Hybrid CSP—PV Plants for Jordan, Tunisia and Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Local Boundary Conditions
2.2. Hybrid Plant Concepts
2.3. Simulation Methodology
3. Results
3.1. Techno–Economic Simulation Results
3.2. Analysis of the Results
- With very few exceptions, the CSP solar field, thermal storage and PV capacities required in the site in Tunisia are larger than for Algeria and Jordan.
- For all configurations, the LCOE of Tunisia is on average 23% larger than that of Algeria, basically due to the difference in natural gas price, solar resource and larger energy demand.
- With only one exception (CP2 case and <70 gCO2/kWh), the lowest LCOE is obtained for the site in Algeria, which, although it does not have the higher solar resource, has the lowest fuel price and energy demand.
3.3. Effect of the Natural Gas Price on the Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abu-Rumman, G.; Khdair, A.; Khdair, S. Current status and future investment potential in renewable energy in Jordan: An overview. Heliyon 2020, 6, e03346. [Google Scholar] [CrossRef] [PubMed]
- Electrical Power Systems and Renewable Energy. 2020. Available online: https://www.trade.gov/country-commercial-guides/tunisia (accessed on 27 August 2021).
- Regional Centre for Renewable Energy and Energy Efficiency, RECREEEE. Available online: https://rcreee.org/member_states/4012/ (accessed on 27 August 2021).
- Global Solar Power Tracker Database. Available online: https://globalenergymonitor.org/projects/global-solar-power-tracker/ (accessed on 15 December 2022).
- National Renewable Energy Laboratory. Available online: https://www.nrel.gov/csp/solarpaces/index.cfm (accessed on 25 March 2022).
- Ju, X.; Xu, C.; Han, X.; Zhang, H.; Wei, G.; Chen, L. Recent advances in the PV-CSP hybrid solar power technology. AIP Conf. Proc. 2017, 1850, 110006. [Google Scholar] [CrossRef] [Green Version]
- Benitez, D.; Kazantzidis, A.; Al-Salaymeh, A.; Bouaichaoui, S.; Ben Haj Ali, A.; Balghouthi, M.; Guizani, A. Study about Hybrid CSP—PV plants for the MENA Region. In Proceedings of the 10th International Renewable Energy Congress (IREC), Sousse, Tunisia, 26–28 March 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Benitez, D.; Kazantzidis, A.; Al-Salaymeh, A.; Bouaichaoui, S.; Guizani, A. Combined CSP–PV plants for MENA Region. In Proceedings of the Global Conference on Renewables and Energy Efficiency for DEsert Regions (GCREEDER), Amman, Jordan, 3–5 April 2018. [Google Scholar]
- Green, A.; Diep, C.; Dunn, R.; Dent, J. High capacity factor CSP-PV hybrid systems. In Proceedings of the International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES, Beijing, China, 16–19 September 2014. [Google Scholar]
- Starke, A.R.; Cardemil, J.M.; Escobar, R.A.; Colle, S. Assessing the performance of hybrid CSP+PV plants in northern Chile. Solar Energy 2016, 138, 88–97. [Google Scholar] [CrossRef]
- Platzer, W.J. Combined solar thermal and photovoltaic power plants—An approach to 24h solar electricity? AIP Conf. Proc. 2016, 1734, 0700260. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.; Dinter, F. Combination of PV and central receiver CSP plants for base load power generation in South Africa. Solar Energy 2017, 146, 379–388. [Google Scholar] [CrossRef]
- Chennaif, M.; Zahboune, H.; Elhafyani, M.; Zouggar, S. Electric System Cascade Extended Analysis for optimal sizing of an autonomous hybrid CSP/PV/wind system with Battery Energy Storage System and thermal energy storage. Energy 2021, 227, 120444. [Google Scholar] [CrossRef]
- Petrollese, M.; Cocco, D. Optimal design of a hybrid CSP-PV plant for achieving the full dispatchability of solar energy power plants. Solar Energy 2016, 137, 477–489. [Google Scholar] [CrossRef]
- Schüler, D.; Wilbert, S.; Geuder, N.; Affolter, R.; Wolfertstetter, F.; Prahl, C.; Röger, M.; Schroedter-Homscheidt, M.; Ghennioui, A.; Guizani, A.; et al. The Enermena Meteorological Network—Solar Radiation Measurements in the Mena Region. AIP Conf. Proc. 2016, 1734, 150008. [Google Scholar] [CrossRef] [Green Version]
- DLR, Institute of Solar Research, enerMENA Meteo Network. Available online: https://www.dlr.de/sf/en/desktopdefault.aspx/tabid-8680/12865_read-32404/ (accessed on 25 March 2022).
