Study on Flow and Heat Transfer Characteristics of 25 kW Flameless Combustion in a Cylindrical Heat Exchanger for a Reforming Processor
Abstract
:1. Introduction
2. Research Methods
2.1. Experiment
2.1.1. Experimental Equipment and Design
2.1.2. Experimental Conditions
2.2. CFD Simulation
2.2.1. CFD Models
2.2.2. Combustion Models
Equilibrium PDF
Composition (Transport) PDF
2.2.3. Mesh
2.2.4. Heat Transfer Efficiency Calculation
2.2.5. Recirculation Ratio Calculation
3. Results and Discussion
3.1. Experimental Results
3.2. Simulation Results
3.2.1. Selection and Evaluation of Combustion Models
3.2.2. Effect of Recirculation Ring on RAI Flameless Combustion
3.2.3. Difference between RAI Flameless and Premixed Burners
3.2.4. Flue Gas Recirculation Characteristics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
References
- Crabtree, G.W.; Dresselhaus, M.S.; Buchanan, M.V. The Hydrogen Economy. Phys. Today 2004, 57, 39–44. [Google Scholar] [CrossRef]
- Singhal, S.C. Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ion. 2002, 152–153, 405–410. [Google Scholar] [CrossRef]
- Ni, M.; Leung, M.K.H.; Leung, D.Y.C. Technological development of hydrogen production by steam reforming of methane. Renew. Sustain. Energy Rev. 2007, 11, 827–853. [Google Scholar]
- Goyal, H.O.; Ghose, M.K. Hydrogen production by steam reforming of ethanol for PEM fuel cells. Int. J. Hydrogen Energy 2001, 26, 923–929. [Google Scholar]
- Rostrup, J.R.; Christiansen, L.J. Concepts in Syngas Manufacture; Imperial College Press: London, UK, 2011. [Google Scholar]
- Ahmed, S.; Krumpelt, M. Hydrogen from hydrocarbon fuels for fuel cells. Int. J. Hydrogen Energy 2001, 26, 291–301. [Google Scholar] [CrossRef]
- Kim, B.; Shin, D. A study on the heat flow characteristics in a flameless combustion furnace with a reverse air injection method installed with a double tube heat exchanger. Trans. Korean Soc. Mech. Eng. 2020, 44, 219–230. [Google Scholar] [CrossRef]
- Shin, T.; Shin, D. Study on the Operation Range and Performance of Reverse Air Injection Flameless Combustion Depending on LPG Flow Rate and Air Injection Velocity. Trans. Korean Soc. Mech. Eng. 2021, 45, 541–548. [Google Scholar] [CrossRef]
- Shin, J.S.; Shin, D. Study on Emission Characteristics Based on the Fuel Flow Rate and Stoichiometric Ratio of a Swirling Flameless Furnace. Trans. Korean Soc. Mech. Eng. 2021, 45, 559–568. [Google Scholar] [CrossRef]
- Hussain, T.; Kaviany, M. Flameless combustion of gaseous fuel with air preheated by recirculation of combustion products. Combust. Flame 2011, 158, 642–650. [Google Scholar]
- Hosseini, S.E.; Wahid, M.A. Enhancement of exergy efficiency in combustion systems using flameless mode. Energy Convers. Manag. 2014, 86, 1154–1163. [Google Scholar] [CrossRef]
- Chinnici, A.; Tian, Z.F.; Lim, J.H.; Nathan, G.J.; Dally, B.B. Comparison of system performance in a hybrid solar receiver combustor operating with MILD and conventional combustion. Sol. Energy 2017, 147, 479–488. [Google Scholar] [CrossRef]
- Kilian, C.A. Numerical Simulation of Non-Premixed Laminar and Turbulent Flames by Means of Flamelet Modelling Approaches; Universitat Politècnica de Catalunya: Barcelona, Spain, 2005; ISBN 8468917435. [Google Scholar]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Modest, M.F. Radiative Heat Transfer; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Pope, S.B. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Model. 1997, 1, 41–63. [Google Scholar] [CrossRef]
