Influence of Cr Doping on Structural, Optical, and Photovoltaic Properties of BiFeO3 Synthesized by Sol-Gel Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Solar Cell Fabrication
2.3. Characterization
3. Results and Discussion
3.1. Thermal Analysis
3.2. X-Ray Diffraction
3.3. UV-Visible Spectroscopy
3.4. FTIR Spectroscopy
3.5. Scanning Electron Microscopy
3.6. Solar Cell Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kåberger, T. Progress of renewable electricity replacing fossil fuels. Glob. Energy Interconnect. 2018, 1, 48–52. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Koh, S.; Reaney, I.M.; Acquaye, A.; Schileo, G.; Mustapha, K.B.; Greenough, R. Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew. Sustain. Energy Rev. 2017, 80, 1321–1344. [Google Scholar] [CrossRef]
- Li, P.-F.; Tang, Y.-Y.; Liao, W.-Q.; Ye, H.-Y.; Zhang, Y.; Fu, D.-W.; You, Y.-M.; Xiong, R.-G. A semiconducting molecular ferroelectric with a bandgap much lower than that of BiFeO3. NPG Asia Mater. 2017, 9, e342. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Xin, Y.; Huang, W.; Zhang, J.; Wang, X.; Shen, M.; Dong, W.; Fang, L.; Bai, Y.; Shen, X.; et al. Above 1% efficiency of a ferroelectric solar cell based on the Pb(Zr,Ti)O3 film. J. Mater. Chem. A 2014, 2, 1363–1368. [Google Scholar] [CrossRef]
- Mocherla, P.S.V.; Karthik, C.; Ubic, R.; Ramachandra Rao, M.S.; Sudakar, C. Tunable bandgap in BiFeO3 nanoparticles: The role of microstrain and oxygen defects. Appl. Phys. Lett. 2013, 103, 22910. [Google Scholar] [CrossRef]
- Li, J.; Sha, N.; Zhao, Z. Effect of annealing atmosphere on the ferroelectric properties of inkjet printed BiFeO3 thin films. Appl. Surf. Sci. 2018, 454, 233–238. [Google Scholar] [CrossRef]
- Djatoubai, E.; Khan, M.S.; ul Haq, S.; Guo, P.; Shen, S. BiFeO3 bandgap engineering by dopants and defects control for efficient photocatalytic water oxidation. Appl. Catal. A Gen. 2022, 643, 118737. [Google Scholar] [CrossRef]
- Renuka, H.; Joshna, P.; Venkataraman, B.H.; Ramaswamy, K.; Kundu, S. Understanding the efficacy of electron and hole transport layers in realizing efficient chromium doped BiFeO3 ferroelectric photovoltaic devices. Sol. Energy 2020, 207, 767–776. [Google Scholar] [CrossRef]
- Yan, T.-L.; Chen, B.; Liu, G.; Niu, R.-P.; Shang, J.; Gao, S.; Xue, W.-H.; Jin, J.; Yang, J.-R.; Li, R.-W. Improved photovoltaic effects in Mn-doped BiFeO3 ferroelectric thin films through band gap engineering. Chin. Phys. B 2017, 26, 67702. [Google Scholar] [CrossRef]
- Vishwakarma, A.K.; Tripathi, P.; Srivastava, A.; Sinha, A.; Srivastava, O.N. Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route. Int. J. Hydrogen Energy 2017, 42, 22677–22686. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, P.; Shi, T.; Shao, X. Nd-Cr co-doped BiFeO3 thin films for photovoltaic devices with enhanced photovoltaic performance. Thin Solid Film. 2020, 698, 137852. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, W.; Chan, Y.; Leung, C.; Mak, C.; Ploss, B. Studies of Rare-Earth-Doped BiFeO3 Ceramics. Int. J. Appl. Ceram. Technol. 2011, 8, 1246–1253. [Google Scholar] [CrossRef]
