The Cost of Using Gas as a Transition Fuel in the Transition to Low-Carbon Energy: The Case Study of Poland and Selected European Countries
Abstract
:1. Introduction
2. Literature Review
2.1. Environmental Aspect of Gas as a Bridge Fuel
2.2. Energy Security Aspect
2.3. Economic Aspect
3. Methodology
- In the case of coal, it was the so-called clean dark spread (CDS): energy price—CO2 cost–coal cost.
- In the case of gas, it was the so-called clean spark spread (CSS): energy price—CO2 cost–gas cost.
- For coal, we assumed an emission factor of 0.98;
- For gas, it was 0.35.
4. Research
4.1. Scenario 1: Gas and Coal Prices Remain at Current Levels
4.2. Scenario 2: Gas and Coal Prices Remain at Current Levels
4.3. Scenario 3: Gas Prices Remain at Current Levels, but Polish Coal Prices Are Aligned with ARA Prices
5. Discussion
6. Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Union. Official Journal of the European Union: Paris Agreement; European Union: Luxembourg, 2016; pp. 1–15. [Google Scholar]
- UN. For a Livable Climate: Net-Zero Commitments Must be Backed by Credible Action. 2022. Available online: https://www.un.org/en/climatechange/net-zero-coalition (accessed on 21 June 2022).
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions—The European Green Deal. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (accessed on 21 June 2022).
- UN. Theme Report on Energy Access—Towards the Achievement of SDG7 and Net-Zero Achievement. In Secretariat of the High-Level Dialogue on Energy; Energy Sector Management Assistance Program: New York, NY, USA, 2021; p. 72. [Google Scholar]
- Ender, M.G. Causes and Consequences. Contemp. Sociol. 2019, 39, 399–402. [Google Scholar] [CrossRef]
- Raman, S.; Shameer, T.T.; Charles, B.; Sanil, R. Habitat Suitability Model of Endangered Latidens Salimalii and the Probable Consequences of Global Warming. Trop. Ecol. 2020, 61, 570–582. [Google Scholar] [CrossRef] [PubMed]
- IRENA. Reaching Zero with Renewables; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020; p. 216. [Google Scholar]
- IEA. France. 2022. Available online: https://www.iea.org/countries/france (accessed on 21 June 2022).
- ARE. W 2021 Udział Mocy Węglowych w Krajowym Miksie Spadł do 58.5%. 2022. Available online: https://www.are.waw.pl/o-are/aktualnosci/w-2021-udzial-mocy-weglowych-w-krajowym-miksie-spadl-do-58-5 (accessed on 21 June 2022).
- Ministerstwo Klimatu i Środowiska, Polityka Energetyczna Polski do 2040 r. 2021. Available online: https://www.gov.pl/web/klimat/polityka-energetyczna-polski (accessed on 22 June 2022).
- Kulesza, J.; Błach, P.; Wronka, K.; Biniek, P.; Szulc, W.; Jędrzejkiewicz, B.; Drozdowski, W.; Siwiński, P.; Rudziński, D.; Dembowska, M.; et al. W Tym Roku Rozpocznie Się Budowa Elektrowni Gazowo-Parowej w Grudziądzu. 2022. Available online: https://www.cire.pl/artykuly/serwis-informacyjny-cire-24/w-tym-roku-rozpocznie-sie-budowa-elektrowni-gazowo-parowej-w-grudziadzu (accessed on 22 June 2022).
- W Grudziądzu Powstanie Nowa, Gazowo-Parowa Elektrownia. 2022. Available online: https://businessinsider.com.pl/gospodarka/w-grudziadzu-powstanie-nowa-gazowo-parowa-elektrownia/gm4x85m (accessed on 22 June 2022).
- Wang, Q.; Yang, X.; Li, R. The Impact of the COVID-19 Pandemic on the Energy Market—A Comparative Relationship between Oil and Coal. Energy Strategy Rev. 2022, 39, 100761. [Google Scholar] [CrossRef]
- Impact of Russia’s Invasion of Ukraine on the Markets: EU Response. 2022. Available online: https://www.consilium.europa.eu/en/policies/eu-response-ukraine-invasion/how-the-eu-is-responding-to-the-market-impact-of-russia-s-war/ (accessed on 22 June 2022).
