | 50.24 |
Sample | BET SA (m2/g) | Pore Volume (cm3/g) | Pore Radius (nm) |
---|---|---|---|
SiO2 | 226 | 0.51 | 9 |
10Co/SiO2 | 205 | 0.43 | 8.6 |
1 Ce−10Co/SiO2 | 200 | 0.42 | 8.4 |
T (°C) | P (bar) | Sv (mL/gcat·h) | H2/CO | %XCO | Experimental Products Selectivity (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CH₄ | C2H₄ | C2H6 | C₃H6 | n-C₄H10 | i-C₄H10 | CO2 | C5+ | |||||
200 | 5 | 1000 | 0.5 | 14.9 | 4.368 | 1.176 | 2.150 | 1.428 | 1.176 | 1.680 | 1.600 | 86.422 |
210 | 5 | 1000 | 0.5 | 17.3 | 6.954 | 1.464 | 2.342 | 1.556 | 1.281 | 1.830 | 1.900 | 82.673 |
220 | 5 | 1000 | 0.5 | 21.6 | 9.405 | 1.672 | 3.093 | 1.672 | 1.463 | 1.881 | 2.300 | 78.514 |
230 | 5 | 1000 | 0.5 | 24.8 | 13.108 | 2.192 | 3.390 | 1.808 | 1.582 | 2.034 | 2.500 | 73.386 |
240 | 5 | 1000 | 0.5 | 27.9 | 17.850 | 2.627 | 3.290 | 1.785 | 1.658 | 2.066 | 2.800 | 67.926 |
200 | 5 | 1000 | 0.5 | 14.9 | 4.368 | 1.176 | 2.150 | 1.428 | 1.176 | 1.680 | 1.600 | 86.422 |
200 | 10 | 1000 | 0.5 | 23.4 | 5.170 | 1.368 | 1.728 | 1.224 | 0.994 | 1.570 | 1.468 | 86.479 |
200 | 15 | 1000 | 0.5 | 27.5 | 5.480 | 1.507 | 1.384 | 1.165 | 0.959 | 1.370 | 1.410 | 86.726 |
200 | 20 | 1000 | 0.5 | 29.9 | 5.000 | 1.600 | 1.263 | 1.063 | 0.875 | 1.250 | 1.400 | 87.550 |
200 | 25 | 1000 | 0.5 | 36.3 | 4.720 | 1.510 | 1.192 | 1.003 | 0.826 | 1.180 | 1.300 | 88.269 |
200 | 25 | 1000 | 0.5 | 36.3 | 4.720 | 1.510 | 1.192 | 1.003 | 0.826 | 1.180 | 1.300 | 88.269 |
200 | 25 | 2000 | 0.5 | 33.5 | 5.000 | 1.600 | 1.263 | 1.063 | 0.875 | 1.125 | 1.700 | 87.375 |
200 | 25 | 3000 | 0.5 | 30.5 | 6.320 | 1.738 | 1.106 | 1.343 | 0.948 | 1.580 | 1.730 | 85.235 |
200 | 25 | 4000 | 0.5 | 26.6 | 6.960 | 1.740 | 1.131 | 0.870 | 0.957 | 1.740 | 1.735 | 84.867 |
200 | 25 | 5000 | 0.5 | 20.4 | 8.320 | 1.768 | 1.144 | 0.832 | 1.040 | 2.101 | 1.734 | 83.061 |
200 | 25 | 1000 | 0.5 | 36.3 | 4.720 | 1.510 | 1.192 | 1.003 | 0.826 | 1.180 | 1.300 | 88.269 |
200 | 25 | 1000 | 1 | 47.9 | 4.334 | 1.075 | 1.067 | 0.714 | 0.588 | 0.840 | 1.200 | 90.182 |
200 | 25 | 1000 | 2 | 52.8 | 3.973 | 0.986 | 1.001 | 0.655 | 0.539 | 0.778 | 1.200 | 90.869 |
200 | 25 | 1000 | 3 | 47.4 | 4.592 | 1.139 | 1.157 | 0.730 | 0.801 | 0.765 | 1.220 | 89.595 |
200 | 25 | 1000 | 4 | 43.2 | 5.108 | 1.267 | 1.287 | 0.842 | 0.693 | 0.990 | 1.230 | 88.583 |