- Silva, J.; Reyes, A.; Esparza, H.; Camacho, H.; Fuentes, L. BiFeO3: A Review on Synthesis, Doping and Crystal Structure. Integr. Ferroelectr. 2011, 126, 47–59. [Google Scholar] [CrossRef]
- Yang, C.-H.; Seidel, J.; Kim, S.Y.; Rossen, P.B.; Yu, P.; Gajek, M.; Chu, Y.H.; Martin, L.W.; Holcomb, M.B.; He, Q.; et al. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 2009, 8, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Huang, B.; Li, L.; Li, X.; Gu, Y.; Hu, W.; Zhang, Z. The effects of Eu3+ doping on the epitaxial growth and photovoltaic properties of BiFeO3 thin films. J. Mater. Sci. Technol. 2022, 106, 49–55. [Google Scholar] [CrossRef]
- Yang, T.; Wei, J.; Sun, Z.; Li, Y.; Liu, Z.; Xu, Y.; Chen, G.; Wang, T.; Sun, H.; Cheng, Z. Design of oxygen vacancy in BiFeO3-based films for higher photovoltaic performance. Appl. Surf. Sci. 2022, 575, 151713. [Google Scholar] [CrossRef]
- Tablero, C. An evaluation of BiFeO3 as a photovoltaic material. Sol. Energy Mater. Sol. Cells 2017, 171, 161–165. [Google Scholar] [CrossRef]
- Gopal Khan, G.; Das, R.; Mukherjee, N.; Mandal, K. Effect of metal doping on highly efficient photovoltaics and switchable photovoltage in bismuth ferrite nanotubes. Phys. Status Solidi RRL 2012, 6, 312–314. [Google Scholar] [CrossRef]
- Ahmad, T.; Jindal, K.; Tomar, M.; Jha, P.K.; Gupta, V. Role of charge states and dopant site in governing electronic properties of Cr doped BiFeO3. Mater. Chem. Phys. 2021, 263, 124438. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, S.S.; Kim, W.-J. Sol–gel synthesis and properties of multiferroic BiFeO3. Mater. Lett. 2005, 59, 4006–4009. [Google Scholar] [CrossRef]
- Khakhomov, S.A.; Gaishun, V.E.; Kovalenko, D.L.; Semchenko, A.V.; Sidsky, V.V.; Strek, W.; Hreniak, D.; Lukowiak, A.; Kovalchuk, N.S.; Pyatlitski, A.N.; et al. Synthesis of BiFeO3-Powders by Sol-Gel Process. In Recent Advances in Technology Research and Education; Laukaitis, G., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 43–48. ISBN 978-3-319-99833-6. [Google Scholar]
- Wang, Y.; Jiang, Q.; He, H.; Nan, C.-W. Multiferroic BiFeO3 thin films prepared via a simple sol-gel method. Appl. Phys. Lett. 2006, 88, 142503. [Google Scholar] [CrossRef]
- Majid, F.; Mirza, S.T.; Riaz, S.; Naseem, S. Sol-Gel Synthesis of BiFeO3 Nanoparticles. Mater. Today Proc. 2015, 2, 5293–5297. [Google Scholar] [CrossRef]
- Niu, F.; Gao, T.; Zhang, N.; Chen, Z.; Huang, Q.; Qin, L.; Sun, X.; Huang, Y. Hydrothermal Synthesis of BiFeO3 Nanoparticles for Visible Light Photocatalytic Applications. J. Nanosci. Nanotechnol. 2015, 15, 9693–9698. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, R.; Chakravarty, D.; Bhattacharya, D.; Sen, A. Spark plasma sintering of BiFeO3. Mater. Res. Bull. 2009, 44, 555–559. [Google Scholar] [CrossRef]
- Han, H.; Lee, J.H.; Jang, H.M. Low-Temperature Solid-State Synthesis of High-Purity BiFeO3 Ceramic for Ferroic Thin-Film Deposition. Inorg. Chem. 2017, 56, 11911–11916. [Google Scholar] [CrossRef]