- Stephenson, E.; Doukas, A.; Shaw, K. Greenwashing Gas: Might a ‘Transition Fuel’ Label Legitimize Carbon-Intensive Natural Gas Development? Energy Policy 2012, 46, 452–459. [Google Scholar] [CrossRef]
- Ladage, S.; Blumenberg, M.; Franke, D.; Bahr, A.; Lutz, R.; Schmidt, S. On the climate benefit of a coal-to-gas shift in Germany’s electric power sector. Sci. Rep. 2021, 11, 11453. [Google Scholar] [CrossRef]
- Paraschiv, S.; Paraschiv, L.S. Trends of Carbon Dioxide (CO2) Emissions from Fossil Fuels Combustion (Coal, Gas and Oil) in the EU Member States from 1960 to 2018. Energy Rep. 2020, 6, 237–242. [Google Scholar] [CrossRef]
- Ogrodnik, Ł. Czechy w Procesie Transformacji Klimatyczno-Energetycznej. 2020. Available online: https://www.pism.pl/publikacje/Czechy_w_procesie_transformacji_klimatycznoenergetycznej (accessed on 23 June 2022).
- Gonzalez-Salazar, M.A.; Kirsten, T.; Prchlik, L. Review of the Operational Flexibility and Emissions of Gas- and Coal-Fired Power Plants in a Future with Growing Renewables. Renew. Sustain. Energy Rev. 2018, 82, 1497–1513. [Google Scholar] [CrossRef]
- Huang, Y.W.; Kittner, N.; Kammen, D.M. ASEAN Grid Flexibility: Preparedness for Grid Integration of Renewable Energy. Energy Policy 2019, 128, 711–726. [Google Scholar] [CrossRef]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Hefny, M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Hydrogen Production, Storage, Utilisation and Environmental Impacts: A Review. Environ. Chem. Lett. 2022, 20, 153–188. [Google Scholar] [CrossRef]
- Gils, H.C.; Gardian, H.; Schmugge, J. Interaction of Hydrogen Infrastructures with Other Sector Coupling Options towards a Zero-Emission Energy System in Germany. Renew. Energy 2021, 180, 140–156. [Google Scholar] [CrossRef]
- Saeedmanesh, A.; Kinnon, M.A.M.; Brouwer, J. Hydrogen Is Essential for Sustainability. Curr. Opin. Electrochem. 2018, 12, 166–181. [Google Scholar] [CrossRef]
- Fu, J.; Liu, Y.; Sun, F.H. Identifying and Regulating the Environmental Risks in the Development and Utilization of Natural Gas as a Low-Carbon Energy Source. Front. Energy Res. 2021, 9, 6381051. [Google Scholar] [CrossRef]
- Zeng, J.; Bao, R.; McFarland, M. Clean Energy Substitution: The Effect of Transitioning from Coal to Gas on Air Pollution. Energy Econ. 2021, 107, 105816. [Google Scholar] [CrossRef]
- Nazar, W.; Niedoszytko, M. Air Pollution in Poland: A 2022 Narrative Review with Focus on Respiratory Diseases. Int. J. Environ. Res. Public Health 2022, 19, 895. [Google Scholar] [CrossRef] [PubMed]
- Shearer, C.; Bistline, J.; Inman, M.; Davis, S.J. The Effect of Natural Gas Supply on US Renewable Energy and CO2 emissions. Environ. Res. Lett. 2014, 9, 094008. [Google Scholar] [CrossRef]
- Franco, B.; Mahieu, E.; Emmons, L.K.; Tzompa-Sosa, Z.A.; Fischer, E.V.; Sudo, K.; Bovy, B.; Conway, S.; Griffin, D.; Hannigan, J.W.; et al. Evaluating Ethane and Methane Emissions Associated with the Development of Oil and Natural Gas Extraction in North America. Environ. Res. Lett. 2016, 11, 44010. [Google Scholar] [CrossRef] [Green Version]
- Anifowose, B.; Odubela, M. Methane Emissions from Oil and Gas Transport Facilities—Exploring Innovative Ways to Mitigate Environmental Consequences. J. Clean. Prod. 2015, 92, 121–133. [Google Scholar] [CrossRef]
- Dodge, J.; Metze, T. Hydraulic Fracturing as an Interpretive Policy Problem: Lessons on Energy Controversies in Europe and the U.S.A. J. Environ. Policy Plan. 2017, 19, 1–13. [Google Scholar] [CrossRef]
- Cotton, M.; Rattle, I.; Van Alstine, J. Shale Gas Policy in the United Kingdom: An Argumentative Discourse Analysis. Energy Policy 2014, 73, 427–438. [Google Scholar] [CrossRef]
- Colborn, T.; Kwiatkowski, C.; Schultz, K.; Bachran, M. Natural Gas Operations from a Public Health Perspective. Hum. Ecol. Risk Assess. 2011, 17, 1039–1056. [Google Scholar] [CrossRef]
- Dupont, C.; Oberthür, S. Insufficient Climate Policy Integration in EU Energy Policy: The Importance of the Long-Term Perspective. J. Contemp. Eur. Res. 2012, 8. [Google Scholar] [CrossRef]
- Brauers, H. Natural Gas as a Barrier to Sustainability Transitions? A Systematic Mapping of the Risks and Challenges. Energy Res. Soc. Sci. 2022, 89, 102538. [Google Scholar] [CrossRef]
- Greenpeace European Unit. Taxonomy: Inclusion of Nuclear and Gasis “Attempted Robbery”. 2022. Available online: https://www.greenpeace.org/eu-unit/issues/climate-energy/46036/taxonomy-nuclear-gas-attempted-robbery/ (accessed on 24 June 2022).