- Lacaze, G.; Oefelein, J.C. A fully coupled, high fidelity simulation of a turbulent mixing and combustion experiment. Proc. Combust. Inst. 2012, 34, 1353–1360. [Google Scholar]
- Peters, N. Turbulent Combustion; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Smith, P.J.; Shen, C.K. Turbulent premixed combustion in V-shaped flames: Experiments and a composition pdf model. Combust. Flame 1998, 115, 528–542. [Google Scholar]
- Reitz, R.D.; Bracco, F.V. Mechanisms of atomization of a liquid jet. Phys. Fluids 1982, 25, 1730–1742. [Google Scholar] [CrossRef]
- Fox, R.O. Computational Models for Turbulent Reacting Flows; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Llorca, J.; Homs, N.; Sales, J.; de la Piscina, P.R. Ethanol steam reforming on Rh/CeO2 catalysts: The role of ceria as a promoter. J. Catal. 2002, 209, 306–317. [Google Scholar] [CrossRef]
- Fatsikostas, A.N.; Verykios, X.E. Steam reforming of ethanol for the production of hydrogen for fuel cell applications. Int. J. Hydrogen Energy 2004, 29, 1555–1560. [Google Scholar]
- Pacheco, M.A.; Marshall, C.L. Review of dimethyl ether as an energy source. J. Power Sources 1997, 65, 193–204. [Google Scholar]
- Zhu, R.; Shin, D. Heat transfer characteristics of tubular heat exchanger using reversed air injection flameless combustion. Appl. Therm. Eng. 2023, 230 Pt B, 120713. [Google Scholar]
- Galletti, C.; Ferrarotti, M.; Parente, A.; Tognottia, L. Reduced NO formation models for CFD simulations of MILD combustion. Int. J. Hydrogen Energy 2015, 40, 4884–4897. [Google Scholar] [CrossRef]
- Raithby, G.D.; Chui, E.H. A finite-volume method for predicting a radiant heat transfer in enclosures with participating media. J. Heat Transf. 1990, 112, 415–423. [Google Scholar] [CrossRef]
- Lupant, D.; Lybaert, P. Assessment of the EDC combustion model in MILD conditions with in-furnace experimental data. Appl. Therm. Eng. 2015, 75, 93–102. [Google Scholar] [CrossRef]
- He, D.; Yu, Y.; Kuang, Y.; Wang, C. Analysis of EDC constants for predictions of methane MILD combustion. Fuel 2022, 324, 124542. [Google Scholar] [CrossRef]
- Huang, X.; Tummers, M.J.; van Veen, E.H.; Roekaerts, D.J.E.M. Modelling of MILD combustion in a lab-scale furnace with an extended FGM model including turbulence and radiation interaction. Combust. Flame 2022, 237, 111634. [Google Scholar] [CrossRef]
- Pope, S.B. PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 1985, 11, 119–192. [Google Scholar] [CrossRef]
- Huang, Y.; Sung, H.J.; Hwang, W. Assessment of presumed probability density function and flamelet models in simulating nonpremixed turbulent CO/H2 jet flames. Combust. Flame 2004, 139, 222–240. [Google Scholar]
- Smagorinsky, J. General circulation experiments with the primitive equations. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Li, P.; Mi, J.; Wang, F. Effects of equivalence ratio and reactant mixing mode on flameless combustion. Chin. J. Electr. Eng. 2011, 31, 20–27. [Google Scholar]
