A CFD Study of Vortex-Induced Motions of a Semi-Submersible Floating Offshore Wind Turbine
Abstract
:1. Introduction
2. Problem Description
2.1. Geometry Definition
2.2. Test Conditions
2.3. Data Analysis
3. Numerical Methods
3.1. Flow Model
3.2. Structural Model
3.3. Fluid-Structure Interaction
3.4. Validation Test
4. Computational Model
4.1. Computational Domain and Boundary Conditions
4.2. Mesh and Time-Step Size Sensitivity Tests
4.3. Mooring Stiffness Tests
5. Results and Discussion
5.1. Transverse Response
5.2. Inline Response
5.3. Motion Trajectory
5.4. Flow Field
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Xiao, Q.; Incecik, A.; Peyrard, C. Aeroelastic analysis of a floating offshore wind turbine in platform-induced surge motion using a fully coupled CFD-MBD method. Wind Energy 2019, 22, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xiao, Q.; Incecik, A.; Peyrard, C.; Wan, D. Establishing a fully coupled CFD analysis tool for floating offshore wind turbines. Renew. Energy 2017, 112, 280–301. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; He, Y.-P.; Zhao, Y.-S.; Shao, Y.-L.; Han, Z.-L. Experimental and numerical studies on the low-frequency responses of a spar-type floating offshore wind turbine. Ocean Eng. 2021, 222, 108571. [Google Scholar] [CrossRef]
- Ward, J.C.; Goupee, A.J.; Viselli, A.M.; Dagher, H.J. Experimental investigation into the dynamic behavior of a floating offshore wind turbine stabilized via a suspended counterweight. Ocean Eng. 2021, 228, 108906. [Google Scholar] [CrossRef]
- Johlas, H.M.; Martínez-Tossas, L.A.; Churchfield, M.J.; Lackner, M.A.; Schmidt, D.P. Floating platform effects on power generation in spar and semisubmersible wind turbines. Wind Energy 2021, 24, 901–916. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Guo, Y.; Kang, S. Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions. Renew. Energy 2021, 163, 1849–1870. [Google Scholar] [CrossRef]
- Waals, O.J.; Phadke, A.C.; Bultema, S. Flow Induced Motions on Multi Column Floaters. In Proceedings of the ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, CA, USA, 10–15 June 2007; pp. 669–678. [Google Scholar]
- Tian, C.; Liu, M.; Xiao, L.; Wang, S.; Lu, H. Experimental study on flow-induced motions of TLP focusing on effects of appendages and mass ratio. Ocean Eng. 2020, 196, 106749. [Google Scholar] [CrossRef]
- Gonçalves, R.T.; Rosetti, G.F.; Fujarra, A.L.C.; Oliveira, A.C. Experimental study on vortex-induced motions of a semi-submersible platform with four square columns, Part I: Effects of current incidence angle and hull appendages. Ocean Eng. 2012, 54, 150–169. [Google Scholar] [CrossRef]
- Gonçalves, R.T.; Rosetti, G.F.; Fujarra, A.L.C.; Oliveira, A.C. Experimental study on vortex-induced motions of a semi-submersible platform with four square columns, Part II: Effects of surface waves, external damping and draft condition. Ocean Eng. 2013, 62, 10–24. [Google Scholar] [CrossRef]
- Liu, M.; Xiao, L.; Lu, H.; Xiao, X. Experimental study on vortex-induced motions of a semi-submersible with square columns and pontoons at different draft conditions and current incidences. Int. J. Nav. Archit. Ocean Eng. 2017, 9, 326–338. [Google Scholar] [CrossRef]
- Kim, J.-W.; Magee, A.; Guan, K.Y.H. CFD Simulation of Flow-Induced Motions of a Multi-Column Floating Platform. In Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands, 19–24 June 2011; pp. 319–326. [Google Scholar]
- Chen, C.-R.; Chen, H.-C. Simulation of vortex-induced motions of a deep draft semi-submersible in current. Ocean Eng. 2016, 118, 107–116. [Google Scholar] [CrossRef]
- Liang, Y.; Tao, L. Interaction of vortex shedding processes on flow over a deep-draft semi-submersible. Ocean Eng. 2017, 141, 427–449. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Zou, L.; Wan, D.; Hu, Z. Numerical investigation of vortex-induced motions of a paired-column semi-submersible in currents. Ocean Eng. 2018, 164, 272–283. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Chen, H.-C. Investigation of mooring damping effects on vortex-induced motion of a deep draft semi-submersible by coupled CFD-FEM analysis. Ocean Eng. 2020, 210, 107418. [Google Scholar] [CrossRef]
- Robertson, A.; Jonkman, J.; Masciola, M.; Song, H.; Goupee, A.; Coulling, A.; Luan, C. Definition of the Semisubmersible Floating System for Phase II of OC4; National Renewable Energy Laboratory: Golden, CO, USA, 2014.