- Hoyer-Klick, C.; Hustig, F.; Schwandt, M.; Meyer, R. Characteristic meteorological years from ground and satellite data. In Proceedings of the 15th SolarPACES Symposium, Berlin, Germany, 15–18 September 2009. [Google Scholar]
- Spiros, A.; Kalogirou, S.A. Solar Thermal Energy; Encyclopedia of Sustainability Science and Technology Series; Springer: Berlin/Heidelberg, Germany, 2022; ISBN 978-1-0716-1422-8. [Google Scholar]
- Available online: https://www.solarpaces.org/how-csp-works/ (accessed on 25 March 2022).
- INSEL Software, Developed by Doppelintegral GmbH. Available online: http://www.insel.eu/index.php?id=301&L=1 (accessed on 10 December 2016).
- THERMVOLT Project, Techno-Economic Analysis and Comparison of CSP with Hybrid PV-Battery Power Plants—DLR, M+W, Fichtner; Lappeenranta University: Lappeenranta, Finland, 2016.
- Moser, M.; Trieb, F.; Kern, J.; Allal, H.; Cottret, N.; Scharfe, J.; Tomasek, M.; Savoldi, E. The MED-CSD Project: Potential for Concentrating Solar Power Desalination Development in Mediterranean Countries. J. Sol. Energy Eng. 2011, 133, 031012. [Google Scholar] [CrossRef]
- Laukemann, T.; Verdier, F.; Baten, R.; (Fichtner) Trieb, F.; Moser, M.; Fichter, T. (DLR) MENA Regional Water Outlook; Phase II, Desalination Using Renewable Energy, Study Commissioned by the World Bank; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Mletzkoa, J.; Ehlersa, S.; Kathera, A. Comparison of natural gas combined cycle power plants with post combustion and oxyfuel technology at different CO2 capture rates. Energy Procedia 2016, 86, 2–11. [Google Scholar] [CrossRef]
- Frauhofer ISE. Levelized Cost of Electricity Renewable Energy Technologies. 2018. Available online: https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/EN2018_Fraunhofer-ISE_LCOE_Renewable_Energy_Technologies.pdf (accessed on 29 November 2019).
Item | Unit | Tunisia | Algeria | Jordan |
---|---|---|---|---|
Location | - | Tatouine | Ghardaia | Ma’an |
Latitude | (°) N | 32.974 | 32.386 | 30.172 |
Longitude | (°) E | 10.485 | 3.78 | 35.818 |
Altitude | (m) | 210 | 463 | 1069 |
DNI | (kWh/m2 a) | 2264 | 2368 | 2645 |
GHI | (kWh/m2 a) | 2078 | 2155 | 2275 |
Ambient temperature (mean/min/max) | (°C) | 20.4/0.2/43.8 | 22.5/1.9/45.1 | 18.8/−3.7/41.2 |
Wind velocity (mean/min/max) | (m/s) | 3.2/0/15.9 | 2.1/0/8.9 | 3.7/0/18.1 |
Item | Unit | Tunisia | Algeria | Jordan |
---|---|---|---|---|
Water cost | EUR/m3 | 0.20 | 0.04 | 0.06 |
Natural gas cost | EUR/MWh | 25.80 | 2.13 | 28.86 |
Item | Unit | Value |
---|---|---|
Number of heliostats | (-) | 8860 |
Net reflective area per heliostat | (m2) | 121 |
Tower height | (m) | 275.7 |
Optical efficiency of solar field design | (%) | 68.5 |
Total land area | (m2) | 5,407,294 |
Receiver type | (-) | External, cylindrical tube receiver |
Heat transfer fluid and storage media | (-) | Solar Salt |
Solar field thermal power design | (MW) | 628.3 |
Receiver efficiency design | (-) | 0.886 |
HTF inlet temperature | (°C) | 290 |
HTF outlet temperature | (°C) | 580 |