- Abbas, I. ‘No gas in ‘green’ Taxonomy’—150 NGOs urge EU Commission. 2021. Available online: https://www.wwf.eu/?4589441/No-gas-in-green-Taxonomy---150-NGOs-urge-EU-Commission (accessed on 24 June 2022).
- Stavytskyy, A.; Kharlamova, G.; Giedraitis, V.; Šumskis, V. Estimating the Interrelation between Energy Security and Macroeconomic Factors in European Countries. J. Int. Stud. 2018, 11, 217–238. [Google Scholar] [CrossRef]
- Mara, D.; Nate, S.; Stavytskyy, A.; Kharlamova, G. The Place of Energy Security in the National Security Framework: An Assessment Approach. Energies 2022, 15, 658. [Google Scholar] [CrossRef]
- Miller, B.G. ‘12—Coal and Energy Security’. In Clean Coal Engineering Technology; Miller, B.G., Ed.; Butterworth-Heinemann: Boston, MA, USA, 2011; pp. 585–612. [Google Scholar] [CrossRef]
- Kuchler, M.; Höök, M. Fractured Visions: Anticipating (Un)Conventional Natural Gas in Poland. Resour. Policy 2020, 68, 101760. [Google Scholar] [CrossRef]
- Ghiles, F. War in Ukraine and the Gas Crisis Force to Rethink of EU Foreign Policy. CIDOB, E-ISSN 2013-4428. 2022. Available online: https://www.cidob.org/en/publications/publication_series/notes_internacionals/268/war_in_ukraine_and_the_gas_crisis_force_a_rethink_of_eu_foreign_policy (accessed on 24 June 2022). [CrossRef]
- Miller, B.G. ‘16—The Future Role of Coal’. In Clean Coal Engineering Technology, 2nd ed.; Miller, B.G., Ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 757–774. [Google Scholar] [CrossRef]
- Furman, T. Polskie Złoża Gazu i Ropy Potrzebują Inwestycji. Wydobycie Może Być Większe. 2022. Available online: https://energia.rp.pl/surowce-i-paliwa/art35956031-polskie-zloza-gazu-i-ropy-potrzebuja-inwestycji-wydobycie-moze-byc-wieksze (accessed on 25 June 2022).
- Berrada, A.; Ameur, A.; El Maakoul, A.; El Mrabet, R. Chapter 2—Optimization Modeling of Hybrid DG Systems. In Hybrid Energy System Models; Berrada, A., El Mrabet, R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 45–73. [Google Scholar] [CrossRef]
- Speight, J.G. Chapter One—Gas and Oil in Tight Formations. In Deep Shale Oil and Gas; Speight, J.G., Ed.; Gulf Professional Publishing: Boston, MA, USA, 2017; pp. 1–61. [Google Scholar] [CrossRef]
- Safari, A.; Das, N.; Langhelle, O.; Roy, J.; Assadi, M. Natural gas: A transition fuel for sustainable energy system transformation? Energy Sci. Eng. 2019, 7, 1075–1094. [Google Scholar] [CrossRef]
- Blankinship, S. Natural gas seen as stabilizing the Texas wind fleet. Power Eng. 2008, 112, 16. Available online: https://link.gale.com/apps/doc/A177028762/AONE?u=anon~a08c4491&sid=googleScholar&xid=1bf45cc0 (accessed on 24 June 2022).