- Ferri, E.A.V.; Santos, I.A.; Radovanovic, E.; Bonzanini, R.; Girotto, E.M. Chemical characterization of BiFeO3 obtained by Pechini method. J. Braz. Chem. Soc. 2008, 19, 1153–1157. [Google Scholar] [CrossRef] [Green Version]
- Yotburut, B.; Yamwong, T.; Thongbai, P.; Maensiri, S. Synthesis and characterization of coprecipitation-prepared La-doped BiFeO3 nanopowders and their bulk dielectric properties. Jpn. J. Appl. Phys. 2014, 53, 06JG13. [Google Scholar] [CrossRef]
- Varma, A.; Mukasyan, A.S.; Rogachev, A.S.; Manukyan, K.V. Solution Combustion Synthesis of Nanoscale Materials. Chem. Rev. 2016, 116, 14493–14586. [Google Scholar] [CrossRef]
- Wang, J.; Wei, Y.; Zhang, J.; Ji, L.; Huang, Y.; Chen, Z. Synthesis of pure-phase BiFeO3 nanopowder by nitric acid-assisted gel. Mater. Lett. 2014, 124, 242–244. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, V.; Kotnala, R.K.; Dwivedi, R.K. Comparative studies of pure BiFeO3 prepared by sol–gel versus conventional solid-state-reaction method. J. Mater. Sci. Mater. Electron. 2014, 25, 1915–1921. [Google Scholar] [CrossRef]
- Layek, S.; Saha, S.; Verma, H.C. Preparation, structural and magnetic studies on BiFe 1-x Cr x O 3 (x = 0.0, 0.05 and 0.1) multiferroic nanoparticles. AIP Adv. 2013, 3, 32140. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.K.; Bhushan, B.; Jagannath; Sharma, R.K.; Sen, S.; Mandal, B.P.; Meena, S.S.; Bhatt, P.; Prajapat, C.L.; Priyam, A.; et al. Enhanced dielectric, magnetic and optical properties of Cr-doped BiFeO3 multiferroic nanoparticles synthesized by sol-gel route. Results Phys. 2019, 13, 102299. [Google Scholar] [CrossRef]
- Guan, X.Y.; Qiao, Z.W.; Yan, D.Z.; Sun, Y.F.; Li, J. Investigation on structural and functional properties of Nd doped BiFeO3 particles prepared by hydrothermal method. J. Mater. Sci. Mater. Electron. 2015, 26, 6807–6813. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Das, R.; Poddar, P.; Kulkarni, S. Tunable band gap and coercivity of bismuth ferrite–polyaniline core–shell nanoparticles: The role of shell thickness. RSC Adv. 2015, 5, 23563–23568. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, T.; Liu, Y.-S.; Yao, P.; Glans, P.-A.; Guo, J.; Chang, C.; Wu, Z.; Sakamoto, W.; Itoh, N.; Shimura, T.; et al. Electronic structure of multiferroic BiFeO3 by resonant soft x-ray emission spectroscopy. Phys. Rev. B 2008, 78, 085106. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.; Basith, M.A.; Zubair, M.A.; Hossain, M.S.; Mahbub, R.; Hakim, M.A.; Islam, M.F. Saturation magnetization and band gap tuning in BiFeO3 nanoparticles via co-substitution of Gd and Mn. J. Alloys Compd. 2016, 687, 701–706. [Google Scholar] [CrossRef] [Green Version]
- Irfan, S.; Shen, Y.; Rizwan, S.; Wang, H.-C.; Khan, S.B.; Nan, C.-W. Band-Gap Engineering and Enhanced Photocatalytic Activity of Sm and Mn Doped BiFeO3 Nanoparticles. J. Am. Ceram. Soc. 2017, 100, 31–40. [Google Scholar] [CrossRef]
- Hussain, S.; Hasanain, S.K. Chemical pressure induced red shift in band gap and d-d transition energies in Sr doped BiFeO3. J. Alloys Compd. 2016, 688, 1151–1156. [Google Scholar] [CrossRef]