- Ruan, L.; Chen, Y.; Zhu, X. Effects of jet speed and recirculation ratio on heat transfer characteristics in a porous media burner. Energy Convers. Manag. 2019, 196, 1179–1188. [Google Scholar]
- Yang, W.; Blasiak, W. Large eddy simulation of turbulent combustion in a bluff-body burner with internal exhaust gas recirculation. Fuel 2006, 85, 2135–2144. [Google Scholar]
- Ruppert, A.M.; Weinberg, K.; Emig, G. Steam reforming and oxidative steam reforming of ethanol: The first step in the exploitation of bioethanol in fuel cells. ChemSusChem 2009, 2, 807–810. [Google Scholar]
- Da Silva, A.A.R.; Noronha, F.B.; Souza, M.J.B.; Schmal, M. Hydrogen from ethanol: Review of production technologies. J. Power Sources 2019, 423, 130–143. [Google Scholar]
- Rossetti, I. Testing of different catalysts for steam reforming of ethanol at low temperature. Int. J. Hydrogen Energy 2008, 33, 6351–6359. [Google Scholar]
- Pantoleontos, G.; Kondarides, D.I.; Verykios, X.E. Ethanol Steam Reforming for Hydrogen Generation over Noble Metal Catalysts. Appl. Catal. B Environ. 2015, 170–171, 107–121. [Google Scholar]
- Adam, P.S.; Andrew, E.L. Exergy analysis of hydrogen production via steam methane reforming. Int. J. Hydrogen Energy 2007, 32, 4811–4820. [Google Scholar]
- Haworth, D.C. Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 2010, 36, 168–259. [Google Scholar] [CrossRef]
- Hawkes, E.; Sankaran, R.; Sutherland, J.C.; Chen, J.H. Direct numerical simulation of turbulent combustion: Fundamental insights towards predictive models. J. Phys. 2005, 16, 26–30. [Google Scholar] [CrossRef]
Heat Input | Fuel Flow | Air Flow | Water Flow | Fuel Nozzle Diameter | Air Nozzle Diameter | Fuel Flow Velocity | Air Flow Velocity | |
---|---|---|---|---|---|---|---|---|
(kW) | (L/min) | (L/min) | (cc/min) | (mm) | (mm) | (m/s) | (m/s) | |
Group A—RAI flameless | ||||||||
A-1 | 15.4 | 10 | 300 | 18 | 7 | 6 | 4.3 | 88.4 |
A-2 | 24.6 | 16 | 480 | 29 | 6.9 | 141.5 | ||
A-3 | 33.8 | 22 | 660 | 41 | 9.5 | 194.5 | ||
Group B—RAI flameless (with recirculation ring) | ||||||||
B-1 | 15.4 | 10 | 300 | 18 | 7 | 6 | 4.3 | 88.4 |
B-2 | 24.6 | 16 | 480 | 30 | 6.9 | 141.5 | ||
B-3 | 33.8 | 22 | 660 | 41 | 9.5 | 194.5 | ||
Group C—Premixed flame | Burner diameter (mm) | Burner flow velocity (m/s) | ||||||
C-1 | 15.4 | 10 | 300 | 15 | 38.9 | 8.9 | ||
C-2 | 24.6 | 16 | 480 | 26 | 19.5 | |||
C-3 | 33.8 | 22 | 660 | 37 | 26.8 |
Continuity equation | (1) | |
Momentum Conservation Equation | (2) | |
(3) | ||
(4) | ||
Energy equation | (5) | |
Discrete Ordinates (DO) Radiation model | (6) | |
Species transport | (7) |
Temperature Distribution | Emission | Heat Transfer | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Heat Input | T.C. @1 | T.C. @2 | T.C. @3 | T.C. @4 | T.C. @5 | O2 | NOx | CO | Reformer Zone Heat Transfer | Heat Transfer Efficiency | |
(kW) | (°C) | (°C) | (°C) | (°C) | (°C) | (%) | (ppm) | (ppm) | (kW) | (%) | |
Group A—RAI flameless | |||||||||||
A-1 | 15.4 | 1005 | 857 | 698 | 460 | 422 | 3.3 | 19 | 3 | 12.4 | 80.5% |
A-2 | 24.6 | 1025 | 840 | 702 | 504 | 495 | 23 | 6 | 20.6 | 83.7% | |
A-3 | 33.8 | 1090 | 895 | 722 | 574 | 576 | 33 | 14 | 28.4 | 84.0% | |
Group B—RAI flameless (with recirculation ring) | |||||||||||
B-1 | 15.4 | 975 | 880 | 702 | 458 | 468 | 3.3 | 17 | 3 | 12.6 | 81.8% |