- Malec, M.; Kinelski, G.; Czarnecka, M. The Impact of COVID-19 on Electricity Demand Profiles: A Case Study of Selected Business Clients in Poland. Energies 2021, 14, 5332. [Google Scholar] [CrossRef]
- Speight, J. Chapter 1—Gas and Oil in Tight Formations. In Shale Oil and Gas Production Processes; Speight, J., Ed.; Gulf Professional Publishing: Boston, MA, USA, 2020; pp. 3–64. [Google Scholar] [CrossRef]
- Gracceva, F.; Valkenburg, G.; Zeniewski, P. Chapter 9—Reducing Uncertainty through a Systemic Risk-Management Approach. In Low-Carbon Energy Security from a European Perspective; Lombardi, P., Gruenig, M., Eds.; Academic Press: Oxford, UK, 2016; pp. 231–256. [Google Scholar] [CrossRef]
- Li, Z.-G.; Cheng, H.; Gu, T.-Y. Research on Dynamic Relationship between Natural Gas Consumption and Economic Growth in China. Struct. Change Econ. Dyn. 2019, 49, 334–339. [Google Scholar] [CrossRef]
- Gillingham, K.; Huang, P. Is Abundant Natural Gas a Bridge to a Low-Carbon Future or a Dead-End? Energy J. 2019, 40, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Dmytrów, K.; Landmesser, J.; Bieszk-Stolorz, B. The Connections between COVID-19 and the Energy Commodities Prices: Evidence through the Dynamic Time Warping Method. Energies 2021, 14, 4024. [Google Scholar] [CrossRef]
- Thalassinos, E.; Kadłubek, M.; Thong, L.M.; Hiep, T.V.; Ugurlu, E. Managerial Issues Regarding the Role of Natural Gas in the Transition of Energy and the Impact of Natural Gas Consumption on the GDP of Selected Countries. Resources 2022, 11, 42. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X.; Jha, A.N.; Rogers, H. Natural gas from shale formation—The evolution, evidence and challenges of shale gas revolution in United States. Renew. Sust. Energ. Rev. 2014, 30, 1–28. [Google Scholar] [CrossRef]
- Źródła Gazu w Polsce. 2022. Available online: https://www.infor.pl/prawo/nowosci-prawne/5460429,Zrodla-i-zapasy-gazu-w-Polsce.html (accessed on 25 June 2022).
- Krzeczewski, B. Wybrane Procedury Badawcze w Nauce o Finansach a Metodologia Nauk Ekonomicznych. Optimum Stud. Ekon. 2015, 6, 85–98. [Google Scholar] [CrossRef]
- Energia Elektryczna. 2022. Available online: https://tge.pl/otf (accessed on 20 May 2022).
- Euro/Polish Zloty (EURPLN). 2022. Available online: https://stooq.pl/q/?s=eurpln (accessed on 20 May 2022).
- Coal (API2) CIF ARA (ARGUS-McCloskey) Futures—(MTFc1). 2022. Available online: https://pl.investing.com/commodities/coal-(api2)-cif-ara-futures (accessed on 20 May 2022).
- Dutch TTF Natural Gas. 2022. Available online: https://finance.yahoo.com/quote/TTF%3DF/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAJXpw7sJjrUdo0tOzK0R3KP10WWCLCPoZrVHjhDnVW5dBYu1z6fKez1Ee7JBh4TbvPUfZiOyqLtRVdmvjIuEfSu1n9Ty323SF07Y13UG_GhzGY5rNLHcqCqsm_qt0E1rSZwVfLM0GNHVmuccJOVbwjv2NXJc099U1KUBZfQuc6HO (accessed on 20 May 2022).
- PSCMI1. 2022. Available online: https://polskirynekwegla.pl/indeks-pscmi-1-kolejna-publikacja-w-dniu-1-lipca-o-godzinie-1200 (accessed on 20 May 2022).