- Arora, M.; Sati, P.C.; Chauhan, S.; Chhoker, S.; Panwar, A.K.; Kumar, M. Structural, Optical and Multiferroic Properties of BiFeO3 Nanoparticles Synthesized by Soft Chemical Route. J. Supercond. Nov. Magn. 2013, 26, 443–448. [Google Scholar] [CrossRef]
- Peng, L.; Deng, H.; Tian, J.; Ren, Q.; Peng, C.; Huang, Z.; Yang, P.; Chu, J. Influence of Co doping on structural, optical and magnetic properties of BiFeO3 films deposited on quartz substrates by sol–gel method. Appl. Surf. Sci. 2013, 268, 146–150. [Google Scholar] [CrossRef]
- Yousaf, M.; Lu, Y.; Hu, E.; Wang, B.; Niaz Akhtar, M.; Noor, A.; Akbar, M.; Yousaf Shah, M.A.K.; Wang, F.; Zhu, B. Tunable magneto-optical and interfacial defects of Nd and Cr-doped bismuth ferrite nanoparticles for microwave absorber applications. J. Colloid Interface Sci. 2022, 608, 1868–1881. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Rafique, H.M.; Yousaf, M.; Ramay, S.M.; Saleem, M.; Abbas, S.K.; Atiq, S. Multiferroicity in sol–gel synthesized Sr/Mn co-doped BiFeO3 nanoparticles. J. Mater. Sci. Mater. Electron. 2017, 28, 17234–17244. [Google Scholar] [CrossRef]
- Cao, W.; Chen, Z.; Gao, T.; Zhou, D.; Leng, X.; Niu, F.; Zhu, Y.; Qin, L.; Wang, J.; Huang, Y. Rapid synthesis of single-phase bismuth ferrite by microwave-assisted hydrothermal method. Mater. Chem. Phys. 2016, 175, 1–5. [Google Scholar] [CrossRef]
- Song, G.L.; Zhang, H.X.; Wang, T.X.; Yang, H.; Chang, F.G. Effect of Sm, Co codoping on the dielectric and magnetoelectric properties of BiFeO3 polycrystalline ceramics. J. Magn. Magn. Mater. 2012, 324, 2121–2126. [Google Scholar] [CrossRef]
- Renuka, H.; Venkataraman, B.H.; Ramaswamy, K.; Kundu, S.; Goel, S. A Study on the effect of Cr doping on the Structural, Optical and Photovoltaic Properties of BFO based Heterostructures. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; Volume 6202021, pp. 1182–1186, ISBN 978-1-6654-1922-2. [Google Scholar]
- Renuka, H.; Sharma, S.; Venkataraman, B.H.; Ramaswamy, K.; Chappanda, K.N.; Kundu, S.; Goel, S. Extensive Enhancement in Charge Collection Efficiency of Ferroelectric Cr-Doped BFO-Based Solar Cells by Using TiO2 Nanotube Arrays. IEEE J. Photovolt. 2021, 11, 1278–1284. [Google Scholar] [CrossRef]
- Arti; Gupta, R.; Singh, S.P.; Walia, R.; Kumar, V.; Verma, V. Modification in photovoltaic and photocatalytic properties of bismuth ferrites by tailoring band-gap and ferroelectric properties. J. Alloys Compd. 2022, 908, 164602. [Google Scholar] [CrossRef]
- Katiyar, R.K.; Misra, P.; Morell, G.; Katiyar, R.S. Effect of Poling on Photovoltaic Properties in Highly Oriented BiFeO 3 Thin Films. Integr. Ferroelectr. 2014, 157, 168–173. [Google Scholar] [CrossRef]
- Mai, H.; Lu, T.; Li, Q.; Sun, Q.; Vu, K.; Chen, H.; Wang, G.; Humphrey, M.G.; Kremer, F.; Li, L.; et al. Photovoltaic Effect of a Ferroelectric-Luminescent Heterostructure under Infrared Light Illumination. ACS Appl. Mater. Interfaces 2018, 10, 29786–29794. [Google Scholar] [CrossRef]