B-2 | 24.6 | 1000 | 898 | 723 | 482 | 536 | 22 | 7 | 20.8 | 84.6% | |
B-3 | 33.8 | 1055 | 952 | 717 | 542 | 598 | 33 | 12 | 28.5 | 84.3% | |
Group C—Flame (premixed burner) | |||||||||||
C-1 | 15.4 | 752 | 1150 | 687 | 595 | 423 | 3.3 | 145 | 9 | 10.5 | 68.2% |
C-2 | 24.6 | 1005 | 910 | 696 | 617 | 495 | 79 | 18 | 17.9 | 72.8% | |
C-3 | 33.8 | 1025 | 925 | 695 | 641 | 535 | 97 | 15 | 25.9 | 76.6% |
Group | Species Model | T.C.@1 | T.C.@2 | T.C.@3 | T.C.@4 | T.C.@5 | Emission | Computational Speed | Total Iteration Steps for Convergence | |
---|---|---|---|---|---|---|---|---|---|---|
Top | Bottom | Catalyst | Gas | Wall | NOx | CO | ||||
(K) | (K) | (K) | (K) | (K) | (ppm) | (ppm) | [s/Iteration] | (Iteration) | ||
A-1 | Experimental data | 1278 | 1130 | 971 | 733 | 695 | 19 | 3 | - | - |
E-PDF | 1545 | 1488 | 1035 | 1011 | 998 | 33.6 | 14.4 | 3.3 | 38,445 | |
C-PDF | 1352 | 1359 | 1013 | 814 | 859 | 8.5 | 19.2 | 46.2 | 16,959 | |
A-2 | Experimental data | 1298 | 1113 | 975 | 777 | 768 | 23 | 6 | - | - |
E-PDF | 1605 | 1508 | 961 | 1229 | 1075 | 47.4 | 15.8 | 2.3 | 39,454 | |
C-PDF | 1389 | 1486 | 965 | 1017 | 891 | 33.1 | 16.7 | 47.5 | 24,956 | |
A-3 | Experimental data | 1363 | 1168 | 995 | 847 | 849 | 37 | 22 | - | - |
E-PDF | 1788 | 1655 | 1034 | 1437 | 1250 | 89.5 | 23.9 | 2.3 | 60,652 | |
C-PDF | 1496 | 1513 | 955 | 1221 | 1019 | 97.5 | 18.5 | 55.7 | 19,775 | |
B-2 | Experimental data | 1273 | 1171 | 996 | 755 | 809 | 22 | 7 | - | - |
E-PDF | 1657 | 1588 | 1032 | 954 | 923 | 57.5 | 23.8 | 3.5 | 55,482 | |
C-PDF | 1634 | 1552 | 1057 | 907 | 833 | 21.3 | 17.9 | 47.9 | 17,757 |
Recirculation Ratio of Each Plane | Space Average Recirculation Ratio | |||||
---|---|---|---|---|---|---|
xy_Plane_1 | xy_Plane_2 | xy_Plane_3 | xy_Plane_4 | xy_Plane_5 | ||
Group A—Flameless | ||||||
A-1 | 0.26 | 1.73 | 5.17 | 6.92 | 9.77 | 4.77 |
A-2 | 0.28 | 1.77 | 5.21 | 6.88 | 9.75 | 4.78 |
A-3 | 0.29 | 1.80 | 5.21 | 6.79 | 9.68 | 4.61 |
Group B—Flameless (recirculation ring) | ||||||
B-1 | 1.15 | 2.16 | 5.54 | 7.26 | 9.55 | 5.13 |
B-2 | 1.14 | 2.21 | 5.63 | 7.25 | 9.55 | 5.16 |
B-3 | 1.12 | 2.28 | 5.66 | 7.21 | 9.56 | 5.17 |
Group C—Flame (premixed) | ||||||
C-1 | 0.02 | 0.37 | 1.02 | 1.33 | 1.85 | 0.92 |
C-2 | 0.04 | 0.37 | 1.03 | 1.38 | 2.03 | 0.97 |
C-3 | 0.04 | 0.38 | 1.01 | 1.38 | 2.01 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, R.; Shin, D. Study on Flow and Heat Transfer Characteristics of 25 kW Flameless Combustion in a Cylindrical Heat Exchanger for a Reforming Processor. Energies 2023, 16, 7160. https://doi.org/10.3390/en16207160
Zhu R, Shin D. Study on Flow and Heat Transfer Characteristics of 25 kW Flameless Combustion in a Cylindrical Heat Exchanger for a Reforming Processor. Energies. 2023; 16(20):7160. https://doi.org/10.3390/en16207160
Chicago/Turabian StyleZhu, Ruiqi, and Donghoon Shin. 2023. "Study on Flow and Heat Transfer Characteristics of 25 kW Flameless Combustion in a Cylindrical Heat Exchanger for a Reforming Processor" Energies 16, no. 20: 7160. https://doi.org/10.3390/en16207160
APA StyleZhu, R., & Shin, D. (2023). Study on Flow and Heat Transfer Characteristics of 25 kW Flameless Combustion in a Cylindrical Heat Exchanger for a Reforming Processor. Energies, 16(20), 7160. https://doi.org/10.3390/en16207160