Mean flux density design | (kW/m2) | 575 |
Storage discharge time | (full load hours) | 10 |
Storage thermal capacity | (MWhth) | 2618 |
Design net electrical power | (MWel) | 100 |
Design gross electrical power | (MWel) | 112.1 |
Power block design gross efficiency | (%) | 42.82 |
Cooling type | (-) | Air Cooled Condenser |
Live steam parameters | (°C/bar) | 565/165 |
Inlet/outlet temperature HTF steam generator | (°C) | 239/565 |
Power block thermal input | (MWth) | 261.8 |
Back-up fossil fuel | (-) | Natural gas |
Thermodynamic efficiency of burner | (%) | 93 |
Burner design thermal capacity | (MWth) | 300 |
PV manufacturer | - | JA Solar |
PV module Type | - | JAP6 72-320/3BB |
Tracking | (yes/no) | Yes. Single axis |
Nominal module power | W | 380 |
Nominal module efficiency | % | 19.6 |
Number of serial modules | - | 20 |
Number of parallel module strings | - | 220 |
Inverter type | - | SunnyCentral CP1000-XT |
Nominal inverter power | kW | 1190 |
Nominal inverter DC voltage | V | 688 |
Inverter design efficiency | % | 98.7 |
Wiring losses at full power (STC), AC+DC | % | 1.44 |
Module quality + module array losses | % | 1.1 |
Other losses | % | 2 |
PV/Battery | (yes/no) | no |
Module plane inclination | variable | |
Required power factor | Cos(phi) | 1.0 |
Item | Unit | Value |
---|---|---|
Heliostat Field (incl. Land & HTF) | EUR per m2 mirror aperture | Tunisia: 103.68 Algeria: 103.72 Jordan: 104.42 |
Tower (275 m height) | Mio. EUR | 28.4 |
Receiver | EUR/kWth | 97 |
Thermal Storage | EUR/kWhth | 22.6 |
Power Block (incl. Cooling) | EUR/kWel | 968 |
Fossil Backup System | EUR/kWth | 50 |
Contingency | % of direct cost | 26 |
CSP O&M and insurance | % of direct cost/y | 2.3 |
Water Cost for CSP plant | EUR/m3 | Tunisia: 0.20 Algeria: 0.04 Jordan: 0.06 |
Natural Gas price | EUR/MWh LHV | Tunisia: 25.80 Algeria: 2.13 Jordan: 28.86 |
PV modules | EUR/kWp | 809 |
Inverters | EUR/kWp inverter | incl. in modules cost |
Trackers | EUR/kWp | 154 |
PV O&M and insurance | % DC/y | 1.5 |
Debt period | y | 25 |
Discount rate | % | 7 |
Annual degradation | %/y | 0.3 |
Plant availability | % | 97 |
Parameter | Minimum | Maximum | Step Size |
---|---|---|---|
Thermal energy storage capacity | 3 h | 21 h | 3 h |
CSP solar multiple | 1.8 | 3.4 | 0.2 |
PV capacity | 0 MW (DC) | 227.2 MW (DC) | 28.4 MW |
CP1 Configuration | Tunisia | Algeria | Jordan |
---|---|---|---|
CO2 emissions | 67.8 | 69.9 | 66.5 |
CSP solar multiple [-] | 3.4 | 3.0 | 2.8 |
Thermal storage capacity [h] | 18 | 12 | 12 |
PV capacity [MW] | 256 | 170.7 | 199.1 |
LCOE | 15.2 | 11.0 | 12.67 |
CO2 emissions | 107.9 | 101.4 | 106.5 |
CSP solar multiple [-] | 2.8 | 2.4 | 2.0 |
Thermal storage capacity [h] | 12 | 12 | 12 |
PV capacity [MW] | 199.1 | 170.7 | 142.2 |
LCOE | 12.78 | 11.00 | 11.05 |
CO2 emissions | 140.5 | 147.6 | 146.5 |
CSP solar multiple [-] | 2.2 | 2.0 | 1.4 |
Thermal storage capacity [h] | 12 | 9.0 | 12 |
PV capacity [MW] | 170.7 | 170.7 | 142.2 |
LCOE | 11.75 | 9.76 | 10.57 |
CO2 emissions | 182.1 | 183.2 | 182.7 |