T (°C) | P (bar) | Sv (mL/gcat·h) | H2/CO | %XCO | Predicted Products Selectivity (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CH₄ | C2H₄ | C2H6 | C₃H6 | n-C₄H10 | i-C₄H10 | CO2 | C5+ | |||||
200 | 5 | 1000 | 0.5 | 15.3 | 4.271 | 1.176 | 2.153 | 1.430 | 1.180 | 1.766 | 1.674 | 86.351 |
210 | 5 | 1000 | 0.5 | 18.1 | 6.434 | 1.462 | 2.318 | 1.547 | 1.281 | 1.811 | 1.900 | 83.247 |
220 | 5 | 1000 | 0.5 | 21.0 | 9.406 | 1.784 | 2.474 | 1.662 | 1.377 | 1.854 | 2.153 | 79.289 |
230 | 5 | 1000 | 0.5 | 23.8 | 13.309 | 2.130 | 2.620 | 1.777 | 1.468 | 1.901 | 2.454 | 74.340 |
240 | 5 | 1000 | 0.5 | 25.4 | 18.173 | 2.475 | 2.733 | 1.881 | 1.541 | 1.950 | 2.888 | 68.359 |
200 | 5 | 1000 | 0.5 | 15.3 | 4.271 | 1.176 | 2.153 | 1.430 | 1.180 | 1.766 | 1.674 | 86.351 |
200 | 10 | 1000 | 0.5 | 25.0 | 4.571 | 1.398 | 1.744 | 1.296 | 1.058 | 1.583 | 1.344 | 87.005 |
200 | 15 | 1000 | 0.5 | 25.1 | 4.750 | 1.507 | 1.461 | 1.146 | 0.941 | 1.374 | 1.421 | 87.399 |
200 | 20 | 1000 | 0.5 | 25.5 | 4.878 | 1.596 | 1.305 | 1.067 | 0.876 | 1.270 | 1.400 | 87.608 |
200 | 25 | 1000 | 0.5 | 25.7 | 4.980 | 1.667 | 1.192 | 1.003 | 0.827 | 1.180 | 1.367 | 87.785 |
200 | 25 | 2000 | 0.5 | 24.7 | 5.031 | 1.660 | 1.147 | 0.946 | 0.797 | 1.077 | 0.602 | 88.740 |
200 | 25 | 3000 | 0.5 | 24.2 | 5.049 | 1.655 | 1.130 | 0.926 | 0.785 | 1.044 | 0.343 | 89.069 |
200 | 25 | 4000 | 0.5 | 20.5 | 5.063 | 1.620 | 1.069 | 0.861 | 0.744 | 0.949 | 0.256 | 89.437 |
200 | 25 | 5000 | 0.5 | 17.2 | 5.069 | 1.602 | 1.043 | 0.833 | 0.725 | 0.910 | 0.212 | 89.606 |
200 | 25 | 1000 | 0.5 | 25.7 | 4.980 | 1.667 | 1.192 | 1.003 | 0.827 | 1.180 | 1.367 | 87.785 |
200 | 25 | 1000 | 1 | 49.7 | 4.884 | 1.458 | 1.143 | 0.870 | 0.756 | 0.969 | 1.039 | 88.882 |
200 | 25 | 1000 | 2 | 54.9 | 4.709 | 1.198 | 1.109 | 0.741 | 0.684 | 0.782 | 0.866 | 89.911 |
200 | 25 | 1000 | 3 | 47.6 | 4.592 | 1.092 | 1.157 | 0.730 | 0.684 | 0.765 | 0.928 | 90.051 |
Reaction No. | Ao (mol/gmcat.h) | E (kJ/mol) | nj | mj |
---|---|---|---|---|
1 | 148.889688 | 80.214 | 0.82 | 0.60 |
2 | 0.005413 | 60.424 | 0.25 | 0.08 |
3 | 0.002886 | 45.814 | 0.69 | 0.55 |
4 | 0.000147 | 32.495 | 0.16 | 0.13 |
5 | 0.000029 | 28.932 | 0.66 | 0.54 |
6 | 0.000012 | 27.871 | 0.09 | 0.42 |
7 | 0.000071 | 12.861 | 0.55 | 0.63 |
8 | 0.000125 | 37.850 | 0.13 | 0.22 |
