Heat and Mass Transfer Analysis of a Fluid Flow across the Conical Gap of a Cone-Disk Apparatus under the Thermophoretic Particles Motion
Abstract
:1. Introduction
2. Mathematical Formulation
3. Numerical Procedure
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Radiation parameter | Pressure | ||
Cylindrical coordinates | Temperature of the surface | ||
Nusselt number at the disk’s surface | Velocity profiles | ||
Ambient temperature | Schmidt number | ||
Thermal conductivity | Kinematic viscosity of the fluid | ||
Gap angle | Stefan–Boltzmann constant | ||
Volume fraction | Concentration | ||
Temperature | Ψ | Stream function | |
Power index of wall temperature | Dimensionless thermal profile | ||
Ambient concentration | Local Reynolds number | ||
Angular velocities | Mean absorption coefficient | ||
Concentration of the surface | and | Thermophoretic velocities | |
Constituents of velocity | Dynamic viscosity | ||
Prandtl number | Thermophoretic co-efficient | ||
Density | Thermophoretic parameter | ||
Nusselt number at cone’s surface | Dimensionless concentration profile | ||
Constant | Heat capacitance |
References
- Phan-Thien, N. Cone-and-plate flow of the Oldroyd-B fluid is unstable. J. Non-Newton. Fluid Mech. 1985, 17, 37–44. [Google Scholar] [CrossRef]
- Mooney, M.; Ewart, R.H. The Conicylindrical Viscometer. Physics 1934, 5, 350–354. [Google Scholar] [CrossRef]
- Buschmann, M.H.; Dieterich, P.; Adams, N.A.; Schnittler, H.-J. Analysis of flow in a cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells. Biotechnol. Bioeng. 2005, 89, 493–502. [Google Scholar] [CrossRef]
- Shevchuk, V. A Self-Similar Solution of Navier–Stokes and Energy Equations for Rotating Flows between a Cone and a Disk. High Temp. 2004, 42, 104–110. [Google Scholar] [CrossRef]
- Basavarajappa, M.; Bhatta, D. Study of flow of Buongiorno nanofluid in a conical gap between a cone and a disk. Phys. Fluids 2022, 34, 112004. [Google Scholar] [CrossRef]
- Wang, F.; Rani, S.P.; Sarada, K.; Gowda, R.P.; Khan, U.; Zahran, H.Y.; Mahmoud, E.E. The effects of nanoparticle aggregation and radiation on the flow of nanofluid between the gap of a disk and cone. Case Stud. Therm. Eng. 2022, 33, 101930. [Google Scholar] [CrossRef]
- Alrabaiah, H.; Bilal, M.; Khan, M.A.; Muhammad, T.; Legas, E.Y. Parametric estimation of gyrotactic microorganism hybrid nanofluid flow between the conical gap of spinning disk-cone apparatus. Sci. Rep. 2022, 12, 59. [Google Scholar] [CrossRef] [PubMed]
- Gul, T.; Kashifullah; Bilal, M.; Alghamdi, W.; Asjad, M.I.; Abdeljawad, T. Hybrid nanofluid flow within the conical gap between the cone and the surface of a rotating disk. Sci. Rep. 2021, 11, 1180. [Google Scholar] [CrossRef] [PubMed]
- de Gans, B.-J.; Kita, R.; Wiegand, S.; Luettmer-Strathmann, J. Unusual Thermal Diffusion in Polymer Solutions. Phys. Rev. Lett. 2003, 91, 245501. [Google Scholar] [CrossRef] [Green Version]
- Podolny, A.; Oron, A.; Nepomnyashchy, A.A. Long-wave Marangoni instability in a binary-liquid layer with deformable interface in the presence of Soret effect: Linear theory. Phys. Fluids 2005, 17, 104104. [Google Scholar] [CrossRef]
- Sarma, R.; Mondal, P.K. Marangoni instability in a viscoelastic binary film with cross-diffusive effect. J. Fluid Mech. 2021, 910, A30. [Google Scholar] [CrossRef]