- Krupiński, S.; Kuszewski, P.; Paska, J. Financial Efficiency of a 1000 MW Class Coal-Fired Power Unit on Example of the Ostrołęka C Power Plant. Przegląd Elektrotechniczny 2019, 95, 72–77. [Google Scholar] [CrossRef]
WACC | 9.4% |
---|---|
Cost of debt | 6.9% |
Cost of equity | 12.0% |
Debt share | 50% |
Equity share | 50% |
Risk-free rate | 6.5% |
Debt margin | 2.0% |
Tax rate | 19.0% |
Equity risk premium | 5.5% |
Beta coefficient | 1 |
NPV [mln EUR] | 0 | 1 | 2 | 7 | 12 | 17 | 22 | 23 | 24 | 25 |
---|---|---|---|---|---|---|---|---|---|---|
−891 | 2021 | 2022 | 2023 | 2028 | 2033 | 2038 | 2043 | 2044 | 2045 | 2046 |
CAPEX [mln EUR] | −437.6 | −369.5 | ||||||||
service [mln EUR] | −18.1 | −18.1 | −18.1 | |||||||
CDS [mln EUR] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
cash flow [mln EUR] | −437.6 | −369.5 | −18.1 | −18.1 | −18.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
discount rate | 1.0 | 0.9 | 0.8 | 0.5 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 |
discounted cash flow [mln EUR] | −437.6 | −337.6 | −15.1 | −9.6 | −6.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
load factor | 40% | 40% | 40% | 40% | 40% | 40% | 40% | 40% | ||
production [TWh] | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 | ||
margin [PLN/MWh] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
2021 | 2022 | 2023 | 2028 | 2033 | 2038 | 2043 | 2044 | 2045 | 2046 | |
energy price [PLN/MWh] | 2 | 368 | 952 | 973 | 998 | 1025 | 1057 | 1063 | 1070 | 1077 |
CO2 price [EUR/t] | 54 | 85 | 87 | 98 | 111 | 126 | 142 | 146 | 149 | 153 |
22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | |
hard coal—Poland [PLN/t] | 249 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 |
hard coal—ARA [USD/t] | 121 | 249 | 249 | 249 | 249 | 249 | 249 | 249 | 249 | 249 |
natural gas—Europe [EUR/MWh] | 52 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 |
lignite—Poland [PLN/t] | 160 | 160 | 160 | 160 | 160 | 160 | 160 | 160 | 160 | |
EUR/PLN | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 |
USD/PLN | 3.9 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
EUR/USD | 1.2 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 |
Cost per MWh hard coal DE (46%, 0.849) [PLN] | 382 | 680 | 693 | 738 | 788 | 845 | 909 | 923 | 937 | 952 |
Cost per MWh gas DE (59%, 0.41) [PLN] | 505 | 945 | 952 | 973 | 998 | 1025 | 1057 | 1063 | 1070 | 1077 |
Cost per MWh hard coal PL (46%, 0.849) [PLN] | 303 | 431 | 444 | 488 | 539 | 596 | 660 | 674 | 688 | 703 |
Cost per MWh hard coal PL old unit (36%, 1.084) [PLN] | 387 | 550 | 567 | 623 | 688 | 761 | 843 | 861 | 879 | 897 |
Cost per MWh lignite PL old unit (34%, 1.2) [PLN] | 385 | 545 | 564 | 628 | 701 | 783 | 875 | 895 | 916 | 937 |
CDS DE [PLN/MWh] | −13 | −48 | 259 | 236 | 210 | 180 | 147 | 140 | 133 | 125 |
CSS [PLN/MWh] | −137 | −313 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CDS PL [PLN/MWh] | 65 | 202 | 508 | 485 | 459 | 430 | 396 | 389 | 382 | 374 |
CDS Old Unit PL [PLN/MWh] | −384 | −182 | 385 | 350 | 310 | 265 | 214 | 203 | 191 | 180 |
CLS Old Unit PL [PLN/MWh] | −382 | −177 | 388 | 345 | 297 | 243 | 181 | 168 | 154 | 140 |
NPV [mln EUR] | 0 | 1 | 2 | 7 | 12 | 17 | 22 | 23 | 24 | 25 |