Iteration No. | Temperature (°C) | Pressure (bar) | GHSV (mL/gcat·h) | H2/CO | C5+ Selectivity |
---|---|---|---|---|---|
1 | 203.62 | 9.96 | 2431.98 | 2.55 | 48.144 |
2 | 203.62 | 22.41 | 4679.28 | 1.08 | 48.144 |
3 | 239.85 | 22.41 | 4679.28 | 2.83 | 48.144 |
4 | 203.62 | 22.41 | 4679.28 | 1.08 | 48.144 |
5 | 239.17 | 17.00 | 2720.28 | 1.82 | 56.916 |
9 | 203.62 | 16.83 | 4648.61 | 1.82 | 57.596 |
13 | 201.92 | 22.31 | 4648.61 | 1.52 | 60.792 |
16 | 227.56 | 17.61 | 3854.65 | 2.89 | 61.268 |
18 | 201.92 | 13.98 | 1626.90 | 2.55 | 77.112 |
20 | 204.16 | 22.41 | 1914.13 | 3.89 | 80.784 |
28 | 211.32 | 6.59 | 1914.13 | 3.41 | 81.396 |
41 | 206.51 | 6.59 | 1798.41 | 3.41 | 81.464 |
57 | 202.50 | 18.79 | 4808.26 | 3.70 | 82.28 |
59 | 202.50 | 22.82 | 1171.16 | 3.70 | 82.348 |
94 | 201.00 | 13.84 | 1023.51 | 3.84 | 88.264 |
100 | 202.91 | 15.11 | 3885.25 | 3.85 | 88.672 |
120 | 216.15 | 5.20 | 1023.51 | 3.85 | 89.284 |
124 | 237.44 | 6.10 | 1067.01 | 3.66 | 89.556 |
240 | 200.65 | 6.21 | 1638.91 | 3.81 | 89.692 |
286 | 200.11 | 15.96 | 1012.16 | 2.78 | 91.12 |
446 | 200.11 | 6.21 | 3206.02 | 3.06 | 91.188 |
851 | 200.09 | 6.21 | 1513.96 | 3.90 | 91.188 |
852 | 230.41 | 6.21 | 1513.96 | 3.70 | 91.46 |
1000 | 200.09 | 6.29 | 1529.58 | 3.96 | 91.664 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Zuhairi, F.K.; Shakor, Z.M.; Hamawand, I. Maximizing Liquid Fuel Production from Reformed Biogas by Kinetic Studies and Optimization of Fischer–Tropsch Reactions. Energies 2023, 16, 7009. https://doi.org/10.3390/en16197009
Al-Zuhairi FK, Shakor ZM, Hamawand I. Maximizing Liquid Fuel Production from Reformed Biogas by Kinetic Studies and Optimization of Fischer–Tropsch Reactions. Energies. 2023; 16(19):7009. https://doi.org/10.3390/en16197009
Chicago/Turabian StyleAl-Zuhairi, Firas K., Zaidoon M. Shakor, and Ihsan Hamawand. 2023. "Maximizing Liquid Fuel Production from Reformed Biogas by Kinetic Studies and Optimization of Fischer–Tropsch Reactions" Energies 16, no. 19: 7009. https://doi.org/10.3390/en16197009
APA StyleAl-Zuhairi, F. K., Shakor, Z. M., & Hamawand, I. (2023). Maximizing Liquid Fuel Production from Reformed Biogas by Kinetic Studies and Optimization of Fischer–Tropsch Reactions. Energies, 16(19), 7009. https://doi.org/10.3390/en16197009