- Gowda, R.P.; Kumar, R.N.; Aldalbahi, A.; Issakhov, A.; Prasannakumara, B.; Rahimi-Gorji, M.; Rahaman, M. Thermophoretic particle deposition in time-dependent flow of hybrid nanofluid over rotating and vertically upward/ downward moving disk. Surf. Interfaces 2021, 22, 100864. [Google Scholar] [CrossRef]
- Khan, N.S.; Gul, T.; Islam, S.; Khan, W. Thermophoresis and thermal radiation with heat and mass transfer in a magnetohydrodynamic thin-film second-grade fluid of variable properties past a stretching sheet. Eur. Phys. J. Plus 2017, 132, 11. [Google Scholar] [CrossRef]
- Alhadhrami, A.; Alzahrani, H.A.H.; Kumar, R.N.; Gowda, R.J.P.; Sarada, K.; Prasanna, B.M.; Madhukesh, J.K.; Madhukeshwara, N. Impact of thermophoretic particle deposition on Glauert wall jet slip flow of nanofluid. Case Stud. Therm. Eng. 2021, 28, 101404. [Google Scholar] [CrossRef]
- Abbas, A.; Ashraf, M.; Chamkha, A.J. Combined effects of thermal radiation and thermophoretic motion on mixed convection boundary layer flow. Alex. Eng. J. 2021, 60, 3243–3252. [Google Scholar] [CrossRef]
- Shah, N.A.; Yook, S.-J.; Tosin, O. Analytic simulation of thermophoretic second grade fluid flow past a vertical surface with variable fluid characteristics and convective heating. Sci. Rep. 2022, 12, 5445. [Google Scholar] [CrossRef]
- Kármán, T.V. Über laminare und turbulente Reibung. Z. Angew. Math. Mech. 1921, 1, 233–252. [Google Scholar] [CrossRef] [Green Version]
- Turkyilmazoglu, M. On the fluid flow and heat transfer between a cone and a disk both stationary or rotating. Math. Comput. Simul. 2020, 177, 329–340. [Google Scholar] [CrossRef]
- Shevchuk, V. Laminar Heat and Mass Transfer in Rotating Cone-and-Plate Devices. J. Heat Transf. 2011, 133, 024502. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Khan, S.; Bilal, M.; Gul, T.; Mukhtar, S.; Shah, Z.; Bonyah, E. Heat and mass transfer together with hybrid nanofluid flow over a rotating disk. AIP Adv. 2020, 10, 055317. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M.; Senel, P. Heat and mass transfer of the flow due to a rotating rough and porous disk. Int. J. Therm. Sci. 2013, 63, 146–158. [Google Scholar] [CrossRef]
- Shevchuk, V. Concerning the effect of radial thermal conductivity in a self-similar solution for rotating cone-disk systems. Int. J. Numer. Methods Heat Fluid Flow 2022, 33, 204–225. [Google Scholar] [CrossRef]
- Kumar, R.N.; Suresha, S.; Gowda, R.J.P.; Megalamani, S.B.; Prasannakumara, B.C. Exploring the impact of magnetic dipole on the radiative nanofluid flow over a stretching sheet by means of KKL model. Pramana—J. Phys. 2021, 95, 180. [Google Scholar] [CrossRef]
- Kumar, R.N.; Gamaoun, F.; Abdulrahman, A.; Chohan, J.S.; Gowda, R.J.P. Heat transfer analysis in three-dimensional unsteady magnetic fluid flow of water-based ternary hybrid nanofluid conveying three various shaped nanoparticles: A comparative study. Int. J. Mod. Phys. B 2022, 36, 2250170. [Google Scholar] [CrossRef]
- Alzahrani, H.A.H.; Alsaiari, A.; Madhukesh, J.K.; Kumar, R.N.; Prasanna, B.M. Effect of thermal radiation on heat transfer in plane wall jet flow of Casson nanofluid with suction subject to a slip boundary condition. Waves Random Complex Media 2022, 1–18. [Google Scholar] [CrossRef]
- Jayaprakash, M.C.; Sarada, K.; Gowda, R.J.P.; Kumar, R.; Fareeduddin, M.; Ibrahim, T.K.; Suresha, S. Three-dimensional unsteady flow of second-grade magnetic nanofluid with KKL correlation model. Int. J. Mod. Phys. B 2022, 36, 2250188. [Google Scholar] [CrossRef]