CSP solar multiple [-] | 1.8 | 1.4 | 1.4 |
Thermal storage capacity [h] | 9 | 9.0 | 9.0 |
PV capacity [MW] | 170.7 | 170.7 | 113.8 |
LCOE | 11.09 | 8.73 | 10.24 |
CP2 Configuration | Tunisia | Algeria | Jordan |
---|---|---|---|
CO2 emissions | 69.8 | 68.7 | 66.3 |
CSP solar multiple [-] | 3.4 | 2.6 | 2.6 |
Thermal storage capacity [h] | 18 | 18 | 15 |
PV capacity [MW] | 170.7 | 170.7 | 142.2 |
LCOE | 12.34 | 10.74 | 10.66 |
CO2 emissions | 105.5 | 105.4 | 101 |
CSP solar multiple [-] | 2.6 | 2.2 | 1.8 |
Thermal storage capacity [h] | 12 | 12 | 12 |
PV capacity [MW] | 170.7 | 142.2 | 142.2 |
LCOE | 10.83 | 9.08 | 9.51 |
CO2 emissions | 141.2 | 150 | 145.3 |
CSP solar multiple [-] | 2 | 2.4 | 2 |
Thermal storage capacity [h] | 12 | 12 | 12 |
PV capacity [MW] | 142.2 | 56.9 | 56.9 |
LCOE | 9.97 | 8.07 | 9.13 |
CO2 emissions | 180.2 | 188.8 | 183.4 |
CSP solar multiple [-] | 1.4 | 1.4 | 1.4 |
Thermal storage capacity [h] | 12 | 9 | 9 |
PV capacity [MW] | 142.2 | 113.8 | 85.3 |
LCOE | 9.53 | 7.19 | 8.84 |
CP3 Configuration | Tunisia | Algeria | Jordan |
---|---|---|---|
CO2 emissions | 69 | 66.3 | 69.4 |
CSP solar multiple [-] | 3.2 | 2.8 | 1.8 |
Thermal storage capacity [h] | 18 | 15 | 12 |
PV capacity [MW] | 56.9 | 56.9 | 142.2 |
LCOE | 10.5 | 9.18 | 9.21 |
CO2 emissions | 103.7 | 106.5 | 107 |
CSP solar multiple [-] | 3 | 1.8 | 2 |
Thermal storage capacity [h] | 12 | 12 | 12 |
PV capacity [MW] | 28.4 | 113.8 | 56.9 |
LCOE | 9.5 | 8.26 | 8.72 |
CO2 emissions | 141.1 | 148.6 | 145.3 |
CSP solar multiple [-] | 2 | 2 | 2 |
Thermal storage capacity [h] | 12 | 9 | 9 |
PV capacity [MW] | 85.3 | 56.9 | 28.4 |
LCOE | 9.2 | 7.24 | 8.6 |
CO2 emissions | 184.1 | 182.8 | 188.3 |
CSP solar multiple [-] | 2.2 | 1.4 | 1.4 |
Thermal storage capacity [h] | 9 | 9 | 9 |
PV capacity [MW] | 28.4 | 85.3 | 56.9 |
LCOE | 9 | 6.76 | 8.61 |
Technology | Location | LCOE €cent/kWh | gCO2/kWhe |
---|---|---|---|
CP1 | Tunisia | 11.1 | 182 |
CP2 | Tunisia | 9.5 | 180 |
CP3 | Tunisia | 9.0 | 184 |
CCGT | Germany | 8.9 | 350 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benitez, D.; Röger, M.; Kazantzidis, A.; Al-Salaymeh, A.; Bouaichaoui, S.; Guizani, A.; Balghouthi, M. Hybrid CSP—PV Plants for Jordan, Tunisia and Algeria. Energies 2023, 16, 924. https://doi.org/10.3390/en16020924
Benitez D, Röger M, Kazantzidis A, Al-Salaymeh A, Bouaichaoui S, Guizani A, Balghouthi M. Hybrid CSP—PV Plants for Jordan, Tunisia and Algeria. Energies. 2023; 16(2):924. https://doi.org/10.3390/en16020924
Chicago/Turabian StyleBenitez, Daniel, Marc Röger, Andreas Kazantzidis, Ahmed Al-Salaymeh, Sofiane Bouaichaoui, AmenAllah Guizani, and Moncef Balghouthi. 2023. "Hybrid CSP—PV Plants for Jordan, Tunisia and Algeria" Energies 16, no. 2: 924. https://doi.org/10.3390/en16020924
APA StyleBenitez, D., Röger, M., Kazantzidis, A., Al-Salaymeh, A., Bouaichaoui, S., Guizani, A., & Balghouthi, M. (2023). Hybrid CSP—PV Plants for Jordan, Tunisia and Algeria. Energies, 16(2), 924. https://doi.org/10.3390/en16020924