- Liu, Y.; Liu, F.; Wang, E.; Xiao, Q.; Li, L. The effect of base column on vortex-induced vibration of a circular cylinder with low aspect ratio. Ocean Eng. 2020, 196, 106822. [Google Scholar] [CrossRef]
- Coulling, A.J.; Goupee, A.J.; Robertson, A.N.; Jonkman, J.M.; Dagher, H.J. Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data. J. Renew. Sustain. Energy 2013, 5, 023116. [Google Scholar] [CrossRef]
- Strelets, M. Detached eddy simulation of massively separated flows. In Proceedings of the 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2001. [Google Scholar]
- Gritskevich, M.S.; Garbaruk, A.V.; Menter, F.R. A Comprehensive Study of Improved Delayed Detached Eddy Simulation with Wall Functions. Flow Turbul. Combust. 2017, 98, 461–479. [Google Scholar] [CrossRef]
- Wu, X.; Jafari, M.; Sarkar, P.; Sharma, A. Verification of DES for flow over rigidly and elastically-mounted circular cylinders in normal and yawed flow. J. Fluids Struct. 2020, 94, 102895. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, X.; Song, X.; You, Y. Numerical studies on vortex-induced motions of a multi-column deep-draft oil and gas exploration platform. Ocean Eng. 2017, 145, 77–94. [Google Scholar] [CrossRef]
- Menter, F.R.; Kuntz, M.; Langtry, R. Ten years of industrial experience with the SST turbulence model. In Proceedings of the 4th International Symposium on Turbulence Heat and Mass Transfer, Antalya, Turkey, 12–17 October 2003; pp. 625–632. [Google Scholar]
- Newmark, N.M. A method of computation for structural dynamics. J. Eng. Mech. Div. 1959, 85, 67–94. [Google Scholar] [CrossRef]
- Gonçalves, R.T.; Hannes, N.H.; Chame, M.E.F.; Lopes, P.P.S.P.; Hirabayashi, S.; Suzuki, H. FIM—flow-induced motions of four-column platforms. Appl. Ocean Res. 2020, 95, 102019. [Google Scholar] [CrossRef]
- Williamson, C.H.K.; Govardhan, R. VORTEX-INDUCED VIBRATIONS. Annu. Rev. Fluid Mech. 2004, 36, 413–455. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, F.; Xiao, Q.; Zhou, L. The effect of inclination on vortex-induced vibration of a circular cylinder with a base column. Ocean Eng. 2020, 206, 107332. [Google Scholar] [CrossRef]
- Govardhan, R.; Williamson, C.H.K. Modes of vortex formation and frequency response of a freely vibrating cylinder. J. Fluid Mech. 2000, 420, 85–130. [Google Scholar] [CrossRef]
- Tian, C.; Liu, M.; Xiao, L.; Lu, H.; Wang, J. Numerical studies on flow-induced motions of a semi-submersible with three circular columns. Int. J. Nav. Archit. Ocean Eng. 2021, 13, 599–616. [Google Scholar] [CrossRef]
Principal Parameters | Value |
---|---|
Diameter of upper part of side columns | 0.24 m |
Diameter of base of side columns | 0.48 m |
Diameter of middle column | 0.13 m |
Distance between side columns | 1 m |
Distance between middle column and side columns | 0.577 m |
Draft | 0.4 m |
Height of upper part of side column below still water level (SWL) | 0.28 m |
Height of base of side column | 0.12 m |
Mass (including wind turbine and tower) | 113.15 kg |
Inline spring stiffness | 32.24 N/m |
Transverse spring stiffness | 28.64 N/m |
Inline natural period | 15.13 s |
Transverse natural period | 15.84 s |
(m/s) | ||
---|---|---|
6 | 0.091 | 2.19 × 104 |
8 | 0.122 | 2.92 × 104 |
10 | 0.152 | 3.65 × 104 |
12 | 0.182 | 4.37 × 104 |
14 | 0.213 | 5.10 × 104 |
20 | 0.304 | 7.29 × 104 |
30 | 0.456 | 1.09 × 105 |
Mesh | Cell Count | |||||
---|---|---|---|---|---|---|
Coarse | 1.91 × 106 | 0.025 | 0.668 | 0.0675 | 0.646 | 1.229 |
Medium | 4.54 × 106 | 0.05 | 0.711 | 0.0796 | 0.825 | 1.135 |
0.025 | 0.716 | 0.0727 | 0.793 | 1.162 | ||
0.0125 | 0.706 | 0.0719 | 0.776 | 1.162 | ||
Fine | 9.31 × 106 | 0.025 | 0.705 | 0.0712 | 0.798 | 1.162 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ge, D.; Bai, X.; Li, L. A CFD Study of Vortex-Induced Motions of a Semi-Submersible Floating Offshore Wind Turbine. Energies 2023, 16, 698. https://doi.org/10.3390/en16020698
Liu Y, Ge D, Bai X, Li L. A CFD Study of Vortex-Induced Motions of a Semi-Submersible Floating Offshore Wind Turbine. Energies. 2023; 16(2):698. https://doi.org/10.3390/en16020698
Chicago/Turabian StyleLiu, Yuanchuan, Dunjie Ge, Xinglan Bai, and Liang Li. 2023. "A CFD Study of Vortex-Induced Motions of a Semi-Submersible Floating Offshore Wind Turbine" Energies 16, no. 2: 698. https://doi.org/10.3390/en16020698
APA StyleLiu, Y., Ge, D., Bai, X., & Li, L. (2023). A CFD Study of Vortex-Induced Motions of a Semi-Submersible Floating Offshore Wind Turbine. Energies, 16(2), 698. https://doi.org/10.3390/en16020698