- Rahman, M.; Postelnicu, A. Effects of thermophoresis on the forced convective laminar flow of a viscous incompressible fluid over a rotating disk. Mech. Res. Commun. 2010, 37, 598–603. [Google Scholar] [CrossRef]
- Talbot, L.; Cheng, R.K.; Schefer, R.W.; Willis, D.R. Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 1980, 101, 737–758. [Google Scholar] [CrossRef] [Green Version]
- Wang, C. Combined effects of inertial and thermophoresis on particle deposition onto a wafer with wavy surface. Int. J. Heat Mass Transf. 2006, 49, 1395–1402. [Google Scholar] [CrossRef]
- Chu, Y.-M.; Hashmi, M.S.; Khan, N.; Khan, S.U.; Khan, M.I.; Kadry, S.; Abdelmalek, Z. Thermophoretic particles deposition features in thermally developed flow of Maxwell fluid between two infinite stretched disks. J. Mater. Res. Technol. 2020, 9, 12889–12898. [Google Scholar] [CrossRef]
Models | Shevchuk [19] | Turkyilmazoglu [18] | Basavarajappa and Bhatta [5] | Present Results | |
---|---|---|---|---|---|
I. Rotating cone with a stationary disk. | 2463 | 13.401 | 13.4006970 | 13.40069715 | 13.40069716 |
12 | 0.954 | 0.95405487 | 0.95405477 | 0.954054771 | |
II. Stationary cone with a rotating disk. | 2463 | 15.353 | 15.3528734 | 15.35287341 | 15.35287342 |
12 | 1.041 | 1.04080471 | 1.04080467 | 1.040804672 | |
III. Co-rotating cone and disk. | 2463 | 14.346 | 14.3466439 | 14.34664704 | 14.34664705 |
12 | 1.001 | 1.00087052 | 1.00087491 | 1.000874913 | |
IV. Counter-rotating cone and disk. | 2463 | 14.440 | 14.4395241 | 14.43952407 | 14.43952409 |
12 | 0.989 | 0.98884832 | 0.98884832 | 0.988848323 |
Models | Turkyilmazoglu [18] | Basavarajappa and Bhatta [5] | Present Results | |
---|---|---|---|---|
I | 0.83028093 | 0.83028103 | 0.83028104 | |
1.09328442 | 1.09328437 | 1.09328437 | ||
II | 0.78069847 | 0.78069848 | 0.78069849 | |
1.17198527 | 1.17198529 | 1.17198530 | ||
III | 0.80178312 | 0.80177021 | 0.80177022 | |
1.13538224 | 1.13540222 | 1.13540222 | ||
IV | 0.81339331 | 0.81339331 | 0.81339332 | |
1.12618149 | 1.12618149 | 1.12618150 |
0.4 | −0.9422 | −0.9483 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srilatha, P.; Remidi, S.; Nagapavani, M.; Singh, H.; Prasannakumara, B.C. Heat and Mass Transfer Analysis of a Fluid Flow across the Conical Gap of a Cone-Disk Apparatus under the Thermophoretic Particles Motion. Energies 2023, 16, 952. https://doi.org/10.3390/en16020952
Srilatha P, Remidi S, Nagapavani M, Singh H, Prasannakumara BC. Heat and Mass Transfer Analysis of a Fluid Flow across the Conical Gap of a Cone-Disk Apparatus under the Thermophoretic Particles Motion. Energies. 2023; 16(2):952. https://doi.org/10.3390/en16020952
Chicago/Turabian StyleSrilatha, Pudhari, Srinivas Remidi, Mulupuri Nagapavani, Harjot Singh, and B. C. Prasannakumara. 2023. "Heat and Mass Transfer Analysis of a Fluid Flow across the Conical Gap of a Cone-Disk Apparatus under the Thermophoretic Particles Motion" Energies 16, no. 2: 952. https://doi.org/10.3390/en16020952
APA StyleSrilatha, P., Remidi, S., Nagapavani, M., Singh, H., & Prasannakumara, B. C. (2023). Heat and Mass Transfer Analysis of a Fluid Flow across the Conical Gap of a Cone-Disk Apparatus under the Thermophoretic Particles Motion. Energies, 16(2), 952. https://doi.org/10.3390/en16020952