- Ceballos-Sanchez, O.; Sanchez-Martinez, A.; Flores-Ruiz, F.J.; Huerta-Flores, A.M.; Torres-Martínez, L.M.; Ruelas, R.; García-Guaderrama, M. Study of BiFeO3 thin film obtained by a simple chemical method for the heterojunction-type solar cell design. J. Alloys Compd. 2020, 832, 154923. [Google Scholar] [CrossRef]
- Fang, L.; You, L.; Zhou, Y.; Ren, P.; Shiuh Lim, Z.; Wang, J. Switchable photovoltaic response from polarization modulated interfaces in BiFeO3 thin films. Appl. Phys. Lett. 2014, 104, 142903. [Google Scholar] [CrossRef]
- Keskin, V.; Gupta, A.; Szulczewski, G. Solution processed TiO2/BiFeO3/poly(3-hexylthiophene) solar cells. Mater. Lett. 2015, 159, 305–308. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Guo, Y.; Guo, B.; Li, H.; Liu, H.; Joel, T.W. Enhanced photovoltaic effect in BiVO4 semiconductor by incorporation with an ultrathin BiFeO3 ferroelectric layer. ACS Appl. Mater. Interfaces 2013, 5, 6925–6929. [Google Scholar] [CrossRef]
- Mohamed, M.M.; Reda, S.M.; Amer, A.A. Enhanced performance of BiFeO3@nitrogen doped TiO2 core-shell structured nanocomposites: Synergistic effect towards solar cell amplification. Arab. J. Chem. 2020, 13, 2611–2619. [Google Scholar] [CrossRef]
- Pei, W.; Chen, J.; You, D.; Zhang, Q.; Li, M.; Lu, Y.; Fu, Z.; He, Y. Enhanced photovoltaic effect in Ca and Mn co-doped BiFeO3 epitaxial thin films. Appl. Surf. Sci. 2020, 530, 147194. [Google Scholar] [CrossRef]
- Lin, Z.; Cai, W.; Jiang, W.; Fu, C.; Li, C.; Song, Y. Effects of annealing temperature on the microstructure, optical, ferroelectric and photovoltaic properties of BiFeO3 thin films prepared by sol–gel method. Ceram. Int. 2013, 39, 8729–8736. [Google Scholar] [CrossRef]
- Wang, M.; Wei, H.; Wu, Y.; Jia, J.; Yang, C.; Chen, Y.; Chen, X.; Cao, B. Polarization-enhanced bulk photovoltaic effect of BiFeO3 epitaxial film under standard solar illumination. Phys. Lett. A 2020, 384, 126831. [Google Scholar] [CrossRef]
- Kumar, A.M.; Peter, I.J.; Ramachandran, K.; Mayandi, J.; Jayakumar, K. Influence of Al-Cu doping on the efficiency of BiFeO3 based perovskite solar cell (PSC). Mater. Today Proc. 2021, 35, 62–65. [Google Scholar] [CrossRef]
Synthesis Technique | Advantages | Disadvantages | Ref. |
---|---|---|---|
Sol-Gel Method |
|
| [23] |
Hydrothermal Method |
|
| [24] |
Spark Plasma Sintering |
|
| [25] |
Solid State Reaction |
|
| [26] |
Pechini method | Can produce high-quality BiFeO3 films with good uniformity and smooth surface | Requires a complex synthesis process with multiple steps and the use of expensive precursors | [27] |
Coprecipitation method | Can produce BiFeO3 powders with good purity and crystallinity | May produce coarse or irregularly shaped particles and may require high temperatures and long reaction times | [28] |
Structural Parameter | Sample | ||||
---|---|---|---|---|---|
BiFeO3 | BiFeO3-1%Cr | BiFeO3-3%Cr | BiFeO3-5%Cr | BiFeO3-10%Cr | |
Crystal structure | R3c | R3c | R3c | R3c | R3c |
a = b (nm) | 5.5781 | 5.57801 | 5.5778 | 5.5764 | 5.5761 |