---|---|---|---|---|---|---|---|---|---|---|
2370 | 2021 | 2022 | 2023 | 2028 | 2033 | 2038 | 2043 | 2044 | 2045 | 2046 |
CAPEX [mln EUR] | −437.6 | −369.5 | ||||||||
service [mln EUR] | −18.1 | −18.1 | −18.1 | |||||||
CDS [mln EUR] | 305.6 | 350.9 | 402.2 | 460.2 | 525.8 | 539.9 | 554.3 | 569.2 | ||
cash flow [mln EUR] | −437.6 | −369.5 | 287.5 | 332.8 | 384.1 | 460.2 | 525.8 | 539.9 | 554.3 | 569.2 |
discount rate | 1.0 | 0.9 | 0.8 | 0.5 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 |
discounted cash flow [mln EUR] | −437.6 | −337.6 | 240.0 | 177.0 | 130.1 | 99.3 | 72.2 | 67.8 | 63.6 | 59.6 |
load factor | 40% | 40% | 40% | 40% | 40% | 40% | 40% | 40% | ||
production [TWh] | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 | ||
margin [PLN/MWh] | 287 | 329 | 377 | 432 | 493 | 506 | 520 | 534 | ||
2021 | 2022 | 2023 | 2028 | 2033 | 2038 | 2043 | 2044 | 2045 | 2046 | |
energy price [PLN/MWh] | 772 | 368 | 564 | 628 | 701 | 783 | 875 | 895 | 916 | 937 |
CO2 price [EUR/t] | 54 | 85 | 87 | 98 | 111 | 126 | 142 | 146 | 149 | 153 |
22 | 22 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | |
hard coal—Poland [PLN/t] | 249 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 |
hard coal—ARA [USD/t] | 121 | 249 | 62 | 62 | 62 | 62 | 62 | 62 | 62 | 62 |
natural gas—Europe [EUR/MWh] | 52 | 101 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
lignite—Poland [PLN/t] | 160 | 160 | 160 | 160 | 160 | 160 | 160 | 160 | 160 | |
EUR/PLN | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 |
USD/PLN | 3.9 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
EUR/USD | 1.2 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 |
Cost per MWh hard coal DE (46%, 0.849) [PLN] | 382 | 680 | 428 | 472 | 523 | 580 | 644 | 658 | 672 | 687 |
Cost per MWh gas DE (59%, 0.41) [PLN] | 505 | 945 | 278 | 299 | 324 | 351 | 382 | 389 | 396 | 403 |
Cost per MWh hard coal PL (46%, 0.849) [PLN] | 303 | 431 | 433 | 477 | 528 | 585 | 649 | 663 | 677 | 692 |
Cost per MWh hard coal PL old unit (36%, 1.084) [PLN] | 387 | 550 | 553 | 610 | 674 | 747 | 829 | 847 | 865 | 884 |
Cost per MWh lignite PL old unit (34%, 1.2) [PLN] | 0 | 545 | 564 | 628 | 701 | 783 | 875 | 895 | 916 | 937 |
CDS DE [PLN/MWh] | −13 | −48 | 136 | 156 | 178 | 203 | 231 | 237 | 244 | 250 |
CSS [PLN/MWh] | −137 | −313 | 287 | 329 | 377 | 432 | 493 | 506 | 520 | 534 |
CDS PL [PLN/MWh] | 65 | 202 | 131 | 151 | 173 | 198 | 226 | 232 | 239 | 245 |
CDS Old Unit PL [PLN/MWh] | 385 | −182 | 11 | 19 | 27 | 36 | 46 | 49 | 51 | 53 |
CLS Old Unit PL [PLN/MWh] | 0 | −177 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
NPV [mln EUR] | 0 | 1 | 2 | 7 | 12 | 17 | 22 | 23 | 24 | 25 |
---|---|---|---|---|---|---|---|---|---|---|
−698 | 2021 | 2022 | 2023 | 2028 | 2033 | 2038 | 2043 | 2044 | 2045 | 2046 |
CAPEX [mln EUR] | −437.6 | −369.5 | ||||||||
service [mln EUR] | −18.1 | −18.1 | −18.1 | |||||||
CDS [mln EUR] | 0.0 | 0.0 | 16.9 | 65.0 | 119.5 | 131.3 | 143.3 | 155.6 | ||
cash flow [mln EUR] | −437.6 | −369.5 | −18.1 | −18.1 | −1.2 | 65.0 | 119.5 | 131.3 | 143.3 | 155.6 |
discount rate | 1.0 | 0.9 | 0.8 | 0.5 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 |
discounted cash flow [mln EUR] | −437.6 | −337.6 | −15.1 | −9.6 | −0.4 | 14.0 | 16.4 | 16.5 | 16.4 | 16.3 |
load factor | 40% | 40% | 40% | 40% | 40% | 40% | 40% | 40% | ||
production [TWh] | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 | ||
margin [PLN/MWh] | 0 | 0 | 16 | 61 | 112 | 123 | 134 | 146 | ||
2021 | 2022 | 2023 | 2028 | 2033 | 2038 | 2043 | 2044 | 2045 | 2046 | |
energy price [PLN/MWh] | 277 | 368 | 952 | 973 | 1014 | 1086 | 1169 | 1186 | 1205 | 1223 |
CO2 price [EUR/t] | 54 | 85 | 87 | 98 | 111 | 126 | 142 | 146 | 149 | 153 |
22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | |
hard coal—Poland [PLN/t] | 249 | 290 | 996 | 996 | 996 | 996 | 996 | 996 | 996 | 996 |
hard coal—ARA [USD/t] | 121 | 249 | 249 | 249 | 249 | 249 | 249 | 249 | 249 | 249 |
natural gas—Europe [EUR/MWh] | 52 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 |
lignite—Poland [PLN/t] | 160 | 160 | 160 | 160 | 160 | 160 | 160 | 160 | 160 | |
EUR/PLN | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 |
USD/PLN | 3.9 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
EUR/USD | 1.2 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 |
Cost per MWh hard coal DE (46%, 0.849) [PLN] | 382 | 680 | 693 | 738 | 788 | 845 | 909 | 923 | 937 | 952 |
Cost per MWh gas DE (59%, 0.41) [PLN] | 505 | 945 | 952 | 973 | 998 | 1025 | 1057 | 1063 | 1070 | 1077 |
Cost per MWh hard coal PL (46%, 0.849) [PLN] | 303 | 431 | 699 | 743 | 794 | 851 | 915 | 929 | 943 | 958 |
Cost per MWh hard coal PL old unit (36%, 1.084) [PLN] | 387 | 550 | 892 | 949 | 1014 | 1086 | 1169 | 1186 | 1205 | 1223 |
Cost per MWh lignite PL old unit (34%, 1.2) [PLN] | 0 | 545 | 564 | 628 | 701 | 783 | 875 | 895 | 916 | 937 |
CDS DE [PLN/MWh] | −13 | −48 | 259 | 236 | 226 | 241 | 259 | 263 | 267 | 271 |
CSS [PLN/MWh] | −137 | −313 | 0 | 0 | 16 | 61 | 112 | 123 | 134 | 146 |
CDS PL [PLN/MWh] | 65 | 202 | 253 | 230 | 220 | 236 | 254 | 257 | 261 | 265 |
CDS Old Unit PL [PLN/MWh] | −110 | −182 | 59 | 24 | 0 | 0 | 0 | 0 | 0 | 0 |
CLS Old Unit PL [PLN/MWh] | 0 | −177 | 388 | 345 | 313 | 304 | 293 | 291 | 289 | 286 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zych, G.; Bronicki, J.; Czarnecka, M.; Kinelski, G.; Kamiński, J. The Cost of Using Gas as a Transition Fuel in the Transition to Low-Carbon Energy: The Case Study of Poland and Selected European Countries. Energies 2023, 16, 994. https://doi.org/10.3390/en16020994
Zych G, Bronicki J, Czarnecka M, Kinelski G, Kamiński J. The Cost of Using Gas as a Transition Fuel in the Transition to Low-Carbon Energy: The Case Study of Poland and Selected European Countries. Energies. 2023; 16(2):994. https://doi.org/10.3390/en16020994
Chicago/Turabian StyleZych, Grzegorz, Jakub Bronicki, Marzena Czarnecka, Grzegorz Kinelski, and Jacek Kamiński. 2023. "The Cost of Using Gas as a Transition Fuel in the Transition to Low-Carbon Energy: The Case Study of Poland and Selected European Countries" Energies 16, no. 2: 994. https://doi.org/10.3390/en16020994
APA StyleZych, G., Bronicki, J., Czarnecka, M., Kinelski, G., & Kamiński, J. (2023). The Cost of Using Gas as a Transition Fuel in the Transition to Low-Carbon Energy: The Case Study of Poland and Selected European Countries. Energies, 16(2), 994. https://doi.org/10.3390/en16020994