c (nm) | 13.8683 | 13.8679 | 13.8653 | 13.8599 | 13.8574 |
A = β (°) | 90 | 90 | 90 | 90 | 90 |
γ (°) | 120 | 120 | 120 | 120 | 120 |
ρ (g/cm3) | 8.34 | 8.34 | 8.34 | 8.35 | 8.35 |
D (nm) | 168.18 | 121.35 | 115.09 | 87.73 | 73.36 |
Rexp (%) | 3.5333 | 5.4115 | 4.4454 | 4.1970 | 4.7448 |
Rwp (%) | 5.4904 | 10.2891 | 8.5166 | 8.7858 | 11.0893 |
Rp (%) | 3.0125 | 6.1614 | 4.7797 | 5.0951 | 6.3865 |
GOF | 1.5539 | 1.9012 | 1.9158 | 2.0934 | 2.3371 |
Eg (eV) | 2.14 | 2.12 | 2.09 | 2.03 | 1.92 |
Sample | Voc (V) | Jsc (A/cm2) | Efficiency (%) | Incident Light | Reference |
---|---|---|---|---|---|
BiFeO3 | 0.1678 | 6.41 × 10−5 | 2.73 × 10−3 | 100 mW/cm2 AM 1.5 G | This work |
BiFeO3-1%Cr | 0.334 | 9.32 × 10−5 | 1.14 × 10−2 | 100 mW/cm2 AM 1.5 G | This work |
BiFeO3-3%Cr | 0.3929 | 6.58 × 10−5 | 6.72 × 10−3 | 100 mW/cm2 AM 1.5 G | This work |
BiFeO3-5%Cr | 0.4415 | 4.70 × 10−5 | 7.30 × 10−3 | 100 mW/cm2 AM 1.5 G | This work |
BiFeO3-10%Cr | 0.4395 | 2.52 × 10−5 | 4.15 × 10−3 | 100 mW/cm2 AM 1.5 G | This work |
Bi0.9Gd0.1Fe0.95Cr0.5O3 | 0.271 | 2.32 × 10−6 | 3.6 × 10−3 | [48] | |
BiFeO3 | 3.9 | 262 × 10−9 | 100 mW/cm2 | [49] | |
ITO/BFO/Pt | 5 × 10−3 | ||||
BiFeO3/ Y2O3:Yb,Tm | 0.40 | 49 × 10−9 | 20 mW, 980 nm laser | [50] | |
Glass/ITO/CdS/BFO-Thin/PbS/Ag | 0.13 | 239 × 10−6 | AM 1.5 G | [51] | |
LSMO/BFO/LSMO/STO | 0.05 | 3.7 × 10−12 | Halogen lamp, 20 mW/cm2 | [52] | |
TiO2/BiFeO3/poly(3-hexylthiophene) | −0.46 | 5 × 10−5 | 150 W Xe lamp | [53] | |
Au/BVO/FTO | 0.2 | 6 × 10−5 | 3.7 × 10−3 | 100 mW/cm2 AM 1.5 G | [54] |
BiFeO3 | 0.46 | 4.8 × 10−6 | 3.7 × 10−3 | ELH-lamp, 100 mW/cm2 | [55] |
BiFeO3 | −0.11 | 8 × 10−5 | 8 × 10−4 | Xenon Lamp 280 mW/cm2 | [56] |
BiFeO3 | 0.11 | 4.3 × 10−5 | [57] | ||
BiFeO3 | 0.75 | 23.35 × 10−6 | 5 × 10−3 | 100 mW/cm2 AM 1.5 G | [58] |
BiFeO3 | 0.28 | 5.3 × 10−5 | 1 × 10−3 | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiburcio, J.; Sacari, E.; Chacaltana, J.; Medina, J.; Gamarra, F.; Polo, C.; Mamani, E.; Quispe, A. Influence of Cr Doping on Structural, Optical, and Photovoltaic Properties of BiFeO3 Synthesized by Sol-Gel Method. Energies 2023, 16, 786. https://doi.org/10.3390/en16020786
Tiburcio J, Sacari E, Chacaltana J, Medina J, Gamarra F, Polo C, Mamani E, Quispe A. Influence of Cr Doping on Structural, Optical, and Photovoltaic Properties of BiFeO3 Synthesized by Sol-Gel Method. Energies. 2023; 16(2):786. https://doi.org/10.3390/en16020786
Chicago/Turabian StyleTiburcio, José, Elisban Sacari, Jesús Chacaltana, Jesús Medina, Francisco Gamarra, Carlos Polo, Efracio Mamani, and Alberto Quispe. 2023. "Influence of Cr Doping on Structural, Optical, and Photovoltaic Properties of BiFeO3 Synthesized by Sol-Gel Method" Energies 16, no. 2: 786. https://doi.org/10.3390/en16020786
APA StyleTiburcio, J., Sacari, E., Chacaltana, J., Medina, J., Gamarra, F., Polo, C., Mamani, E., & Quispe, A. (2023). Influence of Cr Doping on Structural, Optical, and Photovoltaic Properties of BiFeO3 Synthesized by Sol-Gel Method. Energies, 16(2), 786. https://doi.org/10.3390/en16020786